CS21
Decidability and Tractability

Lecture 19
February 22, 2017
Outline

• NP complete problems
 – 3-SAT is NP-complete (continued)
 – NP-complete problems: independent set, vertex cover, clique
 – NP-complete problems: Hamilton path and cycle, Traveling Salesperson Problem
Cook-Levin Theorem

• Gateway to proving lots of natural, important problems NP-complete is:

Theorem (Cook, Levin): 3SAT is NP-complete.

• Recall: $3SAT = \{\varphi : \varphi$ is a CNF formula with 3 literals per clause for which there exists a satisfying truth assignment}
Cook-Levin Theorem

• Proof outline
 – show CIRCUIT-SAT is NP-complete
 \[\text{CIRCUIT-SAT} = \{ C : C \text{ is a Boolean circuit for which there exists a satisfying truth assignment} \} \]
 – show 3SAT is NP-complete (reduce from CIRCUIT SAT)
3SAT is NP-complete

Theorem: 3SAT is NP-complete

3SAT = \{φ : φ is a 3-CNF formula for which there exists a satisfying truth assignment\}

Proof:

- Part 1: need to show 3-SAT ∈ NP
 - already done
- Part 2: need to show 3-SAT is NP-hard
 - we will give a poly-time reduction from CIRCUIT-SAT to 3-SAT
3SAT is NP-complete

– given a circuit C
 • variables x_1, x_2, \ldots, x_n
 • AND (\land), OR (\lor), NOT (\neg) gates g_1, g_2, \ldots, g_m
– reduction $f(C)$ produces these clauses for ϕ
on variables $x_1, x_2, \ldots, x_n, g_1, g_2, \ldots, g_m$:

\[\neg g_i \rightarrow (g_i \lor z) \rightarrow (\neg z \lor \neg g_i) \]

\[z \leftrightarrow \neg g_i \]
3SAT is NP-complete

– given a circuit C
 • variables x_1, x_2, \ldots, x_n
 • AND (\land), OR (\lor), NOT (\neg) gates g_1, g_2, \ldots, g_m
– reduction $f(C)$ produces these clauses for φ
on variables $x_1, x_2, \ldots, x_n, g_1, g_2, \ldots, g_m$:

\[
\begin{align*}
&\lor g_i \\
&\left(\neg z_1 \lor g_i \right) \\
&\left(\neg z_2 \lor g_i \right) \\
&\left(\neg g_i \lor z_1 \lor z_2 \right)
\end{align*}
\]

\[\Rightarrow g_i\]
3SAT is NP-complete

- given a circuit C
 - variables x_1, x_2, \ldots, x_n
 - AND (\wedge), OR (\vee), NOT (\neg) gates g_1, g_2, \ldots, g_m
- reduction $f(C)$ produces these clauses for φ
on variables $x_1, x_2, \ldots, x_n, g_1, g_2, \ldots, g_m$:

\[
\begin{align*}
&\wedge g_i \\
&\quad (\neg g_i \vee z_1) \\
&\quad (\neg g_i \vee z_2) \\
&\quad (\neg z_1 \vee \neg z_2 \vee g_i)
\end{align*}
\]

\[
(z_1 \wedge z_2 \iff g_i)
\]
3SAT is NP-complete

– finally, reduction f(C) produces single clause \((g_m)\) where \(g_m\) is the output gate.
– f(C) computable in poly-time?
 • yes, simple transformation
– YES maps to YES?
 • if \(C(x) = 1\), then assigning \(x\)-values to \(x\)-variables of \(\varphi\) and gate values of \(C\) when evaluating \(x\) to the \(g\)-variables of \(\varphi\) gives satsifying assignment.
3SAT is NP-complete

– NO maps to NO?
 • show that φ satisfiable implies C satisfiable
 • satisfying assignment to φ assigns values to x-variables and g-variables
 • output gate g_m must be assigned 1
 • every other gate must be assigned value it would take given values of its inputs.
 • the assignment to the x-variables must be a satisfying assignment for C.
Search vs. Decision

• Definition: given a graph $G = (V, E)$, an independent set in G is a subset $V' \subseteq V$ such that for all $u,w \in V'$ $(u,w) \notin E$

• A problem:
 given G, find the largest independent set

• This is called a search problem
 – searching for optimal object of some type
 – comes up frequently
Search vs. Decision

• We want to talk about languages (or decision problems)

• Most search problems have a natural, related decision problem by adding a bound “k”; for example:
 – search problem: given G, find the largest independent set
 – decision problem: given (G, k), is there an independent set of size at least k
Ind. Set is NP-complete

Theorem: the following language is NP-complete:

\[IS = \{(G, k) : G \text{ has an IS of size } \geq k\}. \]

• Proof:
 – Part 1: \(IS \in NP \). Proof?
 – Part 2: IS is NP-hard.
 • reduce from 3-SAT
Ind. Set is NP-complete

• We are reducing from the language:

$$3\text{SAT} = \{ \varphi : \varphi \text{ is a } 3\text{-CNF formula that has a satisfying assignment } \}$$

to the language:

$$\text{IS} = \{(G, k) : G \text{ has an IS of size } \geq k\}.$$
Ind. Set is NP-complete

The reduction f: given

$$\varphi = (x \lor y \lor \neg z) \land (\neg x \lor w \lor z) \land \ldots \land (\ldots)$$

we produce graph G_{φ}:

- one triangle for each of m clauses
- edge between every pair of contradictory literals
- set $k = m$
Ind. Set is NP-complete

\(\varphi = (x \lor y \lor \neg z) \land (\neg x \lor w \lor z) \land \ldots \land (\ldots) \)

\(f(\varphi) = (G, \# \text{ clauses}) \)

- Is \(f \) poly-time computable?
- YES maps to YES?
 - 1 true literal per clause in satisfying assign. \(A \)
 - choose corresponding vertices (1 per triangle)
 - IS, since no contradictory literals in \(A \)
Ind. Set is NP-complete

\[\varphi = (x \lor y \lor \neg z) \land (\neg x \lor w \lor z) \land \ldots \land (\ldots) \]

\[f(\varphi) = (G, \# \text{ clauses}) \]

• NO maps to NO?
 – IS can have at most 1 vertex per triangle
 – IS of size \(\geq \) # clauses must have exactly 1 per
 – since IS, no contradictory vertices
 – can produce satisfying assignment by setting these literals to true
Vertex cover

- **Definition**: given a graph $G = (V, E)$, a vertex cover in G is a subset $V' \subseteq V$ such that for all $(u, w) \in E$, $u \in V'$ or $w \in V'$

- **A search problem**: given G, find the smallest vertex cover

- **Corresponding language** (decision problem): $VC = \{(G, k) : G \text{ has a VC of size } \leq k\}$.
Vertex Cover is NP-complete

Theorem: the following language is NP-complete:

\[VC = \{(G, k) : G \text{ has a VC of size } \leq k\}. \]

• Proof:
 – Part 1: VC ∈ NP. Proof?
 – Part 2: VC is NP-hard.
 • reduce from?
Vertex Cover is NP-complete

• We are reducing from the language:

$$\text{IS} = \{(G, k) : G \text{ has an IS of size } \geq k\}$$

... to the language:

$$\text{VC} = \{(G, k) : G \text{ has a VC of size } \leq k\}.$$
Vertex Cover is NP-complete

• How are IS, VC related?

• Given a graph $G = (V, E)$ with n nodes
 – if $V' \subseteq V$ is an independent set of size k
 – then $V-V'$ is a vertex cover of size $n-k$

• Proof:
 – suppose not. Then there is some edge with neither endpoint in $V-V'$. But then both endpoints are in V'. contradiction.
Vertex Cover is NP-complete

• How are IS, VC related?

• Given a graph $G = (V, E)$ with n nodes
 – if $V' \subseteq V$ is a vertex cover of size k
 – then $V-V'$ is an independent set of size $n-k$

• Proof:
 – suppose not. Then there is some edge with both endpoints in $V-V'$. But then neither endpoint is in V'. contradiction.
Vertex Cover is NP-complete

The reduction:

– given an instance of IS: (G, k) f produces the pair (G, n-k)

• f poly-time computable?

• YES maps to YES?
 – IS of size $\geq k$ in G \Rightarrow VC of size $\leq n-k$ in G

• NO maps to NO?
 – VC of size $\leq n-k$ in G \Rightarrow IS of size $\geq k$ in G
Clique

• Definition: given a graph $G = (V, E)$, a **clique** in G is a subset $V' \subseteq V$ such that for all $u, v \in V'$, $(u, v) \in E$

• A search problem:

 given G, find the **largest** clique

• corresponding language (decision problem):

 $\text{CLIQUE} = \{(G, k) : G$ has a clique of size $\geq k\}$.
Clique is NP-complete

Theorem: the following language is NP-complete:

\[\text{CLIQUE} = \{ (G, k) : G \text{ has a clique of size } \geq k \} \]

• Proof:
 – Part 1: CLIQUE ∈ NP. Proof?
 – Part 2: CLIQUE is NP-hard.
 • reduce from?
Clique is NP-complete

- We are reducing from the language:

\[IS = \{(G, k) : G \text{ has an IS of size } \geq k\} \]

to the language:

\[\text{CLIQUE} = \{(G, k) : G \text{ has a CLIQUE of size } \geq k\} \].
Clique is NP-complete

• How are IS, CLIQUE related?

• Given a graph $G = (V, E)$, define its complement $G' = (V, E' = \{(u,v) : (u,v) \not\in E\})$
 – if $V' \subseteq V$ is an independent set in G of size k
 – then V' is a clique in G' of size k

• Proof:
 – Every pair of vertices $u,v \in V'$ has no edge between them in G. Therefore they have an edge between them in G'.
Clique is NP-complete

• How are IS, CLIQUE related?
• Given a graph $G = (V, E)$, define its complement $G' = (V, E' = \{(u,v) : (u,v) \notin E\})$
 - if $V' \subseteq V$ is a clique in G' of size k
 - then V' is an independent set in G of size k
• Proof:
 - Every pair of vertices $u,v \in V'$ has an edge between them in G'. Therefore they have no edge between them in G.
Clique is NP-complete

The reduction:

– given an instance of IS: \((G, k)\) \(f\) produces the pair \((G', k)\)

• \(f\) poly-time computable?

• YES maps to YES?
 – IS of size \(\geq k\) in \(G\) \(\Rightarrow\) CLIQUE of size \(\geq k\) in \(G'\)

• NO maps to NO?
 – CLIQUE of size \(\geq k\) in \(G'\) \(\Rightarrow\) IS of size \(\geq k\) in \(G\)
Hamilton Path

• Definition: given a directed graph \(G = (V, E) \), a Hamilton path in \(G \) is a directed path that touches every node exactly once.

• A language (decision problem):
\[
\text{HAMPATH} = \{ (G, s, t) : G \text{ has a Hamilton path from } s \text{ to } t \}
\]
Theorem: the following language is NP-complete:

\[\text{HAMPATH} = \{(G, s, t) : G \text{ has a Hamilton path from } s \text{ to } t\} \]

- **Proof:**
 - Part 1: HAMPATH ∈ NP. Proof?
 - Part 2: HAMPATH is NP-hard.
 - reduce from?