Grades so far

• An idea of eventual scale:
 - 2023 so far: median 79.9
 - 2022: mean 80.9; median 83.6
 - 2021: mean 85.7; median 86.9
 - 2020: mean 81.3; median 81.8
 - 2019: mean 82.0; median 84.0

Outline

• The class NP
 – alternate characterization of NP
• 3-SAT is NP-complete
• NP-complete problems: independent set, vertex cover, clique...

Back to 3SAT

• Remember 3SAT \in EXP
 3SAT = \{formulas in CNF with 3 literals per clause for which there exists a satisfying truth assignment\}

• It seems hard. Can we show it is intractable?
 – formally, can we show 3SAT is EXP-complete?

Back to 3SAT

• can we show 3SAT is EXP-complete?
 • Don't know how to. Believed unlikely.
 • One reason: there is an important positive feature of 3SAT that doesn't seem to hold for problems in EXP (e.g. ATM):

 3SAT is decidable in polynomial time by a nondeterministic TM

Nondeterministic TMs

• Recall: nondeterministic TM
• informally, TM with several possible next configurations at each step
• formally, A NTM is a 7-tuple
 \((Q, \Sigma, \Gamma, \delta, q_0, q_{\text{accept}}, q_{\text{reject}})\)
 where:
 – everything is the same as a TM except the transition function:
 \(\delta: Q \times \Gamma^* \rightarrow 2(Q \times Q \times \{L, R\})\)
Nondeterministic TMs

visualize computation of a NTM M as a tree

- nodes are configurations
- leaves are accept/reject configurations
- M accepts if and only if there exists an accept leaf
- M is a decider, so no paths go on forever
- running time is max. path length

The class NP

Definition: \(\text{TIME}(t(n)) = \{ L : \text{there exists a TM M that decides } L \text{ in time } O(t(n)) \} \)

\(P = \bigcup_{k \geq 1} \text{TIME}(n^k) \)

Definition: \(\text{NTIME}(t(n)) = \{ L : \text{there exists a NTM M that decides } L \text{ in time } O(t(n)) \} \)

\(\text{NP} = \bigcup_{k \geq 1} \text{NTIME}(n^k) \)

NP in relation to P and EXP

- \(P \subseteq \text{NP} \) (poly-time TM is a poly-time NTM)
- \(\text{NP} \subseteq \text{EXP} \)
 - configuration tree of \(n^k \)-time NTM has \(\leq b^n \) nodes
 - can traverse entire tree in \(O(b^n) \) time

NP is not known to be properly contained in P or EXP.

Poly-time verifiers

- \(\text{NP} = \{ L : \text{L decided by poly-time NTM} \} \)
- Very useful alternate definition:

Theorem: language \(L \) is in \(\text{NP} \) if it is expressible as:

\[L = \{ x : \exists y, |y| \leq |x|^k, (x, y) \in R \} \]

where \(R \) is a language in \(P \).

- poly-time TM \(M \) deciding \(R \) is a "verifier"

Poly-time verifiers

- Example: 3SAT expressible as

\[3\text{SAT} = \{ \varphi : \varphi \text{ is a 3-CNF formula for which } 3 \text{ assignment } A \text{ for which } (\varphi, A) \in R \} \]

\(R = \{ (\varphi, A) : A \text{ is a sat. assign. for } \varphi \} \)

- satisfying assignment \(A \) is a "witness" of the satisfiability of \(\varphi \) (it "certifies" satisfiability of \(\varphi \))
- \(R \) is decidable in poly-time

Poly-time verifiers

\[L = \{ x \mid \exists y, |y| \leq |x|^k, (x, y) \in R \} \]

Proof: \((\Leftarrow) \) give poly-time NTM deciding \(L \)

phase 1: "guess" \(y \) with \(|x|^k \) nondeterministic steps

phase 2: decide if \((x, y) \in R \)
Poly-time verifiers

\textbf{Proof:} (⇒) given \(L \in \text{NP} \), describe \(L \) as:
\[L = \{ x \mid \exists y, |y| \leq |x|^k, (x, y) \in R \} \]

- \(L \) is decided by NTM \(M \) running in time \(n^k \)
- define the language \(R = \{ (x, y) : y \text{ is an accepting computation history of } M \text{ on input } x \} \)
- check: accepting history has length \(\leq |x|^k \)
- check: \(M \) accepts \(x \) iff \(\exists y, |y| \leq |x|^k, (x, y) \in R \)

Cook-Levin Theorem

- Gateway to proving lots of natural, important problems \(\text{NP} \)-complete is:

\textbf{Theorem (Cook, Levin):} \(3\text{SAT} \) is \(\text{NP} \)-complete.

- Recall: \(3\text{SAT} = \{ \phi : \phi \text{ is a CNF formula with 3 literals per clause for which there exists a satisfying truth assignment} \} \)

Boolean Circuits

- every function \(f: (0,1)^n \to (0,1) \) computable by a circuit of size at most \(O(n^2) \)
 - AND of \(n \) literals for each \(x \) such that \(f(x) = 1 \)
 - OR of up to \(2^n \) such terms

\textbf{Theorem:} CIRCUIT-SAT is \(\text{NP} \)-complete

CIRCUIT-SAT = \(\{ C : C \text{ is a Boolean circuit for which there exists a satisfying truth assignment} \} \)

\textbf{Proof:}
- Part 1: need to show CIRCUIT-SAT \(\in \text{NP} \).
 - can express CIRCUIT-SAT as:
 \[R = \{ (C, x) : C \text{ is a Boolean circuit and } C(x) = 1 \} \]
CIRCUIT-SAT is NP-complete

CIRCUIT-SAT = \{ C : C is a Boolean circuit for which there exists a satisfying truth assignment\}

Proof:
– Part 2: for each language A ∈ NP, need to give poly-time reduction from A to CIRCUIT-SAT
– for a given language A ∈ NP, we know A = \{ x | \exists y, |y| ≤ |x|^k, (x, y) ∈ R \} and there is a (deterministic) TM M_R that decides R in time g(n) ≤ n^c for some c.

Tableau (configurations written in an array) for machine M_R on input w = (x, y):

• height = time taken = |w|^c
• width = space used ≤ |w|^c

Important observation: contents of cell in tableau determined by 3 others above it:

| 0/? | 1 | 0
+-----+---+--
| 0/? | 0 | 0
| 0/? | 0 | 1
| 0/? | 1 | 0
| 1/? | 1 | 0

Can build Boolean circuit STEP
– input (binary encoding of) 3 cells
– output (binary encoding of) 1 cell
• each output bit is some function of inputs
• can build circuit for each
• size is independent of size of tableau

| 1 | 0 | 0
+---+---+--
| 0 | 1 | 0
| 0 | 0 | 1

Tableau for M_R on input w = (x, y):

• |w|^c copies of STEP compute row i from i-1

This circuit C_{M_R} has inputs w_1w_2...w_n and C(w) = 1 iff M_R accepts input w.

Size = O(|w|^c)
CIRCUIT-SAT is NP-complete

- recall: we are reducing language A:
 \[A = \{ x \mid \exists y, |y| \leq |x|, (x, y) \in R \} \]
to CIRCUIT-SAT.
- \(f(x) \) produces the following circuit:
 - hardwire \(x \)
 - leave \(y \) as variables

\[1 \text{ iff } (x,y) \in R \]

Circuit \(C_{\text{SAT}} \), \(w \)

CIRCUIT-SAT is NP-complete

- is \(f(x) \) poly-time computable?
 - hardcode \(M_R, k \) and \(c \)
 - circuit has size \(O(|w|^2); |w| = |(x,y)| \leq n + n^2 \)
 - each component easy to describe efficiently from description of \(M_R \)

- YES maps to YES?
 - \(x \in A \Rightarrow \exists y, M_R \text{ accepts } (x, y) = f(x) \in \text{CIRCUIT-SAT} \)
- NO maps to NO?
 - \(x \notin A \Rightarrow \forall y, M_R \text{ rejects } (x, y) = f(x) \notin \text{CIRCUIT-SAT} \)