Extended Church-Turing Thesis

• the belief that TMs formalize our intuitive notion of an efficient algorithm is:

The "extended" Church-Turing Thesis:

everything we can compute in time \(t(n) \)
on a physical computer can be computed on a Turing Machine in time
\(t(n)^{O(1)} \) (polynomial slowdown)

• randomized computation challenges this belief

Randomness in computation

• Example of the power of randomness

Randomized complexity classes

Communication complexity

Theorem: no deterministic protocol can compute \(\text{EQ}(x, y) \) while exchanging fewer than \(n+1 \) bits.

• Proof:
 • “input matrix”:

Communication complexity

• Can we do better?
 • deterministic protocol?
 • probabilistic protocol?
 • at each step: one party sends bits that are a function of held input and received bits so far and the result of some coin tosses
 • required to output \(f(x, y) \) with high probability over all coin tosses
Communication complexity

- protocol for EQ employing randomness?
 - Alice picks random prime p in $\{1...4n^2\}$, sends:
 - p
 - $(x \mod p)$
 - Bob sends:
 - $(y \mod p)$
 - players output 1 if and only if:
 - $(x \mod p) = (y \mod p)$

- $O(\log n)$ bits exchanged
- if $x = y$, always correct
- if $x \neq y$, incorrect if and only if:
 - p divides $|x - y|$,
- # primes in range is $\geq 2n$
- # primes dividing $|x - y|$ is $\leq n$
- probability incorrect $\leq 1/2$

Randomness gives an exponential advantage!!

Communication complexity

- Goal: compute $f(x, y)$ while communicating as few bits as possible between Alice and Bob
- Example: $EQ(x, y) = 1$ iff $x = y$
- Deterministic protocol: no fewer than $n+1$ bits
- Randomized protocol: $O(\log n)$ bits

Extended Church-Turing Thesis

- Common to insert “probabilistic”:
 - The "extended" Church-Turing Thesis:
 - everything we can compute in time $t(n)$ on a physical computer can be computed on a probabilistic Turing Machine in time $t(n)O(1)$ (polynomial slowdown)

Randomized complexity classes

- model: probabilistic Turing Machine
 - deterministic TM with additional read-only tape containing “coin flips”

 input tape: $01100111010000...$

 finite control: q_0

 read/write head: $01100111010000...$

 read head: $01100111010000...$

- RP (Random Polynomial-time)
 - $L \in RP$ if there is a p.p.t. TM M:
 - $x \in L \rightarrow Pr_y[M(x,y) \text{ accepts}] \geq 1/2$
 - $x \notin L \rightarrow Pr_y[M(x,y) \text{ rejects}] = 1$

- $coRP$ (complement of Random Polynomial-time)
 - $L \in coRP$ if there is a p.p.t. TM M:
 - $x \in L \rightarrow Pr_y[M(x,y) \text{ accepts}] = 1$
 - $x \notin L \rightarrow Pr_y[M(x,y) \text{ rejects}] \geq 1/2$

 “p.p.t.” = probabilistic polynomial time
Randomized complexity classes

- **BPP** (Bounded-error Probabilistic Poly-time)
 - \(L \in \text{BPP} \) if there is a p.p.t. TM \(M \):
 - \(x \in L \rightarrow \Pr[M(x,y) \text{ accepts}] \geq 2/3 \)
 - \(x \notin L \rightarrow \Pr[M(x,y) \text{ rejects}] \geq 2/3 \)

One more important class:

- **ZPP** (Zero-error Probabilistic Poly-time)
 - \(ZPP = \text{RP} \cap \text{coRP} \)
 - \(\Pr[M(x,y) \text{ outputs "fail"}] \leq 1/2 \)
 - otherwise outputs correct answer

These classes may capture “efficiently computable” better than \(P \).

Relationship to other classes

- all these classes contain \(P \)
 - they can simply ignore the tape with coin flips
- all are in \(\text{PSPACE} \)
 - can exhaustively try all strings \(y \)
 - count accepts/rejects; compute probability
- \(\text{RP} \subseteq \text{NP} \) (and \(\text{coRP} \subseteq \text{coNP} \))
 - multitude of accepting computations
 - \(\text{NP} \) requires only one

Polynomial identity testing

- Given: polynomial \(p(x_1, x_2, \ldots, x_n) \) as arithmetic formula (fan-out 1):
 - multiplication (fan-in 2)
 - addition (fan-in 2)
 - negation (fan-in 1)

variables take values in finite field \(F \)

"polynomial identity testing" because given two polynomials \(p, q \), we can check the identity \(p \equiv q \) by checking if \((p - q) \equiv 0 \)
Polynomial identity testing

• try all $|F|^n$ inputs?
 – may be exponentially many
• multiply out symbolically, check that all coefficients are zero?
 – may be exponentially many coefficients
• Best known deterministic algorithm places in EXP

Polynomial identity testing

Lemma (Schwartz-Zippel): Let $p(x_1, x_2, \ldots, x_n)$ be a total degree d polynomial over a field F and let S be any subset of F. Then if p is not identically 0,
\[
\Pr_{r_1, r_2, \ldots, r_n \in S}[p(r_1, r_2, \ldots, r_n) = 0] \leq d / |S|.
\]

Polynomial identity testing

• Given: polynomial $p(x_1, x_2, \ldots, x_n)$ over field F
 \[x_1 \quad x_2 \quad \cdots \quad x_n \]
• Is p identically zero?
• Note: degree d is at most the size of input

Randomized complexity classes

• We have shown:
 – Polynomial Identity Testing is in coRP
 – note: no sub-exponential time deterministic algorithm know

Randomized complexity classes

• How powerful is randomized computation?
• We have seen an example of a problem in BPP that we only know how to solve deterministically in EXP.
 Is randomness a panacea for intractability?