Time Hierarchy Theorem

Theorem: for every proper complexity function $f(n) \geq n$:

$\text{TIME}(f(n)) \not \subseteq \text{TIME}(f(2n)^3)$.

- **Proof idea:**
 - use diagonalization to construct a language that is not in $\text{TIME}(f(n))$.
 - constructed language comes with a TM that decides it and runs in time $f(2n)^3$.

Recall proof for Halting Problem

- **Proof:**
 - SIM is TM deciding language
 \[\{ <M, x> : M \text{ accepts } x \text{ in } \leq f(|x|) \text{ steps} \} \]
 - Claim: SIM runs in time $g(n) = f(n)^3$.
 - define new TM D: on input $<M>$
 - if SIM accepts $<M>$, reject
 - if SIM rejects $<M>$, accept
 - D runs in time $g(2n)$
Proof of Time Hierarchy Theorem

• Proof (continued):
 – suppose M in \textsc{Time}(f(n)) decides L(D)
 - M(<M>) = SIM(<M, <M>>) ≠ D(<M>)
 - but M(<M>) = D(<M>)
 - contradiction.

Proof of Time Hierarchy Theorem

• Claim: there is a TM SIM that decides
 \{<M, x> : M accepts x in \leq f(|x|) steps\}
 and runs in time \(g(n) = f(n)^3\).
• Proof sketch: SIM has 4 work tapes
 - contents and "virtual head" positions for M’s tapes
 - M’s transition function and state
 - \(f(|x|)^+\)’s used as a clock
 - scratch space

Proof of Time Hierarchy Theorem

• Proof sketch (continued): 4 work tapes
 - contents and “virtual head” positions for M’s tapes
 - M’s transition function and state
 - \(f(|x|)^+\)’s used as a clock
 - scratch space
 – initialize tapes
 – simulate step of M, advance head on tape 3; repeat.
 – can check running time is as claimed.

So far…

• We have defined the complexity classes P (polynomial time), EXP (exponential time)

Poly-time reductions

• Type of reduction we will use:
 – “many-one” poly-time reduction (commonly)
 – “mapping” poly-time reduction (book)

Poly-time reductions

• function f should be poly-time computable

\textbf{Definition}: \(f : \Sigma^* \rightarrow \Sigma^*\) is poly-time computable if for some \(g(n) = n^O(1)\) there exists a \(g(n)\)-time TM \(M_f\) such that on every \(w \in \Sigma^*\), \(M_f\) halts with \(f(w)\) on its tape.
Poly-time reductions

Definition: A \(\leq_p B\) (“A reduces to B”) if there is a poly-time computable function \(f\) such that for all \(w\)
\[
w \in A \iff f(w) \in B
\]
- as before, condition equivalent to:
 - YES maps to YES and NO maps to NO
- as before, meaning is:
 - B is at least as “hard” (or expressive) as A

Theorem: if \(A \leq_p B\) and \(B \in P\) then \(A \in P\).

Proof:
- a poly-time algorithm for deciding A:
 - on input \(w\), compute \(f(w)\) in poly-time.
 - run poly-time algorithm to decide if \(f(w) \in B\)
- if it says “yes”, output “yes”
- if it says “no”, output “no”

Example
- \(2SAT = \{\text{CNF formulas with 2 literals per clause for which there exists a satisfying truth assignment}\}\)
- \(L = \{\text{directed graph } G, \text{ and list of pairs of vertices} (u_1, v_1), (u_2, v_2), \ldots, (u_k, v_k), \text{ such that there is no } i \text{ for which } [u_i \text{ is reachable from } v_i \text{ in } G \text{ and } v_i \text{ is reachable from } u_i \text{ in } G]\}\)
- We gave a poly-time reduction from \(2SAT\) to \(L\).
- determined that \(2SAT \in P\) from fact that \(L \in P\)

Hardness and completeness
- Reasonable that can efficiently transform one problem into another.
- Surprising:
 - can often find a special language \(L\) so that every language in a given complexity class reduces to \(L\)!
 - powerful tool

Definition: a language \(L\) is **C-hard** if for every language \(A \in C\), A poly-time reduces to \(L\); i.e., \(A \leq_p L\).

Definition: a language \(L\) is **C-complete** if \(L\) is C-hard and \(L \in C\)

meaning: \(L\) is a “hardest” problem in \(C\)
An EXP-complete problem

• Version of A_{TM} with a time bound:
 $A_{TM}^B = \{<M, x, m> : M \text{ is a TM that accepts } x \text{ within at most } m \text{ steps}\}$

Theorem: A_{TM}^B is EXP-complete.

Proof:
– what do we need to show?

An EXP-complete problem

• $A_{TM}^B = \{<M, x, m> : M \text{ is a TM that accepts } x \text{ within at most } m \text{ steps}\}$
• Proof that A_{TM}^B is EXP-complete:
 – Part 1. Need to show $A_{TM}^B \in \text{EXP}$.
 • simulate M on x for m steps; accept if simulation accepts; reject if simulation doesn’t accept.
 • running time $m^2(1)$.
 • $n = \text{length of input} \geq \log_2 m$
 • running time $\leq m^k = 2^{k\log m} \leq 2^{kn}$

An EXP-complete problem

• $A_{TM}^B = \{<M, x, m> : M \text{ is a TM that accepts } x \text{ within at most } m \text{ steps}\}$
• Proof that A_{TM}^B is EXP-complete:
 – Part 2. For each language $A \in \text{EXP}$, need to give poly-time reduction from A to A_{TM}^B.
 – for a given language $A \in \text{EXP}$, we know there is a TM M_A that decides A in time $g(n) \leq 2^{kn}$ for some k.
 – what should reduction $f(w)$ produce?

An EXP-complete problem

• A C-complete problem is a surrogate for the entire class C.
• For example: if you can find a poly-time algorithm for A_{TM}^B then there is automatically a poly-time algorithm for every problem in EXP (i.e., EXP = P).

• Can you find a poly-time alg for A_{TM}^B?

An EXP-complete problem

• Can you find a poly-time alg for A_{TM}^B?
• NO! we showed that $P \subsetneq \text{EXP}$.
• A_{TM}^B is not tractable (intractable).
Back to 3SAT

- Remember $3SAT \in EXP$

 $3SAT = \{\text{formulas in CNF with 3 literals per clause for which there exists a satisfying truth assignment}\}$

- It seems hard. Can we show it is intractable?
 - formally, can we show $3SAT$ is EXP-complete?

Back to 3SAT

- can we show $3SAT$ is EXP-complete?
- Don’t know how to. Believed unlikely.
- One reason: there is an important positive feature of $3SAT$ that doesn’t seem to hold for problems in EXP (e.g. ATM_B):

> $3SAT$ is decidable in polynomial time by a nondeterministic TM

Nondeterministic TMs

- Recall: nondeterministic TM
- informally, TM with several possible next configurations at each step
- formally, A NTM is a 7-tuple

 $(Q, \Sigma, \Gamma, \delta, q_0, q_{\text{accept}}, q_{\text{reject}})$

 where:

 - everything is the same as a TM except the transition function:

 $\delta : Q \times \Gamma \rightarrow 2^{(Q \times \Gamma \times \{L, R\})}$

Nondeterministic TMs

visualize computation of a NTM M as a tree

- nodes are configurations
- leaves are accept/reject configurations
- M accepts if and only if there exists an accept leaf
- M is a decider, so no paths go on forever
- running time is max. path length

The class NP

Definition: $\text{TIME}(t(n)) = \{L : \text{there exists a TM } M \text{ that decides } L \text{ in time } O(t(n))\}$

$P = \bigcup_{k \geq 1} \text{TIME}(n^k)$

Definition: $\text{NTIME}(t(n)) = \{L : \text{there exists a NTM } M \text{ that decides } L \text{ in time } O(t(n))\}$

$NP = \bigcup_{k \geq 1} \text{NTIME}(n^k)$

NP in relation to P and EXP

- $P \subseteq NP$ (poly-time TM is a poly-time NTM)
- $NP \subseteq EXP$

 - configuration tree of n^k-time NTM has $\leq b^k$ nodes
 - can traverse entire tree in $O(b^k)$ time

we do not know if either inclusion is proper
Poly-time verifiers

- **NP** = \{L : L decided by poly-time NTM\}

- Very useful alternate definition of NP:

 Theorem: language L is in NP if and only if it is expressible as:

 \[L = \{ x \mid \exists y, \ |y| \leq |x|^k, (x, y) \in R \} \]

 where R is a language in P.

- poly-time TM \(M_R \) deciding R is a "verifier" or "certificate" efficiently verifiable

Example: 3SAT expressible as

\[\text{3SAT} = \{ \phi : \phi \text{ is a 3-CNF formula for which } \exists \text{ assignment } A \text{ for which } (\phi, A) \in R \} \]

- satisfying assignment A is a "witness" of the satisfiability of \(\phi \) (it "certifies" satisfiability of \(\phi \))
- \(R \) is decidable in poly-time

Proof:

(\(\Rightarrow \)) given \(L \in \text{NP} \), describe \(L \) as:

\[L = \{ x \mid \exists y, |y| \leq |x|^k, (x, y) \in R \} \]

- \(L \) is decided by NTM \(M \) running in time \(n^k \)
- define the language

 \[R = \{ (x, y) : y \text{ is an accepting computation history of } M \text{ on input } x \} \]

- check: accepting history has length \(\leq |x|^k \)
- check: \(M \) accepts \(x \) iff \(\exists y, |y| \leq |x|^k, (x, y) \in R \)

Cook-Levin Theorem

- Gateway to proving lots of natural, important problems NP-complete is:

 Theorem (Cook, Levin): 3SAT is NP-complete.

- Recall: 3SAT = \{ \(\phi : \phi \text{ is a CNF formula with 3 literals per clause for which there exists a satisfying truth assignment} \) \}

Proof outline

- show CIRCUIT-SAT is NP-complete

 CIRCUIT-SAT = \{ C : C is a Boolean circuit for which there exists a satisfying truth assignment \}

- show 3SAT is NP-complete (reduce from CIRCUIT SAT)
Boolean Circuits

- Boolean circuit C
 - directed acyclic graph
 - nodes: AND (∧); OR (∨); NOT (¬); variables x_i

- C computes function $f : \{0, 1\}^n \rightarrow \{0, 1\}$ in natural way
 - identify C with function f it computes

- size = # nodes

- $\lor \land x_1 x_2 \land \lor \neg x_3 \ldots x_n$

Boolean Circuits

- every function $f : \{0, 1\}^n \rightarrow \{0, 1\}$ computable by a circuit of size at most $O(n2^n)$
 - AND of n literals for each x such that $f(x) = 1$
 - OR of up to 2^n such terms

CIRCUIT-SAT is NP-complete

Theorem: CIRCUIT-SAT is NP-complete

CIRCUIT-SAT = \{ C : C is a Boolean circuit for which there exists a satisfying truth assignment\}

Proof:
- Part 1: need to show CIRCUIT-SAT \in NP.
 - can express CIRCUIT-SAT as:
 CIRCUIT-SAT = \{ C : C is a Boolean circuit for which $\exists x$ such that $(C, x) \in R$ \}

 $R = \{(C, x) : C$ is a Boolean circuit and $C(x) = 1\}$

- Part 2: for each language $A \in$ NP, need to give poly-time reduction from A to CIRCUIT-SAT
 - for a given language $A \in$ NP, we know
 $A = \{x | \exists y, |y| \leq |x|^k, (x, y) \in R \}$
 - and there is a (deterministic) TM M_R that decides R in time $g(n) \leq n^c$ for some c.

CIRCUIT-SAT is NP-complete

- Tableau (configurations written in an array) for machine M_R on input $w = (x, y)$:
 - height = time taken = $|w|^c$
 - width = space used $\leq |w|^c$

 \[
 \begin{array}{cccc}
 w_1/q_1 & w_2 & \ldots & w_n \\
 w_1 & w_2/q_1 & \ldots & w_n \\
 w_1 & a & \ldots & w_n \\
 \vdots & \vdots & \ddots & \vdots \\
 _ & _ & \ldots & _ \\
 \end{array}
 \]

 \[
 \begin{array}{cccc}
 a/q_1 & b & a \\
 a & b/q_1 & a \\
 a & b & a \\
 \end{array}
 \]
CIRCUIT-SAT is NP-complete

- Can build Boolean circuit STEP
 - input (binary encoding of) 3 cells
 - output (binary encoding of) 1 cell
 - each output bit is some function of inputs
 - can build circuit for each
 - size is independent of size of tableau

Tableau for M_R on input $w = (x, y)$

- $|w|^c$ copies of STEP compute row i from $i-1$

Circuit $C_{M_R, w}$ has inputs w_1, w_2, \ldots, w_n

- hardwire input x
- leave y as variables

Size = $O(|w|^{2c})$

Cook-Levin Theorem

- Gateway to proving lots of natural, important problems NP-complete is:

 Theorem (Cook, Levin): 3SAT is NP-complete.

 Recall: 3SAT = \{ ϕ : ϕ is a CNF formula with 3 literals per clause for which there exists a satisfying truth assignment \}
Cook-Levin Theorem

- Proof outline
 - show CIRCUIT-SAT is NP-complete
 CIRCUIT-SAT = \{ C : C is a Boolean circuit for which there exists a satisfying truth assignment \}

- show 3SAT is NP-complete (reduce from CIRCUIT SAT)

CIRCUIT-SAT is NP-complete

Theorem: CIRCUIT-SAT is NP-complete

CIRCUIT-SAT = \{ C : C is a Boolean circuit for which there exists a satisfying truth assignment \}

3SAT is NP-complete

Theorem: 3SAT is NP-complete

3SAT = \{ \varphi : \varphi is a 3-CNF formula for which there exists a satisfying truth assignment \}

Proof:
- Part 1: need to show 3-SAT \in NP
 • already done

- Part 2: need to show 3-SAT is NP-hard
 • we will give a poly-time reduction from CIRCUIT-SAT to 3-SAT

3SAT is NP-complete

- given a circuit C
 • variables \(x_1, x_2, \ldots, x_n \)
 • AND (\land), OR (\lor), NOT (\neg) gates \(g_1, g_2, \ldots, g_m \)

 reduction \(f(C) \) produces these clauses for \(\varphi \) on variables \(x_1, x_2, \ldots, x_n, g_1, g_2, \ldots, g_m \):

 \[
 \neg g_i \quad (g_i \lor z) \quad (\neg z \lor \neg g_i)
 \]

 \(z \iff \neg g_i \)

3SAT is NP-complete

- given a circuit C
 • variables \(x_1, x_2, \ldots, x_n \)
 • AND (\land), OR (\lor), NOT (\neg) gates \(g_1, g_2, \ldots, g_m \)

 reduction \(f(C) \) produces these clauses for \(\varphi \) on variables \(x_1, x_2, \ldots, x_n, g_1, g_2, \ldots, g_m \):

 \[
 \begin{align*}
 (z_1 \land z_2) & \iff \neg g_i \\
 \neg g_i \land (z_1 \lor z_2) & \\
 (\neg z_1 \lor z_2) \land (\neg g_i \lor z_1) & \\
 \end{align*}
 \]
3SAT is NP-complete

– finally, reduction f(C) produces single clause (g_m) where g_m is the output gate.
– f(C) computable in poly-time?
 • yes, simple transformation
– YES maps to YES?
 • if C(x) = 1, then assigning x-values to x-variables of φ and gate values of C when evaluating x to the g-variables of φ gives satisfying assignment.

3SAT is NP-complete

– NO maps to NO?
 • show that φ satisfiable implies C satisfiable
 • satisfying assignment to φ assigns values to x-variables and g-variables
 • output gate g_m must be assigned 1
 • every other gate must be assigned value it would take given values of its inputs.
 • the assignment to the x-variables must be a satisfying assignment for C.

Search vs. Decision

• Definition: given a graph G = (V, E), an independent set in G is a subset V' ⊆ V such that for all u,w ∈ V' (u,w) ∉ E
• A problem: given G, find the largest independent set
• This is called a search problem
 – searching for optimal object of some type
 – comes up frequently

Search vs. Decision

• We want to talk about languages (or decision problems)
• Most search problems have a natural, related decision problem by adding a bound “k”; for example:
 – search problem: given G, find the largest independent set
 – decision problem: given (G, k), is there an independent set of size at least k

Ind. Set is NP-complete

Theorem: the following language is NP-complete:

Ind. Set is NP-complete

• We are reducing from the language:

 3SAT = \{ φ : φ is a 3-CNF formula that has a satisfying assignment \}

 to the language:

 IS = \{ (G, k) : G has an IS of size ≥ k \}.
Ind. Set is NP-complete

The reduction \(f \): given
\[\varphi = (x \lor y \lor \neg z) \land (\neg x \lor w \lor z) \land \ldots \land (\ldots) \]
we produce graph \(G_\varphi \):

- one triangle for each of \(m \) clauses
- edge between every pair of contradictory literals
- set \(k = m \)

\[\begin{array}{c}
\text{x} \\
\text{y} \\
\text{\neg z} \\
\text{w} \\
\text{z} \\
\end{array} \]

- Is \(f \) poly-time computable?
- YES maps to YES?
 - 1 true literal per clause in satisfying assign. \(A \)
 - choose corresponding vertices (1 per triangle)
 - IS, since no contradictory literals in \(A \)

\[f(\varphi) = (G, \# \text{ clauses}) \]

\[\begin{array}{c}
\text{x} \\
\text{\neg z} \\
\text{w} \\
\text{z} \\
\end{array} \]

Ind. Set is NP-complete

\[\varphi = (x \lor y \lor \neg z) \land (\neg x \lor w \lor z) \land \ldots \land (\ldots) \]

- NO maps to NO?
 - IS can have at most 1 vertex per triangle
 - IS of size \(\geq \# \) clauses must have exactly 1 per
 - since IS, no contradictory vertices
 - can produce satisfying assignment by setting
 - these literals to true

\[\begin{array}{c}
\text{x} \\
\text{y} \\
\text{\neg z} \\
\text{w} \\
\text{z} \\
\end{array} \]