Outline

- NP-complete problems: NAE-3-SAT, max cut
- The complexity class coNP
- The complexity class coNP ∩ NP

Outline

- NP-complete problems: NAE-3-SAT, max cut
- The complexity class coNP
- The complexity class coNP ∩ NP

Outline

- NP-complete problems: NAE-3-SAT, max cut
- The complexity class coNP
- The complexity class coNP ∩ NP

Not-All-Equal 3SAT

\[(x_1 \lor x_2 \lor \neg x_3) \land (\neg x_1 \lor x_4 \lor x_5) \land \ldots \land (\ldots)\]

Theorem: the following language is NP-complete:

NAE3SAT = \{φ : φ is a 3-CNF formula for which there exists a truth assignment in which every clause has at least 1 true literal and at least 1 false literal\}

- Proof:
 - Part 1: NAE3SAT ∈ NP. Proof?
 - Part 2: NAE3SAT is NP-hard. Reduce from?

NAE3SAT is NP-complete

- Recall reduction to 3SAT
 - variables \(x_1, x_2, \ldots, x_n\), gates \(g_1, g_2, \ldots, g_m\)
 - produce clauses:
 - \((\neg z_1 \lor \neg z_2 \lor v)\)
 - \((\neg g \lor z_1 \lor z_2)\)
 - \((\neg g \lor z_1)\)
 - \((\neg z_1 \lor \neg z_2 \lor v)\)
 - \((g \lor z)\)
 - \((\neg g \lor z_1 \lor z_2)\)
 - \((\neg g \lor z_1)\)
 - \((\neg z_1 \lor \neg z_2 \lor v)\)

 output gate \(g_m\):

 - \((g_m \lor w)\)

 not all true in a satisfying assignment
NAE3SAT is NP-complete

- Does the reduction run in polynomial time?
 - \((\neg z_1 \lor g \lor w)\)
 - \((\neg z_2 \lor g \lor w)\)
 - \((\neg g \lor z_1 \lor z_2)\)
 - \((\neg g \lor z_1 \lor w)\)
 - \((\neg g \lor z_2 \lor w)\)
 - \((\neg z_1 \lor \neg z_2 \lor g)\)
 - \((g \lor z \lor w)\)
 - \((\neg z \lor \neg g \lor w)\)
 - \((g \lor z \lor w)\)

- YES maps to YES
 - already know how to get a satisfying assignment to the BLUE variables
 - set \(w = \text{FALSE}\)

\[(\neg z_1 \lor g \lor w)\]
\[(\neg z_2 \lor g \lor w)\]
\[(\neg g \lor z_1 \lor z_2)\]
\[(\neg g \lor z_1 \lor w)\]
\[(\neg g \lor z_2 \lor w)\]
\[(\neg z_1 \lor \neg z_2 \lor g)\]
\[(g \lor z \lor w)\]
\[(\neg z \lor \neg g \lor w)\]
\[(g \lor z \lor w)\]

MAX CUT

- Given graph \(G = (V, E)\)
 - a cut is a subset \(S \subseteq V\)
 - an edge \((x, y)\) crosses the cut if \(x \in S\) and \(y \in V - S\) or \(x \in V - S\) and \(y \in S\)
 - search problem:
 find cut maximizing number of edges crossing the cut

MAX CUT is NP-complete

- We are reducing from the language:
 NAE3SAT = \(\{\phi : \phi\text{ is a 3-CNF formula for which there exists a truth assignment in which every clause has at least 1 true literal and at least 1 false literal}\}\)

 to the language:
 MAX CUT = \(\{(G = (V, E), k) : \text{there is a cut } S \subseteq V \text{ with at least } k \text{ edges crossing it}\}\)
MAX CUT is NP-complete

- The reduction:
 - given instance of NAE3SAT \((n, m)\):
 \((x_1 \lor x_2 \lor \neg x_3) \land \neg (x_1 \lor x_4 \lor x_5) \land \ldots \land \neg (x_2 \lor x_3 \lor x_4)\)
 - produce graph \(G = (V, E)\) with node for each literal

- triangle for each 3-clause
- parallel edges for each 2-clause

- YES maps to YES
 - take cut to be TRUE literals in a NAE truth assignment
 - contribution from clause gadgets: \(2m\)
 - contribution from \((x_i, \neg x_i)\) parallel edges: \(3m\)

- set \(k = 5m\)

- NO maps to NO
 - Claim: if cut has \(x_i, \neg x_i\) on same side, then can move one to opposite side without decreasing # edges crossing cut
 - Proof:

 \[a + n_i \leq 2n_i \]

 \[a + b \leq 2n_i \]

 \[a + n_i \geq a + b \text{ or } b + n_i \geq a + b \]

coNP

- Is NP closed under complement?
 - Can we transform this machine:
 - into a machine with this behavior?
coNP

- Language L is in coNP iff its complement (co-L) is in NP

- It is believed that NP ≠ coNP
- Note: P = NP implies NP = coNP
 - Proving NP ≠ coNP would prove P ≠ NP
 - Another major open problem...