TSP is NP-complete

Theorem: the following language is NP-complete:
TSP = {((d_{ij}: 1 \leq i < j \leq n), k) : these cities have a TSP tour of length \leq k}

Proof:
- Part 1: TSP \in NP. Proof?
- Part 2: TSP is NP-hard.
• reduce from?

TSP is NP-complete

• We are reducing from the language:
UHAMCYCLE = \{G : G has a Hamilton cycle\}
to the language:
TSP = {((d_{ij}: 1 \leq i < j \leq n), k) : these cities have a TSP tour of length \leq k}

TSP is NP-complete

• The reduction:
 – given G = (V, E) with n nodes
 produce:
 – n cities corresponding to the n nodes
 – d_{uv} = 1 if \((u, v) \in E\)
 – d_{uv} = 2 if \((u, v) \notin E\)
 – set k = n

TSP is NP-complete

• YES maps to YES?
 – if G has a Hamilton cycle, then visiting cities in that order gives TSP tour of length n
• NO maps to NO?
 – if TSP tour of length \leq n, it must have length exactly n.
 – all distances in tour are 1. Must be edges between every successive pair of cities in tour.
Subset Sum

- A language (decision problem):
 \[\text{SUBSET-SUM} = \{(S = \{a_1, a_2, a_3, \ldots, a_k\}, B) : \text{there is a subset of } S \text{ that sums to } B\} \]

- example:
 - \(S = \{1, 7, 28, 3, 2, 5, 9, 32, 41, 11, 8\} \)
 - \(B = 30 \)
 - \(30 = 7 + 3 + 9 + 11. \) yes.

Subset Sum is NP-complete

Theorem: the following language is NP-complete:
\[\text{SUBSET-SUM} = \{(S = \{a_1, a_2, a_3, \ldots, a_k\}, B) : \text{there is a subset of } S \text{ that sums to } B\} \]

- Proof:
 - Part 1: \(\text{SUBSET-SUM} \in \text{NP} \).
 - Part 2: \(\text{SUBSET-SUM} \) is NP-hard.
 - reduce from? our reduction had better produce super-polynomially large \(B \) (unless we want to prove \(P=NP \))

- Need integers to play the role of truth assignments
- For each variable \(x_i \) include two integers in our set \(S \):
 - \(x_i^{\text{TRUE}} \) and \(x_i^{\text{FALSE}} \)
- set \(B \) so that exactly one must be in sum

\(\varphi = (x_1 \lor x_2 \lor \neg x_3)(\neg x_1 \lor x_4 \lor x_5) \land \ldots \land (...) \)

\(x_i^{\text{TRUE}} = 1 \ 0 \ 0 \ 0 \ \ldots \ 0 \)
\(x_i^{\text{FALSE}} = 1 \ 0 \ 0 \ 0 \ \ldots \ 0 \)
\(x_2^{\text{TRUE}} = 0 \ 1 \ 0 \ 0 \ \ldots \ 0 \)
\(x_2^{\text{FALSE}} = 0 \ 1 \ 0 \ 0 \ \ldots \ 0 \)
\(\ldots \)
\(x_m^{\text{TRUE}} = 0 \ 0 \ 0 \ \ldots \ 1 \)
\(x_m^{\text{FALSE}} = 0 \ 0 \ 0 \ \ldots \ 1 \)
\(B = 1 \ 1 \ 1 \ 1 \ \ldots \ 1 \)

- every choice of one from each \((x_i^{\text{TRUE}}, x_i^{\text{FALSE}}) \) pair sums to \(B \)
- every subset that sums to \(B \) must choose one from each \((x_i^{\text{TRUE}}, x_i^{\text{FALSE}}) \) pair
SUBSET-SUM is NP-complete

- \(\varphi = (x_1 \lor x_2 \lor \neg x_3)(\neg x_1 \lor x_4 \lor x_5) \land \ldots \land (\ldots) \)
- Need to force subset to “choose” at least one true literal from each clause
- Idea:
 - add more digits
 - one digit for each clause
 - set \(B \) to force each clause to be satisfied.

\[
\begin{align*}
x_1^\text{TRUE} &= 1 \ 0 \ 0 \ 0 \ldots \ 0 \ 1 \\
x_1^\text{FALSE} &= 1 \ 0 \ 0 \ 0 \ldots \ 0 \\
x_2^\text{TRUE} &= 0 \ 1 \ 0 \ 0 \ldots \ 0 \\
x_2^\text{FALSE} &= 0 \ 1 \ 0 \ 0 \ldots \ 0 \\
x_3^\text{TRUE} &= 0 \ 0 \ 1 \ 0 \ldots \ 0 \\
x_3^\text{FALSE} &= 0 \ 0 \ 1 \ 0 \ldots \ 0 \\
\ldots & \ \\
B &= 1 \ 1 \ 1 \ 1 \ldots \ 1 \ ? \ ? \ ? \ ? \ ? \\
\end{align*}
\]

Σ-clause: clause 1
clause 2
clause 3
clause k

Reduction: \(m \) variables, \(k \) clauses
- for each variable \(x_i \):
 - \(x_i^\text{TRUE} \) has ones in positions \(k + i \) and \(\{ j : \text{clause } j \text{ includes literal } x_i \} \)
 - \(x_i^\text{FALSE} \) has ones in positions \(k + i \) and \(\{ j : \text{clause } j \text{ includes literal } \neg x_i \} \)
- for each clause \(i \):
 - \(\text{FILL1}_i \) and \(\text{FILL2}_i \) have one in position \(i \)
 - bound \(B \) has 3 in positions 1…\(k \) and 1 in positions \(k+1 \ldots k+m \)

No maps to NO?
- at most 5 ones in each column, so no carries to worry about
- first \(m \) digits of \(B \) force subset to choose exactly one from each \((x_i^\text{TRUE}, x_i^\text{FALSE}) \) pair
- last \(k \) digits of \(B \) require at least one true literal per clause, since can only sum to 2 using filler elements
- resulting assignment must satisfy \(\varphi \)
MAX CUT

- Given graph \(G = (V, E) \)
 - a cut is a subset \(S \subseteq V \)
 - an edge \((x, y)\) crosses the cut if \(x \in S \) and \(y \in V - S \) or \(x \in V - S \) and \(y \in S \)
- search problem: find cut maximizing number of edges crossing the cut

Not-All-Equal 3SAT

\[(x_1 \lor x_2 \lor \neg x_3) \land (\neg x_1 \lor x_4 \lor x_3) \land \ldots \land (\ldots)\]

Theorem: the following language is NP-complete:

\[\text{NAE3SAT} = \{ \phi : \phi \text{ is a 3-CNF formula for which there exists a truth assignment in which every clause has at least one true literal and at least one false literal} \}\]

- Proof:
 - Part 1: NAE3SAT \(\in \) NP. Proof?
 - Part 2: NAE3SAT is NP-hard. Reduce from?
NAE3SAT is NP-complete

- Recall reduction to 3SAT
 - variables \(x_1, x_2, \ldots, x_n \), gates \(g_1, g_2, \ldots, g_m \)
 - produce clauses:
 \[
 \begin{align*}
 &\neg z_1 \land x_1 \land v \\
 &\neg z_2 \land v \land w \\
 &\neg g_1 \land z_1 \land v \\
 &\neg g_2 \land z_2 \land v \\
 &\neg g_3 \land v \land w
 \end{align*}
 \]
 output gate \(g_0 \):
 \[
 \begin{align*}
 &\neg z_1 \land v \land z_2 \\
 &\neg z_2 \land v \land z_1 \\
 &\neg g_1 \land z_1 \land v \\
 &\neg g_2 \land z_2 \land v \\
 &\neg g_3 \land v \land w
 \end{align*}
 \]

NAE3SAT is NP-complete

- NO maps to NO
 - given NAE assignment \(A \)
 - complement \(A' \) is a NAE assignment
 - \(A \) or \(A' \) has \(w = \text{FALSE} \)
 - must have TRUE BLUE variable in every clause
 - we know this implies \(C \) satisfiable

MAX CUT

- Given graph \(G = (V, E) \)
 - a cut is a subset \(S \subseteq V \)
 - an edge \((x, y)\) crosses the cut if \(x \in S \) and \(y \in V - S \) or \(x \in V - S \) and \(y \in S \)
 - search problem:
 find cut maximizing number of edges crossing the cut

Theorem: the following language is NP-complete:

\[
\text{MAX CUT} = \{(G = (V, E), k) : \text{there is a cut } S \subseteq V \text{ with at least } k \text{ edges crossing it}\}
\]

- Proof:
 - Part 1: MAX CUT \(\in \) NP. Proof?
 - Part 2: MAX CUT is NP-hard.
 - reduce from?
MAX CUT is NP-complete

• We are reducing from the language:

\[\text{NAE3SAT} = \{ \phi : \phi \text{ is a 3-CNF formula for which there exists a truth assignment in which every clause has at least 1 true literal and at least 1 false literal} \} \]

to the language:

\[\text{MAX CUT} = \{ (G = (V, E), k) : \text{there is a cut } S \subseteq V \text{ with at least } k \text{ edges crossing it} \} \]

31

MAX CUT is NP-complete

• The reduction:
 – given instance of NAE3SAT (n nodes, m clauses):
 \[(x_1 \lor x_2 \lor \neg x_3) \land (\neg x_1 \lor x_4 \lor x_5) \land \ldots \land (\neg x_2 \lor x_3 \lor x_3) \]
 – produce graph \(G = (V, E) \) with node for each literal
 • triangle for each 3-clause
 • parallel edges for each 2-clause

32

• YES maps to YES
 – take cut to be TRUE literals in a NAE truth assignment
 – contribution from clause gadgets: \(2m \)
 – contribution from \((x_i, \neg x_i) \) parallel edges: \(3m \)
 – set \(k = 5m \)

33

• NO maps to NO
 – Claim: if cut has \(x_i, \neg x_i \) on same side, then can move one to opposite side without decreasing # edges crossing cut
 • Proof:
 \[a + n \leq 2n \]

34

35

36