Outline

- NP-complete problems: independent set, vertex cover, clique
- NP-complete problems: Hamilton path and cycle, Traveling Salesperson Problem
- NP-complete problems: Subset Sum
- NP-complete problems: NAE-3-SAT, max cut

Vertex cover

- Definition: given a graph $G = (V, E)$, a vertex cover in G is a subset $V' \subseteq V$ such that for all $(u, w) \in E$, $u \in V'$ or $w \in V'$
- A search problem:
 - given G, find the smallest vertex cover
- corresponding language (decision problem):

 $VC = \{(G, k) : G$ has a VC of size $\leq k\}$.

Vertex Cover is NP-complete

Theorem: the following language is NP-complete:

$VC = \{(G, k) : G$ has a VC of size $\leq k\}$.

- Proof:
 - Part 1: $VC \in$ NP. Proof?
 - Part 2: VC is NP-hard.
 - reduce from?

Vertex Cover is NP-complete

- We are reducing from the language:

 $IS = \{(G, k) : G$ has an IS of size $\geq k\}$

to the language:

 $VC = \{(G, k) : G$ has a VC of size $\leq k\}$.
Vertex Cover is NP-complete

- How are IS, VC related?

- Given a graph $G = (V, E)$ with n nodes
 - if $V' \subseteq V$ is a vertex cover of size k
 - then $V-V'$ is an independent set of size $n-k$

- Proof:
 - suppose not. Then there is some edge with both endpoints in $V-V'$. But then neither endpoint is in V'. Contradiction.

Clique

- Definition: given a graph $G = (V, E)$, a clique in G is a subset $V' \subseteq V$ such that for all $u, v \in V'$, $(u, v) \in E$
- A search problem:
 - given G, find the largest clique
- corresponding language (decision problem):
 - $CLIQUE = \{(G, k) : G$ has a clique of size $\geq k\}$

Clique is NP-complete

- We are reducing from the language:
 - $IS = \{(G, k) : G$ has an IS of size $\geq k\}$

to the language:
 - $CLIQUE = \{(G, k) : G$ has a CLIQUE of size $\geq k\}$

Clique is NP-complete

- The reduction:
 - given an instance of IS: (G, k) f produces the pair $(G, n-k)$
 - f poly-time computable?
 - YES maps to YES?
 - IS of size $\geq k$ in G \Rightarrow VC of size $\leq n-k$ in G
 - NO maps to NO?
 - VC of size $\leq n-k$ in G \Rightarrow IS of size $\geq k$ in G

Clique is NP-complete

- How are IS, CLIQUE related?

- Given a graph $G = (V, E)$, define its complement $G' = (V, E' = \{(u, v) : (u, v) \notin E\})$
 - if $V' \subseteq V$ is an independent set in G of size k
 - then V' is a clique in G' of size k

- Proof:
 - Every pair of vertices $u, v \in V'$ has no edge between them in G. Therefore they have an edge between them in G'.
Clique is NP-complete

• How are IS, CLIQUE related?
• Given a graph \(G = (V, E) \), define its complement \(G' = (V, E' = \{(u,v) : (u,v) \notin E\}) \)
 – if \(V' \subseteq V \) is a clique in \(G' \) of size \(k \)
 – then \(V' \) is an independent set in \(G \) of size \(k \)
• Proof:
 – Every pair of vertices \(u,v \in V' \) has an edge between them in \(G' \). Therefore they have no edge between them in \(G \).

The reduction:
– given an instance of IS: \((G, k)\) f produces the pair \((G', k)\)
• f poly-time computable?
• YES maps to YES?
 – IS of size \(\geq k \) in \(G \) = CLIQUE of size \(\geq k \) in \(G' \)
• NO maps to NO?
 – CLIQUE of size \(\geq k \) in \(G' \) = IS of size \(\geq k \) in \(G \)

Hamilton Path

• Definition: given a directed graph \(G = (V, E) \), a Hamilton path in \(G \) is a directed path that touches every node exactly once.
• A language (decision problem):
 HAMPATH = \{ \((G, s, t) : G \) has a Hamilton path from \(s \) to \(t \) \}

Theorem: the following language is NP-complete:
HAMPATH = \{ \((G, s, t) : G \) has a Hamilton path from \(s \) to \(t \) \}
• Proof:
 – Part 1: HAMPATH \(\in \) NP. Proof?
 – Part 2: HAMPATH is NP-hard.
 • reduce from?

HAMPATH is NP-complete

• We are reducing from the language:
 3SAT = \{ \(\varphi : \varphi \) is a 3-CNF formula that has a satisfying assignment \}
 to the language:
 HAMPATH = \{ \((G, s, t) : G \) has a Hamilton path from \(s \) to \(t \) \}

• We want to construct a graph from \(\varphi \) with the following properties:
 – a satisfying assignment to \(\varphi \) translates into a Hamilton Path from \(s \) to \(t \)
 – a Hamilton Path from \(s \) to \(t \) can be translated into a satisfying assignment for \(\varphi \)
• We will build the graph up from pieces called gadgets that “simulate” the clauses and variables of \(\varphi \).
HAMPATH is NP-complete

- The variable gadget (one for each x_i):

 x_i true:

 x_i false:

• How to ensure that all k clauses are satisfied?
 - need to add nodes
 - can be visited in path if the clause is satisfied
 - if visited in path, implies clause is satisfied by the assignment given by path through variable gadgets

• One clause gadget for each of k clauses:

 for clause 1

 for clause 2
HAMPATH is NP-complete

\[\varphi = (x_1 \lor x_2 \lor \neg x_3) \land (\neg x_1 \lor x_4 \lor x_5) \ldots \]

Case 1 (positive occurrence of \(v \) in clause):

- path must visit \(y \)
- must enter from \(x \), \(z \), or \(c \)
- must exit to \(z \) (\(x \) is taken)
- \(x \), \(c \) are taken
 can’t happen

Case 2 (negative occurrence of \(v \) in clause):

- path must visit \(y \)
- must enter from \(x \) or \(z \)
- must exit to \(z \) (\(x \) is taken)
- \(x \) is taken, can’t happen

What can go wrong?

- path has “intended form” unless return from clause gadget to different variable gadget

we will argue that this cannot happen: