
1

CS21 
Decidability 
and 
Tractability

Lecture 19
February 21, 
2025

1

Grades so far

• An idea of eventual scale:   

• 2025 so far: mean 87.4
• 2024 mean: 85.5; median 87.0
• 2023 mean 80.5; median 81.36
• 2022: mean 80.9; median 83.6
• 2021: mean 85.7; median 86.9

20
23

20
24

20
21

20
22

min max grade
97.5 100.0 A+
93.0 97.5 A 
88.5 93.0 A-
85.0 88.5 B+
81.5 85.0 B 
77.0 81.5 B-
73.0 77.0 C+
69.0 73.0 C 
65.0 69.0 C-
60.5 65.0 D+
55.5 60.5 D 

0.0 55.5 E/F

min max grade
97.0 100.0 A+
92.0 97.0 A 
87.0 92.0 A-
84.0 87.0 B+
80.5 84.0 B 
76.0 80.5 B-
72.5 76.0 C+
68.0 72.5 C 
62.5 68.0 C-
59.0 62.5 D+
54.0 59.0 D 

0.0 54.0 E/F

min max grade
97.0 100.0 A+
92.0 97.0 A 
87.0 92.0 A-
84.0 87.0 B+
80.5 84.0 B 
76.0 80.5 B-
72.5 76.0 C+
68.0 72.5 C 
62.5 68.0 C-
59.0 62.5 D+
52.5 59.0 D 

0.0 52.5 E/F

min max grade
97.0 100.0 A+
93.0 97.0 A 
88.0 93.0 A-
85.0 88.0 B+
81.0 85.0 B 
78.0 81.0 B-
74.5 78.0 C+
70.0 74.5 C 
65.0 70.0 C-
60.0 65.0 D+
55.0 60.0 D 

0.0 55.0 E/F
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Hardness and completeness

• Reasonable that can efficiently transform 
one problem into another.

• Surprising:
–  can often find a special language L so that 

every language in a given complexity class 
reduces to L!

– powerful tool 
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Hardness and completeness

• Recall:
– a language L is a set of strings
– a complexity class C is a set of languages

Definition: a language L is C-hard if for 
every language A ∈ C, A poly-time 
reduces to L; i.e., A ≤P

 L.
meaning: L is at least as “hard” as anything in C
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Hardness and completeness

• Recall:
– a language L is a set of strings
– a complexity class C is a set of languages

Definition: a language L is C-complete if L 
is C-hard and L ∈ C

meaning: L is a “hardest” problem in C
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An EXP-complete problem

• Version of ATM with a time bound:
 ATMB = {<M, x, m> : M is a TM that 

accepts x within at most m steps}

Theorem: ATMB is EXP-complete.

Proof:
– what do we need to show?

6
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An EXP-complete problem
• ATMB = {<M, x, m> : M is a TM that accepts x 

within at most m steps}
• Proof that ATMB is EXP-complete:

– Part 1. Need to show ATMB ∈ EXP.
• simulate M on x for m steps; accept if simulation 

accepts; reject if simulation doesn’t accept.
• running time mO(1).
• n = length of input ≥ log2m
• running time ≤ mk = 2(log m)k ≤ 2(kn) 
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An EXP-complete problem
• ATMB = {<M, x, m> : M is a TM that accepts x 

within at most m steps}
• Proof that ATMB is EXP-complete:

– Part 2. For each language A ∈ EXP, need to 
give poly-time reduction from A to ATMB.

– for a given language A ∈ EXP, we know there 
is a TM MA that decides A in time g(n) ≤ 2nk 
for some k.

– what should reduction f(w) produce?
8
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An EXP-complete problem
• ATMB = {<M, x, m> : M is a TM that accepts x 

within at most m steps}
• Proof that ATMB is EXP-complete:

– f(w) = <MA, w, m> where m = 2|w|k 
– is f(w) poly-time computable?

• hardcode MA and k…
– YES maps to YES?

• w ∈	A   ⇒  <MA, w, m> ∈	ATMB 
– NO maps to NO?

• w ∉ A   ⇒  <MA, w, m> ∉ ATMB 
9
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An EXP-complete problem

• A C-complete problem is a surrogate for 
the entire class C.

• For example: if you can find a poly-time 
algorithm for ATMB then there is 
automatically a poly-time algorithm for 
every problem in EXP (i.e., EXP = P).

• Can you find a poly-time alg for ATMB?
10
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An EXP-complete problem

• Can you find a poly-time alg for ATMB?
• NO!  we showed that P ⊆	EXP.
• ATMB is not tractable (intractable). 

regular 
languages

context free 
languages

decidable 
languages

P ATMB

EXP
11
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Back to 3SAT
• Remember 3SAT ∈ EXP
 3SAT = {formulas in CNF with 3 literals 

per clause for which there exists a 
satisfying truth assignment}

• It seems hard. Can we show it is 
intractable? 
– formally, can we show 3SAT is EXP-

complete?
12
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Back to 3SAT

• can we show 3SAT is EXP-complete?
• Don’t know how to. Believed unlikely.
• One reason: there is an important positive 

feature of 3SAT that doesn’t seem to hold 
for problems in EXP (e.g. ATMB):

3SAT is decidable in polynomial time by 
a nondeterministic TM
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Nondeterministic TMs

• Recall: nondeterministic TM
• informally, TM with several possible next 

configurations at each step
• formally, A NTM is a 7-tuple 

(Q, Σ, Γ,	 δ, q0, qaccept, qreject) where:
– everything is the same as a TM except the 

transition function:
δ:Q x Γ→ P(Q x Γ x {L, R})
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Nondeterministic TMs

visualize computation of a NTM M as a tree
Cstart • nodes are configurations

• leaves are accept/reject 
configurations
• M accepts if and only if there exists 
an accept leaf
• M is a decider, so no paths go on 
forever
• running time is max. path length

accrej
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The class NP

Definition: TIME(t(n)) = {L : there exists a 
TM M that decides L in time O(t(n))}

P = ∪k ≥ 1 TIME(nk)
Definition: NTIME(t(n)) = {L : there exists a 

NTM M that decides L in time O(t(n))}
NP = ∪k ≥ 1 NTIME(nk)
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NP in relation to P and EXP

• P	⊆ NP (poly-time TM is a poly-time NTM)
• NP	⊆ EXP

– configuration tree of nk-time NTM has ≤ bnk nodes
– can traverse entire tree in O(bnk) time
we do not know if either inclusion is proper

regular 
languages

context free 
languages

decidable 
languages

P
EXP

NP
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Poly-time verifiers

• NP = {L : L decided by poly-time NTM}

• Very useful alternate definition of NP:
Theorem: language L is in NP if and only if 

it is expressible as:
L = { x | ∃ y, |y| ≤ |x|k, (x, y) ∈ R }

 where R is a language in P.
• poly-time TM MR deciding R is a “verifier” 

“witness” or 
“certificate”

efficiently 
verifiable

18
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Poly-time verifiers

• Example: 3SAT expressible as
3SAT = {φ : φ is a 3-CNF formula for which  

∃	assignment A for which (φ, A) ∈ R}
R = {(φ, A) : A is a sat. assign. for φ}

– satisfying assignment A is a “witness” of the 
satisfiability of φ (it “certifies” satisfiability of φ)

– R is decidable in poly-time

19
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Poly-time verifiers
L = { x | ∃ y, |y| ≤ |x|k, (x, y) ∈ R }

Proof: (⇐)  give poly-time NTM deciding L

phase 1: “guess” y with 
|x|k nondeterministic 
steps

phase 2: 
decide if 
(x, y) ∈	R 
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Poly-time verifiers
Proof: (⇒) given L ∈ NP, describe L as:

L = { x | ∃ y, |y| ≤ |x|k, (x, y) ∈ R }

– L is decided by NTM M running in time nk

– define the language
R = { (x, y) : y is an accepting computation 

history of M on input x}
– check: accepting history has length ≤ |x|k
– check: M accepts x iff ∃	y, |y| ≤ |x|k, (x, y) ∈	R

21
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Cook-Levin Theorem

• Gateway to proving lots of natural, 
important problems NP-complete is:

Theorem (Cook, Levin): 3SAT is NP-
complete.

• Recall: 3SAT = {φ : φ is a CNF formula 
with 3 literals per clause for which there 
exists a satisfying truth assignment}
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Cook-Levin Theorem

• Proof outline
– show CIRCUIT-SAT is NP-complete 
CIRCUIT-SAT = {C : C is a Boolean circuit for 

which there exists a satisfying truth 
assignment}

– show 3SAT is NP-complete (reduce from 
CIRCUIT SAT)

23
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Boolean Circuits

• C computes function f:{0,1}n → {0,1} in 
natural way 
– identify C with function f it computes

• size = # nodes

∨

∧

x1 x2

∧

∨ ¬

x3 … xn

∧
• Boolean circuit C

– directed acyclic graph
– nodes: AND (∧); OR (∨); 

NOT (¬); variables xi

24
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Boolean Circuits

• every function f:{0,1}n → {0,1} computable 
by a circuit of size at most O(n2n)  

– AND of n literals for each x such that f(x) = 1
– OR of up to 2n such terms 

25
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CIRCUIT-SAT is NP-complete
Theorem: CIRCUIT-SAT is NP-complete

CIRCUIT-SAT = {C : C is a Boolean circuit for 
which there exists a satisfying truth assignment}

Proof:
– Part 1: need to show CIRCUIT-SAT ∈ NP.

• can express CIRCUIT-SAT as:
CIRCUIT-SAT = {C : C is a Boolean circuit for 

which ∃x such that (C, x) ∈ R}
R = {(C, x) : C is a Boolean circuit and C(x) = 1}

26
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CIRCUIT-SAT is NP-complete
CIRCUIT-SAT = {C : C is a Boolean circuit for 
which there exists a satisfying truth assignment}

Proof:
– Part 2: for each language A ∈ NP, need to 

give poly-time reduction from A to CIRCUIT-SAT

– for a given language A ∈ NP, we know 
A = {x | ∃ y, |y| ≤ |x|k, (x, y) ∈ R }

 and there is a (deterministic) TM MR that 
decides R in time g(n) ≤ nc for some c.

27

27

February 21, 2025 CS21 Lecture 19

CIRCUIT-SAT is NP-complete

• Tableau (configurations written in an 
array) for machine MR on input w = (x, y):

w1/qs w2 … wn _…
w1 w2/q1 … wn _…

w1/q1 a … wn _…

_/qa _ … _ _…

... 
... 

• height = 
time taken   
= |w|c

• width = 
space used 
≤ |w|c

28
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CIRCUIT-SAT is NP-complete

• Important observation: contents of cell in 
tableau determined by 3 others above it:

a/q1 b a
b/q1

a b/q1 a
a

a b a
b

29
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CIRCUIT-SAT is NP-complete

• Can build Boolean circuit STEP
– input (binary encoding of)  3 cells
– output (binary encoding of) 1 cell

a b/q1 a

a

STEP

• each output bit is some 
function of inputs

• can build circuit for each 

• size is independent of 
size of tableau

30
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CIRCUIT-SAT is NP-complete

• |w|c copies of STEP compute row i from i-1

w1/qs w2 … wn _…
w1 w2/q1 … wn _…

... 
... 

Tableau for 
MR on input 
w = (x, y)

…

…

STEP STEP STEP STEP STEP

31
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CIRCUIT-SAT is NP-complete

w1/qs w2 … wn _…

STEP STEP STEP STEP STEP
STEP STEP STEP STEP STEP

STEP STEP STEP STEP STEP

... 
... 

1 iff cell contains qaccept

ignore these

This circuit 
CMR, w has 
inputs 
w1w2…wn 

and C(w) = 1 
iff MR accepts 
input w.

Size = O(|w|2c)

w1 w2 wn

32
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CIRCUIT-SAT is NP-complete
– recall: we are reducing language A: 

A = { x | ∃ y, |y| ≤ |x|k, (x, y) ∈ R }
 to CIRCUIT-SAT.
– f(x) produces the following circuit:

x1 x2 … xn y1 y2 … ym

Circuit CMR, w 
1 iff (x,y) ∈	R 

– hardwire 
input x
– leave y as 
variables

33
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CIRCUIT-SAT is NP-complete
– is f(x) poly-time computable?

• hardcode MR, k and c
• circuit has size O(|w|2c); |w| = |(x,y)| ≤ n + nk 
• each component easy to describe efficiently from 

description of MR

– YES maps to YES?
• x ∈ A ⇒ ∃ y, MR accepts  (x, y) ⇒ f(x) ∈	CIRCUIT-SAT

– NO maps to NO?
• x ∉ A ⇒ ∀ y, MR rejects  (x, y) ⇒ f(x) ∉ CIRCUIT-SAT

34
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3SAT is NP-complete
Theorem: 3SAT is NP-complete
3SAT = {φ : φ is a 3-CNF formula for which there 

exists a satisfying truth assignment}
Proof:

– Part 1: need to show 3-SAT ∈ NP 
• already done

– Part 2: need to show 3-SAT is NP-hard
• we will give a poly-time reduction from 

CIRCUIT-SAT to 3-SAT 

35
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3SAT is NP-complete

– given a circuit C
• variables x1, x2, …, xn

• AND (∧), OR (∨), NOT (¬) gates g1, g2, …, gm

– reduction f(C) produces these clauses for φ 
on variables x1, x2, …, xn, g1, g2, …, gm:

¬ gi

z

• (gi ∨ z) 

• (¬z ∨ ¬gi)
(z ⇔ ¬gi)

36
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3SAT is NP-complete

– given a circuit C
• variables x1, x2, …, xn

• AND (∧), OR (∨), NOT (¬) gates g1, g2, …, gm

– reduction f(C) produces these clauses for φ 
on variables x1, x2, …, xn, g1, g2, …, gm:

∨ gi

z1

• (¬z1 ∨ gi) 

• (¬z2 ∨ gi) 

• (¬gi ∨ z1 ∨	z2)

(z1∨z2 
⇔	gi)z2

37
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3SAT is NP-complete

– given a circuit C
• variables x1, x2, …, xn

• AND (∧), OR (∨), NOT (¬) gates g1, g2, …, gm

– reduction f(C) produces these clauses for φ 
on variables x1, x2, …, xn, g1, g2, …, gm:

∧ gi

z1

• (¬gi ∨ z1) 

• (¬gi ∨ z2) 

• (¬z1 ∨ ¬z2 ∨	gi)

(z1 ∧	z2 
⇔ gi)z2

38
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3SAT is NP-complete

– finally, reduction f(C) produces single clause 
(gm) where gm is the output gate.

– f(C) computable in poly-time?
• yes, simple transformation

– YES maps to YES?
• if C(x) = 1, then assigning x-values to x-

variables of φ and gate values of C when 
evaluating x to the g-variables of φ gives 
satsifying assignment.

39
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3SAT is NP-complete

– NO maps to NO?
• show that φ satisfiable implies C satisfiable
• satisfying assignment to φ assigns values 

to x-variables and g-variables
• output gate gm must be assigned 1
• every other gate must be assigned value it 

would take given values of its inputs.
• the assignment to the x-variables must be a 

satisfying assignment for C.
40
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