QSAT is \textit{PSPACE}-complete

\textbf{Theorem:} QSAT is \textit{PSPACE}-complete.

\textbf{Proof:}

- in \textit{PSPACE}: \exists x_1 \forall x_2 \exists x_3 \ldots \text{Qx_n} \phi(x_1, x_2, \ldots, x_n)?
 - “exists”: for both \(x_1 = 0, x_1 = 1 \), recursively solve \forall x_2 \exists x_3 \ldots \text{Qx_n} \phi(x_1, x_2, \ldots, x_n)?
 - if at least one “yes”, return “yes”; else return “no”
 - “forall”: for both \(x_1 = 0, x_1 = 1 \), recursively solve \exists x_2 \forall x_3 \ldots \text{Qx_n} \phi(x_1, x_2, \ldots, x_n)?
 - if at least one “no”, return “no”; else return “yes”

- base case: evaluating a 3-CNF expression
 - poly(n) recursion depth
 - poly(n) bits of state at each level

QSAT is \textit{PSPACE}-complete

- given TM \(M \) deciding \(L \in \text{PSPACE} \); input \(x \)
 - \(2^n \) possible configurations
 - single \text{START} configuration
 - assume single \text{ACCEPT} configuration

- define:
 \(\text{REACH}(X, Y, i) \iff \text{configuration } Y \text{ reachable from configuration } X \text{ in at most } 2^i \text{ steps.} \)

- Goal: produce 3-CNF \(\psi(w_1, w_2, \ldots, w_m) \) such that
 \[\exists w_1 \forall w_2 \ldots \exists w_m \phi(w_1, \ldots, W) \iff \text{REACH(START, ACCEPT, n)} \]

- for \(i = 0, 1, \ldots, n^k \) produce quantified Boolean expressions \(\psi(A, B, W) \) such that \(\forall A, B: \)
 \[\exists w_1 \forall w_2 \ldots \exists V \phi(A, B, W) \iff \text{REACH(A, B, i)} \]

- convert \(\psi_* \) to 3-CNF \(\phi \)
 - add \(V \)

- hardwire \(A = \text{START}, B = \text{ACCEPT} \)
 \[\exists w_1 \forall w_2 \ldots \exists V \phi(W, V) \iff x \in L \]
QSAT is PSPACE-complete

Key observation:
\[
\text{REACH}(A, B, i+1) \iff \exists Z \[\text{REACH}(A, Z, i) \land \text{REACH}(Z, B, i) \]
\]

- cannot define \(\psi_{i+1}(A; B; Z, W, W') \) to be
 \[
 \exists Z \[\exists w_1 \forall w_2 \ldots \psi_i(A, Z, W) \land \exists w_1' \forall w_2' \ldots \psi_i(Z, B, W') \]
 (why?)

- define \(\psi_{i+1}(A; B; Z, X, Y, W) \) to be
 \[
 \exists Z \forall X \forall Y \[(X = A \land Y = Z) \lor (X = Z \land Y = B) \implies \exists w_1 \forall w_2 \ldots \psi_i(X, Y, W) \]
 (\(\psi_0(A, B) = \text{true} \iff A = B \text{ or } A \text{ yields } B \text{ in 1 step} \))

- total size of \(\psi_n \) is \(O(n^k) \)

PSPACE and games

\(\psi_i(A, B) = \text{true iff } A = B \text{ or } A \text{ yields } B \text{ in 1 step} \)
\[
\psi_i(A; B; Z, X, Y, W) = \exists Z \forall X \forall Y \[(X = A \land Y = Z) \lor (X = Z \land Y = B) \implies \exists w_1 \forall w_2 \ldots \psi_i(X, Y, W)\]
\]

- \(|\psi_0| = O(n^k) \)
- \(|\psi_{i+1}| = O(n^k) + |\psi_i| \)
- reduction runs in polynomial time

PSPACE

Theorem: GEOGRAPHY is PSPACE-complete.

Proof:
- in PSPACE (proof?)
- PSPACE-hard. reduction from QSAT.

QSAT = \{ \(\varphi : \varphi \) is a 3-CNF, and \(3x_1 \land x_2 \land x_3 \land \ldots \land x_n \implies \varphi(x_1, x_2, x_3, \ldots, x_n) \) \}

- Think of as 2-player game (player 1 trying to satisfy \(\varphi \); player 2 adversary):
 - player 1 picks truth value for \(x_1 \)
 - player 2 picks truth value for \(x_2 \)
 - player 1 picks truth value for \(x_i \)...
 - \(\varphi \in \text{QSAT} \) iff player 1 can win no matter what player 2 does.

GEOGRAPHY = \{ (G, s) : G is a directed graph and player I can win from node s \}

General phenomenon: many 2-player games are PSPACE-complete.
- 2 players I, II
- alternate picking edges
- lose when no unvisited choice

PSPACE

Theorem: GEOGRAPHY is PSPACE-complete.

Proof:
- in PSPACE (proof?)
- PSPACE-hard. reduction from QSAT.
GEOGRAPHY is PSPACE-complete

- We are reducing from the language:

\[\text{QSAT} = \{ \phi : \phi \text{ is a 3-CNF, and} \exists x_1 \forall x_2 \exists x_3 \ldots \forall x_n \phi(x_1, x_2, x_3, \ldots, x_n) \} \]

...to the language:

\[\text{GEOGRAPHY} = \{(G, s) : G \text{ is a directed graph and player I can win from node } s\} \]

Outline

- Challenges to Extended Church-Turing
 - randomized computation
 - quantum computation

Extended Church-Turing Thesis

- The "extended" Church-Turing Thesis:
 - everything we can compute in time \(t(n) \)
 - on a physical computer can be computed on a Turing Machine in time \(t(n)^{O(1)} \) (polynomial slowdown)
 - randomized computation challenges this belief

Randomness in computation

- Example of the power of randomness
- Randomized complexity classes

Outline
Communication complexity

- Goal: compute \(f(x, y) \) while communicating as few bits as possible between Alice and Bob
- Count number of bits exchanged (computation free)
- At each step: one party sends bits that are a function of held input and received bits so far

Communication complexity

- Simple function (equality):
 \[
 \text{EQ}(x, y) = 1 \text{ iff } x = y
 \]
- Simple protocol:
 - Alice sends \(x \) to Bob (\(n \) bits)
 - Bob sends \(\text{EQ}(x, y) \) to Alice (1 bit)
 - Total: \(n + 1 \) bits
 - (Works for any predicate \(f \))

Communication complexity

- Can we do better?
 - Deterministic protocol?
 - Probabilistic protocol?
 - At each step: one party sends bits that are a function of held input and received bits so far and the result of some coin tosses
 - Required to output \(f(x, y) \) with high probability over all coin tosses

Theorem: No deterministic protocol can compute \(\text{EQ}(x, y) \) while exchanging fewer than \(n + 1 \) bits.

Proof:
- "Input matrix":

\[X = \{0,1\}^n \quad Y = \{0,1\}^n \]

\[f(x, y) \]

- A sends 1 bit depending only on \(x \):
 - \(X = \{0,1\}^n \quad Y = \{0,1\}^n \)
 - Inputs \(x \) causing A to send 1
 - Inputs \(x \) causing A to send 0

- B sends 1 bit depending only on \(y \) and received bit:
 - \(X = \{0,1\}^n \quad Y = \{0,1\}^n \)
 - Inputs \(y \) causing B to send 1
 - Inputs \(y \) causing B to send 0
Communication complexity

- at end of protocol involving k bits of communication, matrix is partitioned into at most 2^k combinatorial rectangles
- bits sent in protocol are the same for every input (x, y) in given rectangle
- conclude: $f(x,y)$ must be constant on each rectangle

- any partition into combinatorial rectangles with constant $f(x,y)$ must have at least $2^n + 1$ rectangles
- protocol that exchanges $\leq n$ bits can only create 2^n rectangles, so must exchange at least $n+1$ bits.

Matrix for EQ:

\[
\begin{array}{ccc}
0 & 0 & 0 \\
0 & 1 & 1 \\
1 & 0 & 1 \\
1 & 1 & 0
\end{array}
\]