Extended Church-Turing Thesis

- The belief that TMs formalize our intuitive notion of an efficient algorithm is:
 - Quantum computation challenges this belief

A different model

- Infinite tape of a Turing Machine is an idealized model of computer
- Real computer is a Finite Automaton (!)
 - n bits of memory
 - 2^n states
Model of randomized computation

Possible states at time t: \[\sum p_i = 1 \quad p_i \in \mathbb{R}^+ \]

State at time t \[
\begin{pmatrix}
0 & \frac{1}{4} & 0 & \frac{1}{2} \\
\frac{1}{2} & 0 & \frac{1}{4} & 0 \\
0 & \frac{1}{2} & 0 & \frac{1}{4} \\
0 & 0 & 0 & 0
\end{pmatrix}
= \begin{pmatrix}
\frac{3}{4} \\
\frac{1}{2} \\
\frac{1}{4} \\
0
\end{pmatrix}
\]

State at time $t+1$

"Stochastic matrix" sum in each column $= 1$

Model of quantum computation

Possible states at time t: \[\sum |c_i|^2 = 1 \quad c_i \in \mathbb{C} \]

State at time t \[
\begin{pmatrix}
\frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \\
\frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{2}}
\end{pmatrix}
= \begin{pmatrix}
0 \\
1
\end{pmatrix}
\]

State at time $t+1$

"Unitary matrix" preserves L_2 norm

One quantum register

- Register with n qubits; shorthand for basic states

\[|0 \rangle = \begin{pmatrix} 1 \\ 0 \\ \vdots \\ 0 \end{pmatrix}, \quad |1 \rangle = \begin{pmatrix} 0 \\ 1 \\ \vdots \\ 0 \end{pmatrix} \]

Shorthand for general state

\[|\psi \rangle = \begin{pmatrix} c_0 \\ c_1 \\ c_2 \\ \vdots \\ c_{2^n-1} \end{pmatrix} = \sum c_i |i \rangle \]

Two quantum registers

- Registers with n, m qubits: shorthand for 2^{nm} basic states:

\[|00 \rangle = |0 \rangle \otimes |0 \rangle = \begin{pmatrix} 1 \\ 0 \\ 0 \\ 0 \end{pmatrix}, \quad |01 \rangle = |0 \rangle \otimes |1 \rangle = \begin{pmatrix} 0 \\ 1 \\ 0 \\ 0 \end{pmatrix} \]

\[|10 \rangle = |1 \rangle \otimes |0 \rangle = \begin{pmatrix} 0 \\ 0 \\ 1 \\ 0 \end{pmatrix}, \quad |11 \rangle = |1 \rangle \otimes |1 \rangle = \begin{pmatrix} 0 \\ 0 \\ 0 \\ 1 \end{pmatrix} \]
Two quantum registers

shorthand for general unentangled state

\[|a\rangle = \sum_{i,j} a_{i,j} |i\rangle |j\rangle \]

example:

\[\frac{1}{\sqrt{2}} (|0\rangle |0\rangle + |1\rangle |1\rangle) \]

Partial measurement

- general state:
 \[|a\rangle = \sum_{i,j} a_{i,j} |i\rangle |j\rangle = \sum_{i} \left(\sum_{j} a_{i,j} |i\rangle \right) \otimes |j\rangle \]
 - if measure just 2nd register, see state \(|j\rangle\) in 2nd register with probability \(\sum_{i} |a_{i,j}|^2\)
 - state collapses to:
 \[\alpha \left(\sum_{i} a_{i,j} |i\rangle \right) \otimes |j\rangle \]

EPR “paradox”

\[\frac{1}{\sqrt{2}} (|0\rangle |0\rangle + |1\rangle |1\rangle) \]

- register 1 in LA, register 2 sent to NYC
- measure register 2
 - probability \%: see \(|0\rangle\) state collapses to \(|0\rangle |0\rangle\)
 - probability \%: see \(|1\rangle\) state collapses to \(|1\rangle |1\rangle\)
 - measure register 1
 - guaranteed to be same as observed in NYC
 - instantaneous “communication”

Quantum complexity

- classical computation of function \(f\)
 \[\begin{pmatrix} 0 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 1 \end{pmatrix} \begin{pmatrix} 0 \\ 0 \\ 0 \\ 1 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix} \]

- some functions are easy, some hard
- need to measure “complexity” of \(M_f\)

Quantum complexity

- analogous notion of “local operation” for quantum systems
- in each step
 - split qubits into register of 1 or 2, and rest
 - operate only on small register
- “efficient” in both settings: # local operations polynomial in # bits \(n\)
Efficiently quantum computable functions

- For every $f : \{0,1\}^n \to \{0,1\}^m$ that is efficiently computable classically
- the unitary transform U_f:
 $$U_f(i|j) = |i\rangle|f(i) + j\rangle$$
- note, when 2nd register = $|0\rangle$:
 $$U_f(i|0) = |i\rangle|f(i)\rangle$$

Shor’s factoring algorithm

- well-known: factoring equivalent to order finding
 - input: y, N
 - output: smallest $r > 0$ such that $y^r = 1 \mod N$

Factoring: step 1

- given y, N; $f(i) = y^i \mod N$; have $\sum_i |i\rangle|f(i)\rangle$
 - in each vector, period = r, the order of $y \mod N$
 - offset depends on 2nd register

Factoring: step 2

- measure register 2
- state collapses to:
 $$|f(x)\rangle = \sum_{|r|} |r + x| f(x)$$
 Key: period = r (the number we are seeking)
Factoring: step 3

- Apply FT to register 1
- Measure register 1
- Obtain b
- Determine r from b
 (classically, basic number theory)

Quantum computation

- If can build quantum computers, they will be capable of factoring in polynomial time
 - Big "if"
- Do not believe factoring possible in polynomial time classically
 - But factoring in P if $P = NP$
- Serious challenge to extended Church-Turing Thesis

The very last slide

- Course review slides on website
- Fill out TQFR surveys!
- Course to consider
 - CS139 (advanced algorithms)
 - CS150 (probability and computation)
 - CS151 (complexity theory)
 - CS153 (current topics in theoretical CS)
- Good luck
 - On final
 - In CS, at Caltech, beyond…
- Thank you!