CS21
Decidability and Tractability

Lecture 20
February 22, 2021

Outline
• NP-complete problems: independent set, vertex cover, clique
• NP-complete problems: Hamilton path and cycle, Traveling Salesperson Problem
• NP-complete problems: Subset Sum

Vertex cover
• Definition: given a graph $G = (V, E)$, a vertex cover in G is a subset $V' \subseteq V$ such that for all $(u, w) \in E$, $u \in V'$ or $w \in V'$
• A search problem:
 given G, find the smallest vertex cover
• corresponding language (decision problem):
 $VC = \{(G, k) : G$ has a VC of size $\leq k\}$

Vertex Cover is NP-complete
• Theorem: the following language is NP-complete:
 $VC = \{(G, k) : G$ has a VC of size $\leq k\}$
• Proof:
 – Part 1: $VC \in$ NP. Proof?
 – Part 2: VC is NP-hard.
 • reduce from?

Vertex Cover is NP-complete
• We are reducing from the language:
 $IS = \{(G, k) : G$ has an IS of size $\geq k\}$
 to the language:
 $VC = \{(G, k) : G$ has a VC of size $\leq k\}$
• How are IS, VC related?
• Given a graph $G = (V, E)$ with n nodes
 – if $V' \subseteq V$ is an independent set of size k
 – then $V - V'$ is a vertex cover of size $n - k$
• Proof:
 – suppose not. Then there is some edge with neither endpoint in $V - V'$. But then both endpoints are in V.
 contradiction.
Vertex Cover is NP-complete

- How are IS, VC related?

- Given a graph $G = (V, E)$ with n nodes
 - if $V' \subseteq V$ is a vertex cover of size k
 - then $V-V'$ is an independent set of size $n - k$

- Proof:
 - suppose not. Then there is some edge with both endpoints in $V-V'$. But then neither endpoint is in V'. contradiction.

Clique

- Definition: given a graph $G = (V, E)$, a clique in G is a subset $V' \subseteq V$ such that for all $u, v \in V'$, $(u, v) \in E$
- A search problem:
 - given G, find the largest clique
- corresponding language (decision problem):
 - $\text{CLIQUE} = \{(G, k) : G \text{ has a clique of size } \geq k\}$

Clique is NP-complete

Theorem: the following language is NP-complete:

$\text{CLIQUE} = \{(G, k) : G \text{ has a clique of size } \geq k\}$

- Proof:
 - Part 1: $\text{CLIQUE} \in \text{NP}. \text{ Proof?}$
 - Part 2: CLIQUE is NP-hard.
 - reduce from?

Clique is NP-complete

- We are reducing from the language:

 $\text{IS} = \{(G, k) : G \text{ has an IS of size } \geq k\}$

 to the language:

 $\text{CLIQUE} = \{(G, k) : G \text{ has a CLIQUE of size } \geq k\}$.

Clique is NP-complete

- How are IS, CLIQUE related?

- Given a graph $G = (V, E)$, define its complement $G' = (V, E' = \{(u,v) : (u,v) \notin E\})$
 - if $V' \subseteq V$ is an independent set in G of size k
 - then V' is a clique in G' of size k

- Proof:
 - Every pair of vertices $u, v \in V'$ has no edge between them in G. Therefore they have an edge between them in G'.
Clique is NP-complete

- How are IS, CLIQUE related?
- Given a graph $G = (V, E)$, define its complement $G' = (V, E' = \{(u,v) : (u,v) \notin E\})$
 - if $V' \subseteq V$ is a clique in G' of size k
 - then V' is an independent set in G of size k

- Proof:
 - Every pair of vertices $u,v \in V'$ has an edge between them in G'. Therefore they have no edge between them in G.

The reduction:
- given an instance of IS: (G, k) f produces the pair (G', k)
- f poly-time computable?
- YES maps to YES?
 - IS of size $\geq k$ in G \Rightarrow CLIQUE of size $\geq k$ in G'
- NO maps to NO?
 - CLIQUE of size $\geq k$ in G' \Rightarrow IS of size $\geq k$ in G

Hamilton Path

- Definition: given a directed graph $G = (V, E)$, a Hamilton path in G is a directed path that touches every node exactly once.

- A language (decision problem):
 $\text{HAMPATH} = \{(G, s, t) : G \text{ has a Hamilton path from } s \text{ to } t\}$

Theorem: the following language is NP-complete:
$\text{HAMPATH} = \{(G, s, t) : G \text{ has a Hamilton path from } s \text{ to } t\}$

- Proof:
 - Part 1: $\text{HAMPATH} \in \text{NP}$. Proof?
 - Part 2: HAMPATH is NP-hard.
 - reduce from?

HAMPATH is NP-complete

- We are reducing from the language:
 $3\text{SAT} = \{ \varphi : \varphi \text{ is a 3-CNF formula that has a satisfying assignment } \}$

 to the language:
 $\text{HAMPATH} = \{(G, s, t) : G \text{ has a Hamilton path from } s \text{ to } t\}$

- We want to construct a graph from φ with the following properties:
 - a satisfying assignment to φ translates into a Hamilton Path from s to t
 - a Hamilton Path from s to t can be translated into a satisfying assignment for φ

- We will build the graph up from pieces called gadgets that “simulate” the clauses and variables of φ.
HAMPATH is NP-complete

- The variable gadget (one for each x_i):
 - x_i true:
 - x_i false:

February 22, 2021

HAMPATH is NP-complete

$\varphi = (x_1 \lor x_2 \lor \neg x_3) \land (\neg x_1 \lor x_4 \lor x_3) \land \ldots \land (\ldots)$

- How to ensure that all k clauses are satisfied?
 - need to add nodes
 - can be visited in path if the clause is satisfied
 - if visited in path, implies clause is satisfied by the assignment given by path through variable gadgets

February 22, 2021

HAMPATH is NP-complete

$\varphi = (x_1 \lor x_2 \lor \neg x_3) \land (\neg x_1 \lor x_4 \lor x_3) \land \ldots \land (\ldots)$

- Clause gadget allows “detour” from “assignment path” for each true literal in clause
 - for clause 1
 - for clause 2

February 22, 2021

HAMPATH is NP-complete

$\varphi = (x_1 \lor x_2 \lor \neg x_3) \land (\neg x_1 \lor x_4 \lor x_3) \land \ldots \land (\ldots)$

- $f(\varphi)$ is this graph (edges to/from clause nodes not pictured)
 - f poly-time computable?
 - # nodes = $O(km)$
HAMPATH is NP-complete

\[\phi = (x_1 \lor x_2 \lor \neg x_3) \land (\neg x_4 \lor x_5) \land \ldots \]

- YES maps to YES?
- first form path from satisfying assignment.
- pick true literal in each clause and add detour

Case 1 (positive occurrence of \(v \) in clause):

- path must visit \(y \)
- must enter from \(x \) or \(z \)
- must exit to \(z \) (\(x \) is taken)
- \(x, c \) are taken, can’t happen

Case 2 (negative occurrence of \(v \) in clause):

- path must visit \(y \)
- must enter from \(x \) or \(z \)
- must exit to \(z \) (\(x \) is taken)
- \(x \) is taken, can’t happen

Undirected Hamilton Path

- HAMPATH refers to a directed graph.
- Is it easier on an undirected graph?

A language (decision problem):

\[UHAMPATH = \{ (G, s, t) : \text{undirected } G \text{ has a Hamilton path from } s \text{ to } t \} \]