Outline

• NP-complete problems: independent set, vertex cover, clique…
• NP-complete problems: Hamilton path and cycle, Traveling Salesperson Problem
• NP-complete problems: Subset Sum
• NP-complete problems: NAE-3-SAT, max cut

HAMPATH is NP-complete

\[\phi = (x_1 \lor x_2 \lor \neg x_3) \land (\neg x_1 \lor x_4 \lor x_3) \land \ldots \]

• What can go wrong?
 – path has "intended form" unless return from clause gadget to different variable gadget

Case 1 (positive occurrence of v in clause):

- path must visit y
- must enter from x, z, or c
- must exit to z (x is taken)
- x, c are taken: can't happen

Case 2 (negative occurrence of v in clause):

- path must visit y
- must enter from x or z
- must exit to z (x is taken)
- x is taken: can't happen
Undirected Hamilton Path

• HAMPATH refers to a directed graph.
• Is it easier on an undirected graph?
• A language (decision problem):
 \(\text{UHAMPATH} = \{(G, s, t) : \text{undirected } G \text{ has a Hamilton path from } s \text{ to } t\} \)

UHAMPATH is NP-complete

Theorem: the following language is NP-complete:

\(\text{UHAMPATH} = \{(G, s, t) : \text{undirected graph } G \text{ has a Hamilton path from } s \text{ to } t\} \)

• Proof:
 – Part 1: UHAMPATH ∈ NP. Proof?
 – Part 2: UHAMPATH is NP-hard.
 • reduce from?

UHAMPATH is NP-complete

• We are reducing from the language:
 HAMPATH = \{(G, s, t) : directed graph G has a Hamilton path from s to t\}

to the language:
 UHAMPATH = \{(G, s, t) : undirected graph G has a Hamilton path from s to t\}

UHAMPATH is NP-complete

• The reduction:
 \begin{align*}
 s & \rightarrow s^\text{out} \\
 u_1 & \rightarrow u_1^\text{in} \\
 u_1 & \rightarrow u_1^\text{mid} \\
 u_1 & \rightarrow u_1^\text{out} \\
 v_1 & \rightarrow \ldots \\
 v_k & \rightarrow \ldots \\
 t & \rightarrow t^\text{in}
 \end{align*}

UHAMPATH is NP-complete

• Does the reduction run in poly-time?
 • YES maps to YES?
 – Hamilton path in G: \(s, u_1, u_2, u_3, \ldots, u_k, t \)
 – Hamilton path in G': \(s_{\text{out}}, u_1, u_2, v_1, v_2, v_3, v_4, v_5, \ldots, v_k-1, v_k^\text{mid}, v_k^\text{out} \)
 – \(u_i = (u_1)_{i^{\text{in}}} \) for some \(i \) (only edges to ins)
 – \(v_i = (u_1)_{i^{\text{mid}}} \) for some \(i \) (only way to enter mid)
 – \(v_i = (u_1)_{i^{\text{out}}} \) for some \(i \) (only way to exit mid)
 – \(u_i = (u_1)_{i^{\text{out}}} \) for some \(i \) (only edges to ins)
 – Hamilton path in G: \(s, u_1, u_2, u_3, \ldots, u_k, t \)
Undirected Hamilton Cycle

- Definition: given a undirected graph $G = (V, E)$, a Hamilton cycle in G is a cycle in G that touches every node exactly once.
- Is finding one easier than finding a Hamilton path?
- A language (decision problem): $UHAMCYCLE = \{G : G$ has a Hamilton cycle$\}$

UHAMCYCLE is NP-complete

Theorem: the following language is NP-complete:

$UHAMCYCLE = \{G : G$ has a Hamilton cycle$\}$

Proof:
- Part 1: $UHAMCYCLE \in$ NP. Proof?
- Part 2: $UHAMCYCLE$ is NP-hard.
 - reduce from?

Traveling Salesperson Problem

- Definition: given n cities v_1, v_2, \ldots, v_n and inter-city distances d_{ij}, a TSP tour in G is a permutation π of $\{1 \ldots n\}$. The tour's length is $\sum_{i=1}^{n} d_{\pi(i) \pi(i+1)}$ (where $n+1$ means 1).
- A search problem: given the $\{d_{ij}\}$, find the shortest TSP tour
- corresponding language (decision problem): $TSP = \{((d_{ij} : 1 \leq i < j \leq n), k) :$ these cities have a TSP tour of length $\leq k$\}$

TSP is NP-complete

Theorem: the following language is NP-complete:

$TSP = \{((d_{ij} : 1 \leq i < j \leq n), k) :$ these cities have a TSP tour of length $\leq k$\}$

Proof:
- Part 1: $TSP \in$ NP. Proof?
- Part 2: TSP is NP-hard.
 - reduce from?
TSP is NP-complete

- The reduction:
 - given $G = (V, E)$ with n nodes
 produce:
 - n cities corresponding to the n nodes
 - $d_{u,v} = 1$ if $(u, v) \in E$
 - $d_{u,v} = 2$ if $(u, v) \notin E$
 - set $k = n$

TSP is NP-complete

- YES maps to YES?
 - if G has a Hamilton cycle, then visiting cities in that order gives TSP tour of length n

- NO maps to NO?
 - if TSP tour of length $\leq n$, it must have length exactly n.
 - all distances in tour are 1. Must be edges between every successive pair of cities in tour.

Hamilton Path

- Definition: given a directed graph $G = (V, E)$, a Hamilton path in G is a directed path that touches every node exactly once.

- A language (decision problem):
 $\text{HAMPATH} = \{(G, s, t) : G$ has a Hamilton path from s to $t\}$

HAMPATH is NP-complete

Theorem: the following language is NP-complete:

$\text{HAMPATH} = \{(G, s, t) : G$ has a Hamilton path from s to $t\}$

Proof:
- Part 1: $\text{HAMPATH} \in \text{NP}$. Proof?
- Part 2: HAMPATH is NP-hard.
 - reduce from?

HAMPATH is NP-complete

- We are reducing from the language:
 $3\text{SAT} = \{ \varphi : \varphi$ is a 3-CNF formula that has a satisfying assignment $\}$

 to the language:
 $\text{HAMPATH} = \{(G, s, t) : G$ has a Hamilton path from s to $t\}$

HAMPATH is NP-complete

- We want to construct a graph from φ with the following properties:
 - a satisfying assignment to φ translates into a Hamilton Path from s to t
 - a Hamilton Path from s to t can be translated into a satisfying assignment for φ

- We will build the graph up from pieces called gadgets that "simulate" the clauses and variables of φ.
HAMPATH is NP-complete

- The variable gadget (one for each x_i):
 - x_i true:
 - x_i false:

$\phi = (x_1 \lor x_2 \lor \neg x_3) \land (\neg x_1 \lor x_4 \lor x_3) \land \cdots \land (\ldots)$

- How to ensure that all k clauses are satisfied?
- need to add nodes
 - can be visited in path if the clause is satisfied
 - if visited in path, implies clause is satisfied by the assignment given by path through variable gadgets

- One clause gadget for each of k clauses:
 - for clause 1
 - for clause 2

$\phi = (x_1 \lor x_2 \lor \neg x_3) \land (\neg x_1 \lor x_4 \lor x_3) \land \cdots \land (\ldots)$

- Clause gadget allows “detour” from “assignment path” for each true literal in clause

- $f(\phi)$ is this graph (edges to/from clause nodes not pictured)
- f poly-time computable?
- # nodes = $O(km)$
HAMPATH is NP-complete

φ = (x₁ ∨ x₂) x₁ (x₂ ∨ x₃) x₁ (x₃ ∨ x₄) ...

- YES maps to YES?
 - first form path from satisfying assign.
 - pick true literal in each clause and add detour

- NO maps to NO?
 - try to translate path into satisfying assignment.
 - if path has "intended" form, OK.

What can go wrong?
- path has "intended form" unless return from clause gadget to different variable gadget

Case 1 (positive occurrence of v in clause):
 - path must visit y
 - must enter from x, z, or c
 - must exit to z (x is taken)
 - x, c are taken. can't happen

Case 2 (negative occurrence of v in clause):
 - path must visit y
 - must enter from x or z
 - must exit to z (x is taken)
 - x is taken. can't happen

HAMPATH refers to a directed graph.
Is it easier on an undirected graph?

A language (decision problem):
UHAMPATH = {(G, s, t) : undirected G has a Hamilton path from s to t}
Theorem: the following language is NP-complete:

\[\text{UHAMPATH} = \{(G, s, t) : \text{undirected graph } G \text{ has a Hamilton path from } s \text{ to } t\} \]

Proof:
- Part 1: UHAMPATH ∈ NP. Proof?
- Part 2: UHAMPATH is NP-hard.

reduce from?

We are reducing from the language:

\[\text{HAMPATH} = \{(G, s, t) : \text{directed graph } G \text{ has a Hamilton path from } s \text{ to } t\} \]

to the language:

\[\text{UHAMPATH} = \{(G, s, t) : \text{undirected graph } G \text{ has a Hamilton path from } s \text{ to } t\} \]

The reduction:

- replace each node with three (except s, t)
 - \((u_{in}, u_{mid})\)
 - \((u_{mid}, u_{out})\)
 - \((u_{out}, v_{in})\) iff \(G\) has \((u,v)\)

Does the reduction run in poly-time?

YES maps to YES?
- Hamilton path in \(G\): \(s, u_{i1}, u_{i2}, ..., u_{ik}, t\)
- Hamilton path in \(G'\):
 \(s_{out}, (u_{i1})_{in}, (u_{i1})_{mid}, (u_{i1})_{out}, (u_{i2})_{in}, (u_{i2})_{mid}, (u_{i2})_{out}, ..., (u_{ik})_{in}, (u_{ik})_{mid}, (u_{ik})_{out}, t\in\)

NO maps to NO?
- Hamilton path in \(G\):
 \(s_{out}, v_{1}, v_{2}, v_{3}, v_{4}, v_{5}, v_{6}, ..., v_{k-2}, v_{k-1}, v_{k}, t\)
- \(v_{1} = (u_{i1})_{in}\) for some \(i_{1}\) (only edges to ins)
- \(v_{2} = (u_{i1})_{mid}\) for some \(i_{1}\) (only way to enter mid)
- \(v_{3} = (u_{i1})_{out}\) for some \(i_{1}\) (only way to exit mid)
- \(v_{4} = (u_{i2})_{in}\) for some \(i_{2}\) (only edges to ins)
- ...
- Hamilton path in \(G\): \(s, u_{i1}, u_{i2}, u_{i3}, ..., u_{ik}, t\)

Undirected Hamilton Cycle

Definition: given a undirected graph \(G = (V, E)\), a Hamilton cycle in \(G\) is a cycle in \(G\) that touches every node exactly once.
- Is finding one easier than finding a Hamilton path?
- A language (decision problem):
 \[\text{UHAMCYCLE} = \{(G : G \text{ has a Hamilton cycle})\} \]
UHAMCYCLE is NP-complete

Theorem: the following language is NP-complete:

\[\text{UHAMCYCLE} = \{ G : \text{G has a Hamilton cycle} \} \]

- **Proof:**
 - Part 1: UHAMCYCLE ∈ NP. Proof?
 - Part 2: UHAMCYCLE is NP-hard.
 - reduce from?

Traveling Salesperson Problem

- **Definition:** given n cities \(v_1, v_2, ..., v_n \) and inter-city distances \(d_{ij} \), a TSP tour in G is a permutation \(\pi \) of \(\{1, 2, ..., n\} \). The tour’s length is \(\sum_{i=1}^{n} d_{\pi(i)\pi(i+1)} \) (where \(n+1 \) means 1).
- **A search problem:**
 - given the \(\{d_{ij}\} \), find the shortest TSP tour
- **corresponding language (decision problem):**
 - \(\text{TSP} = \{(d_{ij} : 1 \leq i < j \leq n), k \} : \text{these cities have a TSP tour of length} \leq k \}

TSP is NP-complete

- **Theorem:** the following language is NP-complete:
 - \(\text{TSP} = \{(d_{ij} : 1 \leq i < j \leq n), k \} : \text{these cities have a TSP tour of length} \leq k \}
- **Proof:**
 - Part 1: TSP ∈ NP. Proof?
 - Part 2: TSP is NP-hard.
 - reduce from?
TSP is NP-complete

- YES maps to YES?
 - if G has a Hamilton cycle, then visiting cities in that order gives TSP tour of length n
- NO maps to NO?
 - if TSP tour of length ≤ n, it must have length exactly n.
 - all distances in tour are 1. Must be edges between every successive pair of cities in tour.

Subset Sum

- A language (decision problem):
 \(\text{SUBSET-SUM} = (\{a_1, a_2, a_3, \ldots, a_k\}, B) \)
 - there is a subset of \(S \) that sums to \(B \)

 - example:
 - \(S = \{1, 7, 28, 3, 2, 5, 9, 32, 41, 11, 8\} \)
 - \(B = 30 \)
 - \(30 = 7 + 3 + 9 + 11 \). yes.

\[\text{SUBSET-SUM is NP-complete} \]

Theorem: the following language is NP-complete:

\(\text{SUBSET-SUM} = (\{a_1, a_2, a_3, \ldots, a_k\}, B) \)
 - there is a subset of \(S \) that sums to \(B \)

Proof:

- Part 1: SUBSET-SUM ∈ NP. Proof?
- Part 2: SUBSET-SUM is NP-hard. reduce from?
 - our reduction had better produce super-polynomially large \(B \) (unless we want to prove P=NP)

\[\text{SUBSET-SUM is NP-complete} \]

- \(\phi = (x_1 \lor x_2 \lor \neg x_3) \land \neg (x_4 \lor x_5 \lor x_6) \land \ldots \land (\ldots) \)

 - Need integers to play the role of truth assignments
 - For each variable \(x_i \) include two integers in our set \(S \):
 - \(x_i^{\text{true}} \) and \(x_i^{\text{false}} \)
 - set \(B \) so that exactly one must be in sum

\[\text{SUBSET-SUM is NP-complete} \]
SUBSET-SUM is NP-complete

\[\begin{align*}
x_1^{\text{true}} &= 1000\ldots0 \\
x_1^{\text{false}} &= 1000\ldots0 \\
x_2^{\text{true}} &= 0100\ldots0 \\
x_2^{\text{false}} &= 0100\ldots0 \\
\vdots \\
x_n^{\text{true}} &= 0000\ldots1 \\
x_n^{\text{false}} &= 0000\ldots1 \\
B &= 1111\ldots1
\end{align*} \]

- every choice of one from each \((x_i^{\text{true}}, x_i^{\text{false}})\) pair sums to \(B\)

- every subset that sums to \(B\) must choose one from each \((x_i^{\text{true}}, x_i^{\text{false}})\) pair

\[\phi = (x_1 \lor x_2 \lor \neg x_3) \land (\neg x_1 \lor x_4 \lor x_3) \land \ldots \land (\ldots) \]

- \(\phi\) has one true literal from each \((x_i^{\text{true}}, x_i^{\text{false}})\) pair

- Need to force subset to "choose" at least one true literal from each clause

- Idea:
 - add more digits
 - one digit for each clause
 - set \(B\) to force each clause to be satisfied.

\[\begin{align*}
x_1^{\text{true}} &= 1000\ldots0 \\
x_1^{\text{false}} &= 1000\ldots0 \\
x_2^{\text{true}} &= 0000\ldots1 \\
x_2^{\text{false}} &= 0000\ldots1 \\
\vdots \\
B &= 1111\ldots1
\end{align*} \]

- every choice of one from each \((x_i^{\text{true}}, x_i^{\text{false}})\) pair sums to \(B\)

- every subset that sums to \(B\) must choose one from each \((x_i^{\text{true}}, x_i^{\text{false}})\) pair

- bound \(B\) has 3 in positions 1\(\ldots\)k and 1 in positions k+1\(\ldots\)k+m

\[\begin{align*}
x_1^{\text{true}} &= 1000\ldots0 \\
x_1^{\text{false}} &= 1000\ldots0 \\
x_2^{\text{true}} &= 0100\ldots0 \\
x_2^{\text{false}} &= 0100\ldots0 \\
\vdots \\
B &= 1111\ldots1
\end{align*} \]

- \(\phi\) has one true literal from each \((x_i^{\text{true}}, x_i^{\text{false}})\) pair

- Need to force subset to "choose" at least one true literal from each clause

- Idea:
 - add more digits
 - one digit for each clause
 - set \(B\) to force each clause to be satisfied.

\[\begin{align*}
x_1^{\text{true}} &= 1000\ldots0 \\
x_1^{\text{false}} &= 1000\ldots0 \\
x_2^{\text{true}} &= 0000\ldots1 \\
x_2^{\text{false}} &= 0000\ldots1 \\
\vdots \\
B &= 1111\ldots1
\end{align*} \]

- every choice of one from each \((x_i^{\text{true}}, x_i^{\text{false}})\) pair sums to \(B\)

- every subset that sums to \(B\) must choose one from each \((x_i^{\text{true}}, x_i^{\text{false}})\) pair

- bound \(B\) has 3 in positions 1\(\ldots\)k and 1 in positions k+1\(\ldots\)k+m

\[\begin{align*}
x_1^{\text{true}} &= 1000\ldots0 \\
x_1^{\text{false}} &= 1000\ldots0 \\
x_2^{\text{true}} &= 0000\ldots1 \\
x_2^{\text{false}} &= 0000\ldots1 \\
\vdots \\
B &= 1111\ldots1
\end{align*} \]

- every choice of one from each \((x_i^{\text{true}}, x_i^{\text{false}})\) pair sums to \(B\)

- every subset that sums to \(B\) must choose one from each \((x_i^{\text{true}}, x_i^{\text{false}})\) pair

- bound \(B\) has 3 in positions 1\(\ldots\)k and 1 in positions k+1\(\ldots\)k+m

\[\begin{align*}
x_1^{\text{true}} &= 1000\ldots0 \\
x_1^{\text{false}} &= 1000\ldots0 \\
x_2^{\text{true}} &= 0000\ldots1 \\
x_2^{\text{false}} &= 0000\ldots1 \\
\vdots \\
B &= 1111\ldots1
\end{align*} \]

- every choice of one from each \((x_i^{\text{true}}, x_i^{\text{false}})\) pair sums to \(B\)

- every subset that sums to \(B\) must choose one from each \((x_i^{\text{true}}, x_i^{\text{false}})\) pair

- bound \(B\) has 3 in positions 1\(\ldots\)k and 1 in positions k+1\(\ldots\)k+m

\[\begin{align*}
x_1^{\text{true}} &= 1000\ldots0 \\
x_1^{\text{false}} &= 1000\ldots0 \\
x_2^{\text{true}} &= 0000\ldots1 \\
x_2^{\text{false}} &= 0000\ldots1 \\
\vdots \\
B &= 1111\ldots1
\end{align*} \]

- every choice of one from each \((x_i^{\text{true}}, x_i^{\text{false}})\) pair sums to \(B\)

- every subset that sums to \(B\) must choose one from each \((x_i^{\text{true}}, x_i^{\text{false}})\) pair

- bound \(B\) has 3 in positions 1\(\ldots\)k and 1 in positions k+1\(\ldots\)k+m