CS21
Decidability and Tractability
Lecture 3
January 9, 2017
Outline

• NFA, FA equivalence
• Regular Expressions
• FA and Regular Expressions
NFA, FA equivalence

Theorem: a language \(L \) is recognized by a **FA** if and only if \(L \) is recognized by a **NFA**.

Must prove *two* directions:

\((\Rightarrow)\) \(L \) is recognized by a FA *implies* \(L \) is recognized by a NFA.

\((\Leftarrow)\) \(L \) is recognized by a NFA *implies* \(L \) is recognized by a FA.

(usually one is easy, the other more difficult)
NFA, FA equivalence

\(\implies\) L is recognized by a FA implies L is recognized by a NFA

Proof: a finite automaton is a nondeterministic finite automaton that happens to have no \(\varepsilon\)-transitions, and for which each state has exactly one outgoing transition for each symbol.
NFA, FA equivalence

\(\Leftarrow \) L is recognized by a NFA implies L is recognized by a FA.

Proof: we will build a FA that simulates the NFA (and thus recognizes the same language).

– alphabet will be the same
– what are the states of the FA?
NFA, FA equivalence

- given NFA \(M = (Q, \Sigma, \delta, q_0, F) \)
- construct FA \(M' = (Q', \Sigma', \delta', q_0', F') \)
- same alphabet: \(\Sigma' = \Sigma \)
- states are subsets of M’s states: \(Q' = \mathcal{P}(Q) \)

- if we are in state \(R \in Q' \) and we read symbol \(a \in \Sigma' \), what is the new state?
NFA, FA equivalence

– given NFA \(M = (Q, \Sigma, \delta, q_0, F) \)

– construct FA \(M' = (Q', \Sigma', \delta', q_0', F') \)

Helpful def’n: \(E(S) = \{ q \in Q : q \text{ reachable from } S \text{ by traveling along 0 or more } \varepsilon\text{-transitions} \} \)

– new transition fn: \(\delta'(R, a) = \bigcup_{r \in R} E(\delta(r, a)) \)

= “all nodes reachable from \(R \) by following an \(a\)-transition, and then 0 or more \(\varepsilon\)-transitions”
NFA, FA equivalence

– given NFA \(M = (Q, \Sigma, \delta, q_0, F) \)
– construct FA \(M' = (Q', \Sigma', \delta', q_0', F') \)

– new start state: \(q_0' = E(\{q_0\}) \)
– new accept states:
 \[F' = \{ R \in Q' : R \text{ contains an accept state of } M \} \]
NFA, FA equivalence

• We have proved (\iff) by construction.

Formally we should also prove that the construction works, by induction on the number of steps of the computation.

– at each step, the state of the FA M' is exactly the set of reachable states of the NFA M...
So far…

Theorem: the set of languages recognized by NFA is closed under union, concatenation, and star.

Theorem: a language L is recognized by a FA if and only if L is recognized by a NFA.

Theorem: the set of languages recognized by FA is closed under union, concatenation, and star.
Next...

• Describe the set of languages that can be built up from:
 – unions
 – concatenations
 – star operations
• Called “patterns” or regular expressions
• **Theorem**: a language \(L \) is recognized by a FA if and only if \(L \) is described by a regular expression.
Regular expressions

- R is a regular expression if R is
 - a, for some a ∈ Σ
 - ε, the empty string
 - Ø, the empty set
 - (R₁ ∪ R₂), where R₁ and R₂ are reg. exprs.
 - (R₁ ° R₂), where R₁ and R₂ are reg. exprs.
 - (R₁*), where R₁ is a regular expression

A reg. expression R describes the language L(R).
Regular expressions

- example: \(R = (0 \cup 1) \)
 - if \(\Sigma = \{0, 1\} \) then use “\(\Sigma \)” as shorthand for \(R \)

- example: \(R = 0 \circ \Sigma^* \)
 - shorthand: omit “\(\circ \)” \(R = 0\Sigma^* \)
 - precedence: *, then \(\circ \), then \(\cup \), unless override by parentheses
 - in example \(R = 0(\Sigma^*) \), not \(R = (0\Sigma)^* \)
Some examples

- \{w \mid w \text{ has at least one } 1\}
 \[= \Sigma^*1\Sigma^*\]

- \{w \mid w \text{ starts and ends with same symbol}\}
 \[= 0\Sigma^*0 \cup 1\Sigma^*1 \cup 0 \cup 1\]

- \{w \mid |w| \leq 5\}
 \[= (\epsilon \cup \Sigma)(\epsilon \cup \Sigma)(\epsilon \cup \Sigma)(\epsilon \cup \Sigma)(\epsilon \cup \Sigma)\]

- \{w \mid \text{every } 3^{\text{rd}} \text{ position of } w \text{ is } 1\}
 \[= (1\Sigma\Sigma)^*(\epsilon \cup 1 \cup 1\Sigma)\]
Manipulating regular expressions

• The empty set and the empty string:
 – $R \cup \emptyset = R$
 – $R\varepsilon = \varepsilon R = R$
 – $R\emptyset = \emptyset R = \emptyset$
 – \cup and \circ behave like $+$, \times; \emptyset, ε behave like 0, 1

• additional identities:
 – $R \cup R = R$ (here $+$ and \cup differ)
 – $(R_1 R_2)^* R_1^* = (R_1 \cup R_2)^*$
 – $R_1 (R_2 R_1)^* = (R_1 R_2)^* R_1$
Regular expressions and FA

• **Theorem**: a language L is recognized by a FA if and only if L is described by a regular expression.

Must prove *two* directions:

$(\Rightarrow) L$ is recognized by a FA implies L is described by a regular expression

$(\Leftarrow) L$ is described by a regular expression implies L is recognized by a FA.
Regular expressions and FA

\(\iff \) L is described by a regular expression implies L is recognized by a FA

Proof: given regular expression R we will build a NFA that recognizes L(R).

then NFA, FA equivalence implies a FA for L(R).
Regular expressions and FA

• R is a regular expression if R is

 – a, for some a ∈ Σ

 – ε, the empty string

 – Ø, the empty set
Regular expressions and FA

- \((R_1 \cup R_2)\), where \(R_1\) and \(R_2\) are regular expressions.

- \((R_1 \circ R_2)\), where \(R_1\) and \(R_2\) are regular expressions.

- \((R_1^*)\), where \(R_1\) is a regular expression.
Regular expressions and FA

\[\Rightarrow \] L is recognized by a FA implies L is described by a regular expression

Proof: given FA M that recognizes L, we will

1. build an equivalent machine “Generalized Nondeterministic Finite Automaton” (GNFA)
2. convert the GNFA into a regular expression
Regular expressions and FA

- GNFA definition:
 - it is a NFA, but may have regular expressions labeling its transitions
 - GNFA accepts string $w \in \Sigma^*$ if can be written
 \[
 w = w_1w_2w_3\ldots w_k
 \]
 where each $w_i \in \Sigma^*$, and there is a path from the start state to an accept state in which the i^{th} transition traversed is labeled with R for which $w_i \in L(R)$
Regular expressions and FA

• Recall step 1: build an equivalent GNFA

• Our FA M is a GNFA.
• We will require “normal form” for GNFA to make the proof easier:
 – single accept state q_{accept} that has all possible incoming arrows
 – every state has all possible outgoing arrows; exception: start state q_0 has no self-loop
Regular expressions and FA

- converting our FA M into GNFA in normal form:
Regular expressions and FA

• On to step 2: convert the GNFA into a regular expression

 – if normal-form GNFA has two states:

 the regular expression R labeling the single transition describes the language recognized by the GNFA
Regular expressions and FA

– if GNFA has more than 2 states:

– select one “q\textsubscript{rip}”; delete it; repair transitions so that machine still recognizes same language.

– repeat until only 2 states.
Regular expressions and FA

– how to repair the transitions:
– for every pair of states q_i and q_j do

$$q_i \xrightarrow{R_1} q_{rip} \xrightarrow{R_2} q_j \xrightarrow{(R_1)(R_2)^*(R_3) \cup (R_4)} q_j$$

\[(R_1)(R_2)^*(R_3) \cup (R_4) \]
Regular expressions and FA

– summary:
FA M → k-state GNFA → (k-1)-state GNFA → (k-2)-state GNFA → … → 2-state GNFA → R
– want to prove that this procedure is correct, i.e. \(L(R) = \) language recognized by M

- FA M equivalent to k-state GNFA
- i-state GNFA equivalent to (i-1)-state GNFA (we will prove…)
- 2-state GFNA equivalent to R
Regular expressions and FA

– **Claim:** i-state GNFA G equivalent to (i-1)-state GNFA G’ (obtained by removing q_{rip})

– **Proof:**

 • if G accepts string w, then it does so by entering states: q_0, q_1, q_2, q_3, … , q_{accept}
 • if none are q_{rip} then G’ accepts w (see slide)
 • else, break state sequence into runs of q_{rip}:

 $q_0q_1…q_iq_{\text{rip}}q_{\text{rip}}…q_{\text{rip}}q_j…q_{\text{accept}}$

 • transition from q_i to q_j in G’ allows all strings taking G from q_i to q_j using q_{rip} (see slide)

 • thus G’ accepts w
Regular expressions and FA

\[(R_1)(R_2)^*(R_3) \cup (R_4)\]
Regular expressions and FA

\[(R_1)(R_2)^*(R_3) \cup (R_4)\]
Regular expressions and FA

– **Proof** (continued):
 - if G' accepts string w, then every transition from q_i to q_j traversed in G' corresponds to
 - either a transition from q_i to q_j in G
 - or transitions from q_i to q_j via q_{rip} in G
 - In both cases G accepts w.

 - Conclude: G and G' recognize the same language.
Regular expressions and FA

• **Theorem**: a language L is recognized by a FA iff L is described by a regular expr.

• Languages recognized by a FA are called **regular languages**.

• Rephrasing what we know so far:
 – regular languages closed under 3 operations
 – NFA recognize exactly the regular languages
 – regular expressions describe exactly the regular languages