Outline

• NP-complete problems: independent set, vertex cover, clique…
• NP-complete problems: Hamilton path and cycle, Traveling Salesperson Problem
• NP-complete problems: Subset Sum
• NP-complete problems: NAE-3-SAT, max cut
Search vs. Decision

• Definition: given a graph $G = (V, E)$, an independent set in G is a subset $V' \subseteq V$ such that for all $u, w \in V'$, $(u, w) \notin E$

• A problem:
 given G, find the largest independent set

• This is called a search problem
 – searching for optimal object of some type
 – comes up frequently
Search vs. Decision

• We want to talk about languages (or decision problems)

• Most search problems have a natural, related decision problem by adding a bound “k”; for example:
 – search problem: given G, find the largest independent set
 – decision problem: given (G, k), is there an independent set of size at least k
Theorem: the following language is NP-complete:

\[IS = \{(G, k) : G \text{ has an IS of size } \geq k\}. \]

• Proof:
 – Part 1: IS ∈ NP. Proof?
 – Part 2: IS is NP-hard.
 • reduce from 3-SAT
Ind. Set is NP-complete

• We are reducing from the language:

\[3\text{SAT} = \{ \varphi : \varphi \text{ is a 3-CNF formula that has a satisfying assignment} \} \]

to the language:

\[\text{IS} = \{ (G, k) : G \text{ has an IS of size } \geq k \}. \]
Ind. Set is NP-complete

The reduction f: given

$$\varphi = (x \lor y \lor \neg z) \land (\neg x \lor w \lor z) \land \ldots \land (\ldots)$$

we produce graph G_φ:

- one triangle for each of m clauses
- edge between every pair of contradictory literals
- set $k = m$
Ind. Set is NP-complete

\[\varphi = (x \lor y \lor \neg z) \land (\neg x \lor w \lor z) \land \ldots \land (\ldots) \]

\[f(\varphi) = (G, \# \text{ clauses}) \]

- Is \(f \) poly-time computable?
- YES maps to YES?
 - 1 true literal per clause in satisfying assign. \(A \)
 - choose corresponding vertices (1 per triangle)
 - IS, since no contradictory literals in \(A \)
Ind. Set is NP-complete

\[\varphi = (x \lor y \lor \neg z) \land (\neg x \lor w \lor z) \land \ldots \land (\ldots) \]

\[f(\varphi) = (G, \# \text{ clauses}) \]

• NO maps to NO?
 – IS can have at most 1 vertex per triangle
 – IS of size \(\geq \# \text{ clauses} \) must have exactly 1 per
 – since IS, no contradictory vertices
 – can produce satisfying assignment by setting these literals to true
Vertex cover

• Definition: given a graph $G = (V, E)$, a **vertex cover** in G is a subset $V' \subseteq V$ such that for all $(u, w) \in E$, $u \in V'$ or $w \in V'$

• A search problem:

 given G, find the **smallest** vertex cover

• corresponding language (decision problem):

 $VC = \{ (G, k) : G$ has a VC of size $\leq k \}$.
Vertex Cover is NP-complete

Theorem: the following language is NP-complete:

\[VC = \{(G, k) : G \text{ has a VC of size } \leq k\}. \]

- **Proof:**
 - Part 1: VC ∈ NP. Proof?
 - Part 2: VC is NP-hard.
 - reduce from?
Vertex Cover is NP-complete

• We are reducing from the language:

\[IS = \{(G, k) : G \text{ has an IS of size } \geq k\} \]

to the language:

\[VC = \{(G, k) : G \text{ has a VC of size } \leq k\}. \]
Vertex Cover is NP-complete

• How are IS, VC related?

• Given a graph $G = (V, E)$ with n nodes
 – if $V' \subseteq V$ is an independent set of size k
 – then $V-V'$ is a vertex cover of size $n - k$

• Proof:
 – suppose not. Then there is some edge with neither endpoint in $V-V'$. But then both endpoints are in V'. contradiction.
Vertex Cover is NP-complete

• How are IS, VC related?

• Given a graph $G = (V, E)$ with n nodes
 – if $V' \subseteq V$ is a vertex cover of size k
 – then $V-V'$ is an independent set of size $n - k$

• Proof:
 – suppose not. Then there is some edge with both endpoints in $V-V'$. But then neither endpoint is in V'. contradiction.
Vertex Cover is NP-complete

The reduction:

- given an instance of IS: (G, k) f produces the pair (G, n-k)

• f poly-time computable?

• YES maps to YES?
 - IS of size $\geq k$ in G \Rightarrow VC of size $\leq n-k$ in G

• NO maps to NO?
 - VC of size $\leq n-k$ in G \Rightarrow IS of size $\geq k$ in G
Clique

• Definition: given a graph G = (V, E), a **clique** in G is a subset V’⊆ V such that for all u,v ∈ V’, (u, v) ∈ E

• A search problem:

given G, find the **largest** clique

• corresponding language (decision problem):
 CLIQUE = {((G, k) : G has a clique of size ≥ k)}.

Clique is NP-complete

Theorem: the following language is NP-complete:

\[\text{CLIQUE} = \{(G, k) : G \text{ has a clique of size } \geq k\} \]

- **Proof**:
 - Part 1: \text{CLIQUE} \in \text{NP}. Proof?
 - Part 2: \text{CLIQUE} is NP-hard.
 - reduce from?
Clique is NP-complete

• We are reducing from the language:

\[IS = \{(G, k) : G \text{ has an IS of size } \geq k\} \]

...to the language:

\[CLIQUE = \{(G, k) : G \text{ has a CLIQUE of size } \geq k\}. \]
Clique is NP-complete

• How are IS, CLIQUE related?
• Given a graph $G = (V, E)$, define its complement $G' = (V, E' = \{(u,v) : (u,v) \notin E\})$
 – if $V' \subseteq V$ is an independent set in G of size k
 – then V' is a clique in G' of size k

• Proof:
 – *Every* pair of vertices $u,v \in V'$ has no edge between them in G. Therefore they have an edge between them in G'.
Clique is NP-complete

• How are IS, CLIQUE related?
• Given a graph $G = (V, E)$, define its complement $G' = (V, E' = \{(u,v) : (u,v) \notin E\})$
 – if $V' \subseteq V$ is a clique in G' of size k
 – then V' is an independent set in G of size k

• Proof:
 – *Every* pair of vertices $u,v \in V'$ has an edge between them in G'. Therefore they have no edge between them in G.
Clique is NP-complete

The reduction:
 – given an instance of IS: (G, k) f produces the pair (G’, k)
• f poly-time computable?
• YES maps to YES?
 – IS of size $\geq k$ in G \Rightarrow CLIQUE of size $\geq k$ in G’
• NO maps to NO?
 – CLIQUE of size $\geq k$ in G’ \Rightarrow IS of size $\geq k$ in G
Hamilton Path

• Definition: given a directed graph $G = (V, E)$, a Hamilton path in G is a directed path that touches every node exactly once.

• A language (decision problem):
 \[\text{HAMPATH} = \{(G, s, t) : G \text{ has a Hamilton path from } s \text{ to } t\} \]
HAMPATH is NP-complete

Theorem: the following language is NP-complete:

HAMPATH = \{(G, s, t) : G has a Hamilton path from s to t\}

• Proof:
 – Part 1: HAMPATH ∈ NP. Proof?
 – Part 2: HAMPATH is NP-hard.
 • reduce from?
HAMPATH is NP-complete

• We are reducing from the language:

\[3\text{SAT} = \{ \varphi : \varphi \text{ is a 3-CNF formula that has a satisfying assignment} \} \]

to the language:

\[\text{HAMPATH} = \{(G, s, t) : G \text{ has a Hamilton path from } s \text{ to } t\} \]
HAMPATH is NP-complete

• We want to construct a graph from φ with the following properties:
 – a satisfying assignment to φ translates into a Hamilton Path from s to t
 – a Hamilton Path from s to t can be translated into a satisfying assignment for φ

• We will build the graph up from pieces called gadgets that “simulate” the clauses and variables of φ.
HAMPATH is NP-complete

• The variable gadget (one for each x_i):

x_i true:

x_i false:
HAMPATH is NP-complete

- path from s to t translates into a truth assignment to $x_1 \ldots x_m$

- why must the path be of this form?
HAMPATH is NP-complete

\[\varphi = (x_1 \lor x_2 \lor \neg x_3) \land (\neg x_1 \lor x_4 \lor x_3) \land \ldots \land (\ldots) \]

- How to ensure that all \(k \) clauses are satisfied?
- need to add nodes
 - can be visited in path if the clause is satisfied
 - if visited in path, implies clause is satisfied by the assignment given by path through variable gadgets
HAMPATH is NP-complete

\[\varphi = (x_1 \lor x_2 \lor \neg x_3) \land (\neg x_1 \lor x_4 \lor x_3) \land \ldots \land (\ldots) \]

- Clause gadget allows “detour” from “assignment path” for each true literal in clause
HAMPATH is NP-complete

• One clause gadget for each of k clauses:

“x₁” for clause 1

“x₂” for clause 2

“xₘ” for clause 1

“C₁”

“C₂”

“Cₖ”
HAMPATH is NP-complete

\[\varphi = (x_1 \lor x_2 \lor \neg x_3) \land (\neg x_1 \lor x_4 \lor x_3) \ldots \]

"X_1"

"X_2"

"X_m"

s

\[\phi \in \text{poly-time computable?} \]

\# nodes = \(O(km) \)
HAMPATH is NP-complete

\[\varphi = (x_1 \lor x_2 \lor \neg x_3) \land (\neg x_1 \lor x_4 \lor x_3) \ldots \]

\begin{itemize}
 \item \textbf{YES maps to YES?}
 \item first form path from satisfying assign.
 \item pick true literal in each clause and add detour
\end{itemize}
HAMPATH is NP-complete

\[\varphi = (x_1 \lor x_2 \lor \neg x_3) \land (\neg x_1 \lor x_4 \lor x_3) \ldots \]

"X_1" • NO maps to NO?

"C_1" • try to translate path into satisfying assignment

"X_2" • if path has “intended” form, OK.

"C_2"

...