Outline

- 3-SAT is NP-complete
- NP-complete problems: independent set, vertex cover, clique...
- NP-complete problems: Hamilton path and cycle, Traveling Salesperson Problem
- NP-complete problems: Subset Sum
- NP-complete problems: NAE-3-SAT, max cut

Cook-Levin Theorem

- Gateway to proving lots of natural, important problems NP-complete is:

 Theorem (Cook, Levin): 3SAT is NP-complete.

 Recall: 3SAT = \{\phi : \phi \text{ is a CNF formula with 3 literals per clause for which there exists a satisfying truth assignment}\}

CIRCUIT-SAT is NP-complete

Theorem: CIRCUIT-SAT is NP-complete

CIRCUIT-SAT = \{C : C \text{ is a Boolean circuit for which there exists a satisfying truth assignment}\}

3SAT is NP-complete

Theorem: 3SAT is NP-complete

3SAT = \{\phi : \phi \text{ is a 3-CNF formula for which there exists a satisfying truth assignment}\}

Proof:

- Part 1: need to show 3-SAT \(\in\) NP
 - already done
- Part 2: need to show 3-SAT is NP-hard
 - we will give a poly-time reduction from CIRCUIT-SAT to 3-SAT
3SAT is NP-complete

– given a circuit C
 • variables x_1, x_2, \ldots, x_n
 • AND (\land), OR (\lor), NOT (\neg) gates g_1, g_2, \ldots, g_m
– reduction $f(C)$ produces these clauses for φ
on variables $x_1, x_2, \ldots, x_n, g_1, g_2, \ldots, g_m$:

\[\neg g_i \rightarrow (g_i \lor z) \times (\neg z \lor \neg g_i) \]

\[(z \equiv \neg g_i) \]

3SAT is NP-complete

– given a circuit C
 • variables x_1, x_2, \ldots, x_n
 • AND (\land), OR (\lor), NOT (\neg) gates g_1, g_2, \ldots, g_m
– reduction $f(C)$ produces these clauses for φ
on variables $x_1, x_2, \ldots, x_n, g_1, g_2, \ldots, g_m$:

\[\neg g_i \rightarrow (g_i \lor z) \times (\neg z \lor \neg g_i) \]

\[(z \equiv \neg g_i) \]

Search vs. Decision

• Definition: given a graph $G = (V, E)$, an independent set in G is a subset $V' \subseteq V$ such that for all $u, w \in V'$ $(u, w) \notin E$
• A problem:
given G, find the largest independent set
• This is called a search problem
 – searching for optimal object of some type
 – comes up frequently

NO maps to NO?

• show that φ satisfiable implies C satisfiable
• satisfying assignment to φ assigns values to x-variables and g-variables
• output gate g_m must be assigned 1
• every other gate must be assigned value it would take given values of its inputs.
• the assignment to the x-variables must be a satisfying assignment for C.
Search vs. Decision
• We want to talk about languages (or decision problems)
• Most search problems have a natural, related decision problem by adding a bound “k”; for example:
 – search problem: given G, find the largest independent set
 – decision problem: given (G, k), is there an independent set of size at least k

Ind. Set is NP-complete
Theorem: the following language is NP-complete:
\[IS = \{(G, k) : G \text{ has an IS of size } \geq k \} . \]

Proof:
– Part 1: IS ∈ NP. Proof?
– Part 2: IS is NP-hard.
 • reduce from 3-SAT

Ind. Set is NP-complete
We are reducing from the language:
3SAT = \{ φ : φ is a 3-CNF formula that has a satisfying assignment \}
to the language:
\[IS = \{(G, k) : G \text{ has an IS of size } \geq k \} . \]

Ind. Set is NP-complete
The reduction f: given
\[φ = (x \lor y \lor \neg z) \land (\neg x \lor w \lor z) \land \ldots \land (\ldots) \]
we produce graph \(G_φ \):

\[x \rightarrow y \rightarrow \neg z \rightarrow w \rightarrow \neg z \rightarrow \ldots \rightarrow \triangle \]

• one triangle for each of m clauses
• edge between every pair of contradictory literals
• set \(k = m \)

Ind. Set is NP-complete
\[φ = (x \lor y \lor \neg z) \land (\neg x \lor w \lor z) \land \ldots \land (\ldots) \]
f(φ) = \((G, \# \text{ clauses}) \)

• Is f poly-time computable?
• YES maps to YES?
 – 1 true literal per clause in satisfying assign. A
 – choose corresponding vertices (1 per triangle)
 – IS, since no contradictory literals in A

Ind. Set is NP-complete
\[φ = (x \lor y \lor \neg z) \land (\neg x \lor w \lor z) \land \ldots \land (\ldots) \]
f(φ) = \((G, \# \text{ clauses}) \)

• NO maps to NO?
 – IS can have at most 1 vertex per triangle
 – IS of size \(\geq \# \text{ clauses} \) must have exactly 1 per
 – since IS, no contradictory vertices
 – can produce satisfying assignment by setting these literals to true
Vertex cover

- Definition: given a graph \(G = (V, E) \), a vertex cover in \(G \) is a subset \(V' \subseteq V \) such that for all \((u,w) \in E\), \(u \in V' \) or \(w \in V' \).
- A search problem: given \(G \), find the smallest vertex cover.
- A corresponding language (decision problem):
 \[VC = \{(G, k) : G \text{ has a VC of size } \leq k\}. \]

Vertex Cover is NP-complete

Theorem: the following language is NP-complete:
\[VC = \{(G, k) : G \text{ has a VC of size } \leq k\}. \]

- Proof:
 - Part 1: \(VC \in \text{NP}. \) Proof?
 - Part 2: \(VC \) is NP-hard.
 - reduce from?

The reduction:
- given an instance of IS: \((G, k)\) \(f \) produces the pair \((G, n-k)\)
- \(f \) poly-time computable?
- YES maps to YES?
 - IS of size \(\geq k \) in \(G \implies VC \text{ of size } \leq n-k \) in \(G \)
- NO maps to NO?
 - VC of size \(\leq n-k \) in \(G \implies IS \text{ of size } \geq k \) in \(G \)

- We are reducing from the language:
 \[IS = \{(G, k) : G \text{ has an IS of size } \geq k\} \]
to the language:
\[VC = \{(G, k) : G \text{ has a VC of size } \leq k\}. \]

- How are IS, VC related?
 - Given a graph \(G = (V, E) \) with \(n \) nodes
 - if \(V' \subseteq V \) is an independent set of size \(k \)
 - then \(V-V' \) is a vertex cover of size \(n-k \)
 - Proof:
 - suppose not. Then there is some edge with neither endpoint in \(V-V' \). But then both endpoints are in \(V' \). contradiction.

- Given a graph \(G = (V, E) \) with \(n \) nodes
 - if \(V' \subseteq V \) is a vertex cover of size \(k \)
 - then \(V-V' \) is an independent set of size \(n-k \)
 - Proof:
 - suppose not. Then there is some edge with both endpoints in \(V-V' \). But then neither endpoint is in \(V' \). contradiction.
Clique

- Definition: given a graph \(G = (V, E) \), a clique in \(G \) is a subset \(V' \subseteq V \) such that for all \(u, v \in V' \), \((u, v) \in E \)
- A search problem:
 given \(G \), find the largest clique
- Corresponding language (decision problem):
 \(\text{CLIQUE} = \{ (G, k) : G \text{ has a clique of size } \geq k \} \)

Clique is NP-complete

Theorem: the following language is NP-complete:
\(\text{CLIQUE} = \{ (G, k) : G \text{ has a clique of size } \geq k \} \)

- Proof:
 - Part 1: CLIQUE \(\in \) NP. Proof?
 - Part 2: CLIQUE is NP-hard.
 - reduce from?

Clique is NP-complete

- How are IS, CLIQUE related?
- Given a graph \(G = (V, E) \), define its complement \(G' = (V, E' = \{(u,v) : (u,v) \notin E\}) \)
 - if \(V' \subseteq V \) is an independent set in \(G \) of size \(k \)
 - then \(V' \) is a clique in \(G' \) of size \(k \)
- Proof:
 - Every pair of vertices \(u, v \in V' \) has an edge between them in \(G' \). Therefore they have an edge between them in \(G \).

Clique is NP-complete

The reduction:
 - given an instance of IS: \((G, k) \) f produces the pair \((G', k) \)
- \(f \) poly-time computable?
- YES maps to YES?
 - IS of size \(\geq k \) in \(G \) \(\Rightarrow \) CLIQUE of size \(\geq k \) in \(G' \)
- NO maps to NO?
 - CLIQUE of size \(\geq k \) in \(G' \) \(\Rightarrow \) IS of size \(\geq k \) in \(G \)