Outline

- NP-complete problems: independent set, vertex cover, clique
- NP-complete problems: Hamilton path and cycle, Traveling Salesperson Problem
- NP-complete problems: Subset Sum
- NP-complete problems: NAE-3-SAT, max cut

Undirected Hamilton Path

- HAMPATH refers to a directed graph.
- Is it easier on an undirected graph?
- A language (decision problem):
 \[\text{UHAMPATH} = \{(G, s, t) : \text{undirected } G \text{ has a Hamilton path from } s \text{ to } t\} \]

UHAMPATH is NP-complete

Theorem: the following language is NP-complete:

\[\text{UHAMPATH} = \{(G, s, t) : \text{undirected } G \text{ has a Hamilton path from } s \text{ to } t\} \]

- Proof:
 - Part 1: UHAMPATH \(\in \) NP. Proof?
 - Part 2: UHAMPATH is NP-hard.
 - reduce from?

UHAMPATH is NP-complete

- We are reducing from the language:
 \[\text{HAMPATH} = \{(G, s, t) : \text{directed } G \text{ has a Hamilton path from } s \text{ to } t\} \]

 to the language:

 \[\text{UHAMPATH} = \{(G, s, t) : \text{undirected } G \text{ has a Hamilton path from } s \text{ to } t\} \]
UHAMPATH is NP-complete

• Does the reduction run in poly-time?

• YES maps to YES?
 – Hamilton path in G: s, u₁, u₂, u₃, ..., uₖ, t
 – Hamilton path in G':
 s₁out, (u₁)₁in, (u₁)₁mid, (u₂)₂in, (u₂)₂mid, (u₂)₂out, ...
 (uₖ)ₖin, (uₖ)ₖmid, (uₖ)ₖout, t₁out

• NO maps to NO?
 – Hamilton path in G':
 s₁out, v₁, v₂, v₃, v₄, v₅, v₆, ..., vₖ, t₁out
 – H. path in G:
 s₁out, u₁₁, u₁₂, u₁₃, ..., u₁ₖ, t₁out

Undirected Hamilton Cycle

• Definition: given a undirected graph G = (V, E), a Hamilton cycle in G is a cycle in G that touches every node exactly once.
• Is finding one easier than finding a Hamilton path?
• A language (decision problem):
 UHAMCYCLE = {G : G has a Hamilton cycle}

UHAMCYCLE is NP-complete

Theorem: the following language is NP-complete:
UHAMCYCLE = {G : G has a Hamilton cycle}

• Proof:
 – Part 1: UHAMCYCLE ∈ NP. Proof?
 – Part 2: UHAMCYCLE is NP-hard.
 • reduce from?

Traveling Salesperson Problem

• Definition: given n cities v₁, v₂, ..., vₙ and inter-city distances dᵢⱼ, a TSP tour in G is a permutation 𝜋 of {1...n}. The tour’s length is \(\Sigma_i = 1...n d_{\pi(i)\pi(i+1)} \) (where n+1 means 1).
• A search problem:
given the \(\{dᵢⱼ\} \), find the shortest TSP tour
• corresponding language (decision problem):
 TSP = \(\{\{dᵢⱼ : 1 ≤ i < j ≤ n\}, k\} : \) these cities have a TSP tour of length ≤ k
TSP is NP-complete

Theorem: the following language is NP-complete:

\[\text{TSP} = \{ (d_{ij} : 1 \leq i < j \leq n), k) : \text{these cities have a TSP tour of length} \leq k \} \]

Proof:
- Part 1: TSP \(\in\) NP. Proof?
- Part 2: TSP is NP-hard.
 - reduce from?

TSP is NP-complete

- We are reducing from the language:
 \[\text{UHAMCYCLE} = \{ G : G \text{ has a Hamilton cycle} \} \]

 to the language:

\[\text{TSP} = \{ (d_{ij} : 1 \leq i < j \leq n), k) : \text{these cities have a TSP tour of length} \leq k \} \]

TSP is NP-complete

- The reduction:
 - given \(G = (V, E) \) with \(n \) nodes
 produce:
 - \(n \) cities corresponding to the \(n \) nodes
 - \(d_{uv} = 1 \) if \((u, v) \in E\)
 - \(d_{uv} = 2 \) if \((u, v) \notin E\)
 - set \(k = n \)

TSP is NP-complete

- YES maps to YES?
 - if \(G \) has a Hamilton cycle, then visiting cities in that order gives TSP tour of length \(n \)
- NO maps to NO?
 - if TSP tour of length \(\leq n \), it must have length exactly \(n \).
 - all distances in tour are 1. Must be edges between every successive pair of cities in tour.

Subset Sum

- A language (decision problem):
 \[\text{SUBSET-SUM} = \{ (S = \{ a_1, a_2, a_3, \ldots, a_k \}, B) : \text{there is a subset of} S \text{ that sums to} B \} \]

- example:
 - \(S = \{ 1, 7, 28, 3, 2, 5, 9, 32, 41, 11, 8 \} \)
 - \(B = 30 \)
 - \(30 = 7 + 3 + 9 + 11 \). yes.

Subset Sum

\[\text{SUBSET-SUM} = \{ (S = \{ a_1, a_2, a_3, \ldots, a_k \}, B) : \text{there is a subset of} S \text{ that sums to} B \} \]

- Is this problem NP-complete? in P?

- Problem set: in \(\text{TIME}(B \cdot \text{poly}(k)) \)
Theorem: the following language is NP-complete:

\(\text{SUBSET-SUM} = \{(S = \{a_1, a_2, a_3, \ldots, a_k\}, B) : \text{there is a subset of } S \text{ that sums to } B\} \)

Proof:
- Part 1: \(\text{SUBSET-SUM} \in \text{NP} \)
- Part 2: \(\text{SUBSET-SUM} \) is NP-hard.

We are reducing from the language:

\(3\text{SAT} = \{\phi : \phi \text{ is a 3-CNF formula that has a satisfying assignment}\} \)

To the language:

\(\text{SUBSET-SUM} = \{(S = \{a_1, a_2, a_3, \ldots, a_k\}, B) : \text{there is a subset of } S \text{ that sums to } B\} \)

\(\phi = (x_1 \lor x_2 \lor \neg x_3) \land (\neg x_1 \lor x_4 \lor x_3) \land \ldots \land (\ldots) \)

Need integers to play the role of truth assignments
- For each variable \(x_i \) include two integers in our set \(S \):
 - \(x_i^{\text{TRUE}} \) and \(x_i^{\text{FALSE}} \)
- Set \(B \) so that exactly one must be in sum

\(x_1^{\text{TRUE}} = 10000 \ldots 0 \)
\(x_1^{\text{FALSE}} = 10000 \ldots 0 \)
\(x_2^{\text{TRUE}} = 01000 \ldots 0 \)
\(x_2^{\text{FALSE}} = 01000 \ldots 0 \)
\(\ldots \)
\(x_m^{\text{TRUE}} = 00000 \ldots 1 \)
\(x_m^{\text{FALSE}} = 00000 \ldots 1 \)
\(B = 11111 \ldots 1 \)

\(\phi = (x_1 \lor x_2 \lor \neg x_3) \land (\neg x_1 \lor x_4 \lor x_3) \land \ldots \land (\ldots) \)

Need to force subset to “choose” at least one true literal from each clause
- Idea:
 - Add more digits
 - One digit for each clause
 - Set \(B \) to force each clause to be satisfied.

\(x_1^{\text{TRUE}} = 10000 \ldots 0 \)
\(x_1^{\text{FALSE}} = 10000 \ldots 0 \)
\(x_2^{\text{TRUE}} = 01000 \ldots 0 \)
\(x_2^{\text{FALSE}} = 01000 \ldots 0 \)
\(x_3^{\text{TRUE}} = 00100 \ldots 0 \)
\(x_3^{\text{FALSE}} = 00100 \ldots 0 \)
\(\ldots \)
\(B = 11111 \ldots 1 \ldots ? \ldots ? \ldots ? \)
SUBSET-SUM is NP-complete

- \(B = 1 1 1 1 \ldots 1 ? ? ? ? \)
- if clause \(i \) is satisfied sum might be 1, 2, or 3 in corresponding column.
- want \(? \) to "mean" \(\geq 1 \)
- solution: set \(? = 3 \)
- add two "filler" elements for each clause \(i \):
 - \(\text{FILL1}_i = 0 0 0 0 \ldots 0 0 1 0 \ldots 0 \)
 - \(\text{FILL2}_i = 0 0 0 0 \ldots 0 0 1 0 \ldots 0 \)
- column for clause \(i \)

SUBSET-SUM is NP-complete

- Reduction: \(m \) variables, \(k \) clauses
 - for each variable \(x_i \):
 - \(x_i^{\text{TRUE}} \) has ones in positions \(k + i \) and \(\{j : \text{clause } j \text{ includes literal } x_i \} \)
 - \(x_i^{\text{FALSE}} \) has ones in positions \(k + i \) and \(\{j : \text{clause } j \text{ includes literal } \neg x_i \} \)
 - for each clause \(i \):
 - \(\text{FILL1}_i \) and \(\text{FILL2}_i \) have one in position \(i \)
 - bound \(B \) has 3 in positions 1…\(k \) and 1 in positions \(k+1 \ldots k+m \)

SUBSET-SUM is NP-complete

- Reduction computable in poly-time?
- YES maps to YES?
 - choose one from each \((x_i^{\text{TRUE}}, x_i^{\text{FALSE}})\) pair corresponding to a satisfying assignment
 - choose 0, 1, or 2 of filler elements for each clause \(i \) depending on whether it has 3, 2, or 1 true literals
 - first \(m \) digits add to 1; last \(k \) digits add to 3

SUBSET-SUM is NP-complete

- NO maps to NO?
 - at most 5 ones in each column, so no carries to worry about
 - first \(m \) digits of \(B \) force subset to choose exactly one from each \((x_i^{\text{TRUE}}, x_i^{\text{FALSE}})\) pair
 - last \(k \) digits of \(B \) require at least one true literal per clause, since can only sum to 2 using filler elements
 - resulting assignment must satisfy \(\varphi \)

MAX CUT

- Given graph \(G = (V, E) \)
 - a cut is a subset \(S \subseteq V \)
 - an edge \((x, y)\) crosses the cut if \(x \in S \) and \(y \in V - S \) or \(x \in V - S \) and \(y \in S \)
 - search problem:
 find cut maximizing number of edges crossing the cut
MAX CUT

Theorem: the following language is NP-complete:

\[\text{MAX CUT} = \{(G = (V, E), k) : \text{there is a cut } S \subseteq V \text{ with at least } k \text{ edges crossing it}\} \]

• Proof:
 – Part 1: MAX CUT ∈ NP. Proof?
 – Part 2: MAX CUT is NP-hard.
 • reduce from?