
1

CS21
Decidability
and
Tractability

Lecture 19
February 21,
2025

1

Grades so far

• An idea of eventual scale:

• 2025 so far: mean 87.4
• 2024 mean: 85.5; median 87.0
• 2023 mean 80.5; median 81.36
• 2022: mean 80.9; median 83.6
• 2021: mean 85.7; median 86.9

20
23

20
24

20
21

20
22

min max grade
97.5 100.0 A+
93.0 97.5 A
88.5 93.0 A-
85.0 88.5 B+
81.5 85.0 B
77.0 81.5 B-
73.0 77.0 C+
69.0 73.0 C
65.0 69.0 C-
60.5 65.0 D+
55.5 60.5 D

0.0 55.5 E/F

min max grade
97.0 100.0 A+
92.0 97.0 A
87.0 92.0 A-
84.0 87.0 B+
80.5 84.0 B
76.0 80.5 B-
72.5 76.0 C+
68.0 72.5 C
62.5 68.0 C-
59.0 62.5 D+
54.0 59.0 D

0.0 54.0 E/F

min max grade
97.0 100.0 A+
92.0 97.0 A
87.0 92.0 A-
84.0 87.0 B+
80.5 84.0 B
76.0 80.5 B-
72.5 76.0 C+
68.0 72.5 C
62.5 68.0 C-
59.0 62.5 D+
52.5 59.0 D

0.0 52.5 E/F

min max grade
97.0 100.0 A+
93.0 97.0 A
88.0 93.0 A-
85.0 88.0 B+
81.0 85.0 B
78.0 81.0 B-
74.5 78.0 C+
70.0 74.5 C
65.0 70.0 C-
60.0 65.0 D+
55.0 60.0 D

0.0 55.0 E/F

2

February 21, 2025 CS21 Lecture 19

Hardness and completeness

• Reasonable that can efficiently transform
one problem into another.

• Surprising:
– can often find a special language L so that

every language in a given complexity class
reduces to L!

– powerful tool

3

3

February 21, 2025 CS21 Lecture 19

Hardness and completeness

• Recall:
– a language L is a set of strings
– a complexity class C is a set of languages

Definition: a language L is C-hard if for
every language A ∈ C, A poly-time
reduces to L; i.e., A ≤P

 L.
meaning: L is at least as “hard” as anything in C

4

4

February 21, 2025 CS21 Lecture 19

Hardness and completeness

• Recall:
– a language L is a set of strings
– a complexity class C is a set of languages

Definition: a language L is C-complete if L
is C-hard and L ∈ C

meaning: L is a “hardest” problem in C

5

5

February 21, 2025 CS21 Lecture 19

An EXP-complete problem

• Version of ATM with a time bound:
 ATMB = {<M, x, m> : M is a TM that

accepts x within at most m steps}

Theorem: ATMB is EXP-complete.

Proof:
– what do we need to show?

6

6

2

February 21, 2025 CS21 Lecture 19

An EXP-complete problem
• ATMB = {<M, x, m> : M is a TM that accepts x

within at most m steps}
• Proof that ATMB is EXP-complete:

– Part 1. Need to show ATMB ∈ EXP.
• simulate M on x for m steps; accept if simulation

accepts; reject if simulation doesn’t accept.
• running time mO(1).
• n = length of input ≥ log2m
• running time ≤ mk = 2(log m)k ≤ 2(kn)

7

7

February 21, 2025 CS21 Lecture 19

An EXP-complete problem
• ATMB = {<M, x, m> : M is a TM that accepts x

within at most m steps}
• Proof that ATMB is EXP-complete:

– Part 2. For each language A ∈ EXP, need to
give poly-time reduction from A to ATMB.

– for a given language A ∈ EXP, we know there
is a TM MA that decides A in time g(n) ≤ 2nk
for some k.

– what should reduction f(w) produce?
8

8

February 21, 2025 CS21 Lecture 19

An EXP-complete problem
• ATMB = {<M, x, m> : M is a TM that accepts x

within at most m steps}
• Proof that ATMB is EXP-complete:

– f(w) = <MA, w, m> where m = 2|w|k
– is f(w) poly-time computable?

• hardcode MA and k…
– YES maps to YES?

• w ∈	A ⇒ <MA, w, m> ∈	ATMB
– NO maps to NO?

• w ∉ A ⇒ <MA, w, m> ∉ ATMB
9

9

February 21, 2025 CS21 Lecture 19

An EXP-complete problem

• A C-complete problem is a surrogate for
the entire class C.

• For example: if you can find a poly-time
algorithm for ATMB then there is
automatically a poly-time algorithm for
every problem in EXP (i.e., EXP = P).

• Can you find a poly-time alg for ATMB?
10

10

February 21, 2025 CS21 Lecture 19

An EXP-complete problem

• Can you find a poly-time alg for ATMB?
• NO! we showed that P ⊆	EXP.
• ATMB is not tractable (intractable).

regular
languages

context free
languages

decidable
languages

P ATMB

EXP
11

11

February 21, 2025 CS21 Lecture 19

Back to 3SAT
• Remember 3SAT ∈ EXP
 3SAT = {formulas in CNF with 3 literals

per clause for which there exists a
satisfying truth assignment}

• It seems hard. Can we show it is
intractable?
– formally, can we show 3SAT is EXP-

complete?
12

12

3

February 21, 2025 CS21 Lecture 19

Back to 3SAT

• can we show 3SAT is EXP-complete?
• Don’t know how to. Believed unlikely.
• One reason: there is an important positive

feature of 3SAT that doesn’t seem to hold
for problems in EXP (e.g. ATMB):

3SAT is decidable in polynomial time by
a nondeterministic TM

13

13

February 21, 2025 CS21 Lecture 19

Nondeterministic TMs

• Recall: nondeterministic TM
• informally, TM with several possible next

configurations at each step
• formally, A NTM is a 7-tuple

(Q, Σ, Γ,	 δ, q0, qaccept, qreject) where:
– everything is the same as a TM except the

transition function:
δ:Q x Γ→ P(Q x Γ x {L, R})

14

14

February 21, 2025 CS21 Lecture 19

Nondeterministic TMs

visualize computation of a NTM M as a tree
Cstart • nodes are configurations

• leaves are accept/reject
configurations
• M accepts if and only if there exists
an accept leaf
• M is a decider, so no paths go on
forever
• running time is max. path length

accrej

15

15

February 21, 2025 CS21 Lecture 19

The class NP

Definition: TIME(t(n)) = {L : there exists a
TM M that decides L in time O(t(n))}

P = ∪k ≥ 1 TIME(nk)
Definition: NTIME(t(n)) = {L : there exists a

NTM M that decides L in time O(t(n))}
NP = ∪k ≥ 1 NTIME(nk)

16

16

February 21, 2025 CS21 Lecture 19

NP in relation to P and EXP

• P	⊆ NP (poly-time TM is a poly-time NTM)
• NP	⊆ EXP

– configuration tree of nk-time NTM has ≤ bnk nodes
– can traverse entire tree in O(bnk) time
we do not know if either inclusion is proper

regular
languages

context free
languages

decidable
languages

P
EXP

NP

17

17

February 21, 2025 CS21 Lecture 19

Poly-time verifiers

• NP = {L : L decided by poly-time NTM}

• Very useful alternate definition of NP:
Theorem: language L is in NP if and only if

it is expressible as:
L = { x | ∃ y, |y| ≤ |x|k, (x, y) ∈ R }

 where R is a language in P.
• poly-time TM MR deciding R is a “verifier”

“witness” or
“certificate”

efficiently
verifiable

18

18

4

February 21, 2025 CS21 Lecture 19

Poly-time verifiers

• Example: 3SAT expressible as
3SAT = {φ : φ is a 3-CNF formula for which

∃	assignment A for which (φ, A) ∈ R}
R = {(φ, A) : A is a sat. assign. for φ}

– satisfying assignment A is a “witness” of the
satisfiability of φ (it “certifies” satisfiability of φ)

– R is decidable in poly-time

19

19

February 21, 2025 CS21 Lecture 19

Poly-time verifiers
L = { x | ∃ y, |y| ≤ |x|k, (x, y) ∈ R }

Proof: (⇐) give poly-time NTM deciding L

phase 1: “guess” y with
|x|k nondeterministic
steps

phase 2:
decide if
(x, y) ∈	R

20

20

February 21, 2025 CS21 Lecture 19

Poly-time verifiers
Proof: (⇒) given L ∈ NP, describe L as:

L = { x | ∃ y, |y| ≤ |x|k, (x, y) ∈ R }

– L is decided by NTM M running in time nk

– define the language
R = { (x, y) : y is an accepting computation

history of M on input x}
– check: accepting history has length ≤ |x|k
– check: M accepts x iff ∃	y, |y| ≤ |x|k, (x, y) ∈	R

21

21

February 21, 2025 CS21 Lecture 19

Cook-Levin Theorem

• Gateway to proving lots of natural,
important problems NP-complete is:

Theorem (Cook, Levin): 3SAT is NP-
complete.

• Recall: 3SAT = {φ : φ is a CNF formula
with 3 literals per clause for which there
exists a satisfying truth assignment}

22

22

February 21, 2025 CS21 Lecture 19

Cook-Levin Theorem

• Proof outline
– show CIRCUIT-SAT is NP-complete
CIRCUIT-SAT = {C : C is a Boolean circuit for

which there exists a satisfying truth
assignment}

– show 3SAT is NP-complete (reduce from
CIRCUIT SAT)

23

23

February 21, 2025 CS21 Lecture 19

Boolean Circuits

• C computes function f:{0,1}n → {0,1} in
natural way
– identify C with function f it computes

• size = # nodes

∨

∧

x1 x2

∧

∨ ¬

x3 … xn

∧
• Boolean circuit C

– directed acyclic graph
– nodes: AND (∧); OR (∨);

NOT (¬); variables xi

24

24

5

February 21, 2025 CS21 Lecture 19

Boolean Circuits

• every function f:{0,1}n → {0,1} computable
by a circuit of size at most O(n2n)

– AND of n literals for each x such that f(x) = 1
– OR of up to 2n such terms

25

25

February 21, 2025 CS21 Lecture 19

CIRCUIT-SAT is NP-complete
Theorem: CIRCUIT-SAT is NP-complete

CIRCUIT-SAT = {C : C is a Boolean circuit for
which there exists a satisfying truth assignment}

Proof:
– Part 1: need to show CIRCUIT-SAT ∈ NP.

• can express CIRCUIT-SAT as:
CIRCUIT-SAT = {C : C is a Boolean circuit for

which ∃x such that (C, x) ∈ R}
R = {(C, x) : C is a Boolean circuit and C(x) = 1}

26

26

February 21, 2025 CS21 Lecture 19

CIRCUIT-SAT is NP-complete
CIRCUIT-SAT = {C : C is a Boolean circuit for
which there exists a satisfying truth assignment}

Proof:
– Part 2: for each language A ∈ NP, need to

give poly-time reduction from A to CIRCUIT-SAT

– for a given language A ∈ NP, we know
A = {x | ∃ y, |y| ≤ |x|k, (x, y) ∈ R }

 and there is a (deterministic) TM MR that
decides R in time g(n) ≤ nc for some c.

27

27

February 21, 2025 CS21 Lecture 19

CIRCUIT-SAT is NP-complete

• Tableau (configurations written in an
array) for machine MR on input w = (x, y):

w1/qs w2 … wn _…
w1 w2/q1 … wn _…

w1/q1 a … wn _…

_/qa _ … _ _…

...
...

• height =
time taken
= |w|c

• width =
space used
≤ |w|c

28

28

February 21, 2025 CS21 Lecture 19

CIRCUIT-SAT is NP-complete

• Important observation: contents of cell in
tableau determined by 3 others above it:

a/q1 b a
b/q1

a b/q1 a
a

a b a
b

29

29

February 21, 2025 CS21 Lecture 19

CIRCUIT-SAT is NP-complete

• Can build Boolean circuit STEP
– input (binary encoding of) 3 cells
– output (binary encoding of) 1 cell

a b/q1 a

a

STEP

• each output bit is some
function of inputs

• can build circuit for each

• size is independent of
size of tableau

30

30

6

February 21, 2025 CS21 Lecture 19

CIRCUIT-SAT is NP-complete

• |w|c copies of STEP compute row i from i-1

w1/qs w2 … wn _…
w1 w2/q1 … wn _…

...
...

Tableau for
MR on input
w = (x, y)

…

…

STEP STEP STEP STEP STEP

31

31

February 21, 2025 CS21 Lecture 19

CIRCUIT-SAT is NP-complete

w1/qs w2 … wn _…

STEP STEP STEP STEP STEP
STEP STEP STEP STEP STEP

STEP STEP STEP STEP STEP

...
...

1 iff cell contains qaccept

ignore these

This circuit
CMR, w has
inputs
w1w2…wn

and C(w) = 1
iff MR accepts
input w.

Size = O(|w|2c)

w1 w2 wn

32

32

February 21, 2025 CS21 Lecture 19

CIRCUIT-SAT is NP-complete
– recall: we are reducing language A:

A = { x | ∃ y, |y| ≤ |x|k, (x, y) ∈ R }
 to CIRCUIT-SAT.
– f(x) produces the following circuit:

x1 x2 … xn y1 y2 … ym

Circuit CMR, w
1 iff (x,y) ∈	R

– hardwire
input x
– leave y as
variables

33

33

February 21, 2025 CS21 Lecture 19

CIRCUIT-SAT is NP-complete
– is f(x) poly-time computable?

• hardcode MR, k and c
• circuit has size O(|w|2c); |w| = |(x,y)| ≤ n + nk
• each component easy to describe efficiently from

description of MR

– YES maps to YES?
• x ∈ A ⇒ ∃ y, MR accepts (x, y) ⇒ f(x) ∈	CIRCUIT-SAT

– NO maps to NO?
• x ∉ A ⇒ ∀ y, MR rejects (x, y) ⇒ f(x) ∉ CIRCUIT-SAT

34

34

February 21, 2025 CS21 Lecture 19

3SAT is NP-complete
Theorem: 3SAT is NP-complete
3SAT = {φ : φ is a 3-CNF formula for which there

exists a satisfying truth assignment}
Proof:

– Part 1: need to show 3-SAT ∈ NP
• already done

– Part 2: need to show 3-SAT is NP-hard
• we will give a poly-time reduction from

CIRCUIT-SAT to 3-SAT

35

35

February 21, 2025 CS21 Lecture 19

3SAT is NP-complete

– given a circuit C
• variables x1, x2, …, xn

• AND (∧), OR (∨), NOT (¬) gates g1, g2, …, gm

– reduction f(C) produces these clauses for φ
on variables x1, x2, …, xn, g1, g2, …, gm:

¬ gi

z

• (gi ∨ z)

• (¬z ∨ ¬gi)
(z ⇔ ¬gi)

36

36

7

February 21, 2025 CS21 Lecture 19

3SAT is NP-complete

– given a circuit C
• variables x1, x2, …, xn

• AND (∧), OR (∨), NOT (¬) gates g1, g2, …, gm

– reduction f(C) produces these clauses for φ
on variables x1, x2, …, xn, g1, g2, …, gm:

∨ gi

z1

• (¬z1 ∨ gi)

• (¬z2 ∨ gi)

• (¬gi ∨ z1 ∨	z2)

(z1∨z2
⇔	gi)z2

37

37

February 21, 2025 CS21 Lecture 19

3SAT is NP-complete

– given a circuit C
• variables x1, x2, …, xn

• AND (∧), OR (∨), NOT (¬) gates g1, g2, …, gm

– reduction f(C) produces these clauses for φ
on variables x1, x2, …, xn, g1, g2, …, gm:

∧ gi

z1

• (¬gi ∨ z1)

• (¬gi ∨ z2)

• (¬z1 ∨ ¬z2 ∨	gi)

(z1 ∧	z2
⇔ gi)z2

38

38

February 21, 2025 CS21 Lecture 19

3SAT is NP-complete

– finally, reduction f(C) produces single clause
(gm) where gm is the output gate.

– f(C) computable in poly-time?
• yes, simple transformation

– YES maps to YES?
• if C(x) = 1, then assigning x-values to x-

variables of φ and gate values of C when
evaluating x to the g-variables of φ gives
satsifying assignment.

39

39

February 21, 2025 CS21 Lecture 19

3SAT is NP-complete

– NO maps to NO?
• show that φ satisfiable implies C satisfiable
• satisfying assignment to φ assigns values

to x-variables and g-variables
• output gate gm must be assigned 1
• every other gate must be assigned value it

would take given values of its inputs.
• the assignment to the x-variables must be a

satisfying assignment for C.
40

40

