NFA diagrams

• At each step, several choices for next state
 – if possible to reach accept, then input accepted

Formal description of NFA operation

NFA \(M = (Q, \Sigma, \delta, q_0, F) \)
accepts a string \(w = w_1w_2w_3\ldots w_n \in \Sigma^* \)
if \(w \) can be written (by inserting \(\varepsilon \)'s) as:
\[
y = \gamma_1\gamma_2\gamma_3\ldots\gamma_m \in (\Sigma \cup \{\varepsilon\})^*
\]
and \(3 \) sequence \(r_0, r_1, \ldots, r_m \) of states for which
\[
- r_0 = q_0
- r_i \in 0(i, y_{i+1}) \text{ for } i = 0, 1, 2, \ldots, m-1
- r_m \in F
\]
Closure under concatenation

\[C = (A \circ B) = \{ xy : x \in A \text{ and } y \in B \} \]

Closure under star

\[C = A^* = \{ x_1 x_2 x_3 \ldots : k \geq 0 \text{ and each } x_i \in A \} \]

NFA, FA equivalence

Theorem: A language \(L \) is recognized by a FA if and only if \(L \) is recognized by a NFA.

Must prove two directions:

1. \(\Rightarrow \) \(L \) is recognized by a FA implies \(L \) is recognized by a NFA.
2. \(\Leftarrow \) \(L \) is recognized by a NFA implies \(L \) is recognized by a FA.

(usually one is easy, the other more difficult)

NFA, FA equivalence

\(\Rightarrow \) \(L \) is recognized by a FA implies \(L \) is recognized by a NFA

Proof: A finite automaton is a nondeterministic finite automaton that happens to have no \(\epsilon \)-transitions, and for which each state has exactly one outgoing transition for each symbol.

NFA, FA equivalence

\(\Leftarrow \) \(L \) is recognized by a NFA implies \(L \) is recognized by a FA.

Proof: We will build a FA that simulates the NFA (and thus recognizes the same language).

- Alphabet will be the same
- What are the states of the FA?
Given NFA $M = (Q, \Sigma, \delta, q_0, F)$, construct FA $M' = (Q', \Sigma', \delta', q'_0, F')$.

Helpful defn: $E(S) = \{q \in Q : q$ reachable from S by traveling along 0 or more ϵ-transitions $\}$.

New transition fn: $\delta'(R, a) = \cup_{r \in R} E(\delta(r, a))$.

New start state: $q'_0 = E(q_0)$.

New accept states: $F' = \{R \in Q' : R$ contains an accept state of $M\}$.

So far...

Theorem: the set of languages recognized by NFA is closed under union, concatenation, and star.

Theorem: a language L is recognized by a FA if and only if L is recognized by a NFA.

Next...

- Describe the set of languages that can be built up from:
 - unions
 - concatenations
 - star operations
- Called "patterns" or regular expressions
- **Theorem**: a language L is recognized by a FA if and only if L is described by a regular expression.

Regular expressions

- R is a regular expression if R is:
 - a, for some $a \in \Sigma$
 - ϵ, the empty string
 - \emptyset, the empty set
 - $(R_1 \cup R_2)$, where R_1 and R_2 are reg. exprs.
 - $(R_1 \cdot R_2)$, where R_1 and R_2 are reg. exprs.
 - (R_1^*), where R_1 is a regular expression
- A reg. expression R describes the language $L(R)$.

Note: The diagrams represent NFA and FA equivalence with state transitions and transitions labeled with δ and δ' respectively.
Regular expressions

- example: \(R = (0 \cup 1) \)
 - if \(\Sigma = \{0,1\} \) then use “\(\Sigma \)” as shorthand for \(R \)

- example: \(R = 0 \circ \Sigma^* \)
 - shorthand: omit “\(\circ \)”
 - \(R = 0 \Sigma^* \)
 - precedence: \(\ast \), then \(\circ \), then \(\cup \), unless override by parenthesis
 - in example \(R = 0(\Sigma^*) \), not \(R = (0 \Sigma)^* \)

Some examples

- \(\{ w : w \text{ has at least one } 1 \} \)
 \(= \Sigma^*1\Sigma^* \)

- \(\{ w : w \text{ starts and ends with same symbol} \} \)
 \(= 0\Sigma^*0 \cup 1\Sigma^*1 \cup 0 \cup 1 \)

- \(\{ w : |w| \leq 5 \} \)
 \(= (\varepsilon \cup \Sigma)(\varepsilon \cup \Sigma)(\varepsilon \cup \Sigma)(\varepsilon \cup \Sigma)(\varepsilon \cup \Sigma) \)

- \(\{ w : \text{every } 3\text{rd position of } w \text{ is } 1 \} \)
 \(= (1\Sigma^*)^*(\varepsilon \cup 1 \cup 1\Sigma^*) \)

Manipulating regular expressions

- The empty set and the empty string:
 - \(R \cup \emptyset = R \)
 - \(R\varepsilon = \varepsilon R = R \)
 - \(R\emptyset = \emptyset R = \emptyset \)
 - \(u \) and \(+ \) behave like \(+ \), \(\ast \)
 - \(\emptyset \), \(\epsilon \) behave like 0,1

- additional identities:
 - \(R \cup R = R \)
 - \((R \ast R)\ast R = (R \cup R)\ast R \)
 - \(R(R\ast R)\ast R = (R\ast R)\ast R \)

Regular expressions and FA

- **Theorem**: a language \(L \) is recognized by a FA if and only if \(L \) is described by a regular expression.

 Must prove two directions:
 \(\left(\Rightarrow \right) \) \(L \) is recognized by a FA implies \(L \) is described by a regular expression
 \(\left(\Leftarrow \right) \) \(L \) is described by a regular expression implies \(L \) is recognized by a FA.

- Proof: given regular expression \(R \) we will build a NFA that recognizes \(L(R) \).
 then NFA, FA equivalence implies a FA for \(L(R) \).

Regular expressions and FA

- \(R \) is a regular expression if \(R \) is
 \(- a \), for some \(a \in \Sigma \)
 \(- \varepsilon \), the empty string
 \(- \emptyset \), the empty set
Regular expressions and FA

- \((R_1 \cup R_2)\), where \(R_1\) and \(R_2\) are reg. exprs.

- \((R_1 \circ R_2)\), where \(R_1\) and \(R_2\) are reg. exprs.

- \((R_1^*)\), where \(R_1\) is a regular expression