The class NP

Definition: \(\text{TIME}(t(n)) = \{L : \text{there exists a TM M that decides } L \text{ in time } O(t(n))\} \)

\[P = \bigcup_{k \geq 1} \text{TIME}(n^k) \]

Definition: \(\text{NTIME}(t(n)) = \{L : \text{there exists a NTM M that decides } L \text{ in time } O(t(n))\} \)

\[\text{NP} = \bigcup_{k \geq 1} \text{NTIME}(n^k) \]

NP in relation to P and EXP

- \(P \subseteq \text{NP} \) (poly-time TM is a poly-time NTM)
- \(\text{NP} \subseteq \text{EXP} \)
 - configuration tree of \(n^k \)-time NTM has \(\leq b^n \) nodes
 - can traverse entire tree in \(O(b^n) \) time

we do not know if either inclusion is proper

Poly-time verifiers

- \(\text{NP} = \{L : \text{L is decidable by a NTM}\} \)
- Very useful alternate definition

Theorem: language \(L \) is in \(\text{NP} \) if it is expressible as:

\[L = \{ x \mid \exists y, |y| \leq |x|^k, (x, y) \in R \} \]

where \(R \) is a language in \(P \).
- poly-time TM \(M_R \) deciding \(R \) is a “verifier”

Poly-time verifiers

- Example: \(3\text{SAT} \) expressible as

\[3\text{SAT} = \{ \varphi : \varphi \text{ is a 3-CNF formula for which } \exists \text{ assignment A for which } (\varphi, A) \in R \} \]

\[R = \{ (\varphi, A) : A \text{ is a sat. assign. for } \varphi \} \]

- satisfying assignment \(A \) is a “witness” of the satisfiability of \(\varphi \) (it “certifies” satisfiability of \(\varphi \))
- \(R \) is decidable in poly-time
Poly-time verifiers

$L = \{ x \mid \exists y, |y| \leq |x|^k, (x, y) \in R \}$

Proof: (\Leftarrow) give poly-time NTM deciding L

phase 1: "guess" y with $|x|^k$ nondeterministic steps

phase 2: decide if $(x, y) \in R$

Proof: (\Rightarrow) given $L \in \text{NP}$, describe L as:

$L = \{ x \mid \exists y, |y| \leq |x|^k, (x, y) \in R \}$

L is decided by NTM M running in time n^k

define the language

$R = \{ (x, y) : y$ is an accepting computation history of M on input $x \}$

check: accepting history has length $\leq |x|^k$

check: M accepts x iff $\exists y, |y| \leq |x|^k, (x, y) \in R$

Cook-Levin Theorem

- Gateway to proving lots of natural, important problems NP-complete is:

Theorem (Cook, Levin): 3SAT is NP-complete.

- Recall: $3\text{SAT} = \{ \varphi : \varphi$ is a CNF formula with 3 literals per clause for which there exists a satisfying truth assignment $\}$

Boolean Circuits

- Boolean circuit C
 - directed acyclic graph
 - nodes: AND (\&); OR (\lor); NOT (\neg); variables x_i
 - C computes function $f:\{0,1\}^n \rightarrow \{0,1\}$ in natural way
 - identify C with function f it computes
 - size = # nodes

- every function $f:\{0,1\}^n \rightarrow \{0,1\}$ computable by a circuit of size at most $O(n2^n)$
 - AND of n literals for each x such that $f(x) = 1$
 - OR of up to 2^n such terms
CIRCUIT-SAT is NP-complete

Theorem: CIRCUIT-SAT is NP-complete

CIRCUIT-SAT = {C : C is a Boolean circuit for which there exists a satisfying truth assignment}

Proof:

- Part 1: need to show CIRCUIT-SAT ∈ NP.
 - can express CIRCUIT-SAT as:
 \[CIRCUIT-SAT = \{ C : C \text{ is a Boolean circuit for which } \exists x \text{ such that } (C, x) \in R \} \]
 - \[R = \{(C, x) : C \text{ is a Boolean circuit and } C(x) = 1\} \]

- Part 2: for each language \(A \in \text{NP} \), need to give poly-time reduction from \(A \) to CIRCUIT-SAT
 - for a given language \(A \in \text{NP} \), we know \(A = \{ x | \exists y, |y| \leq |x|^k, (x, y) \in R \} \) and there is a (deterministic) TM \(M_R \) that decides \(R \) in time \(g(n) \leq n^c \) for some \(c \).

- **Tableau** (configurations written in an array) for machine \(M_R \) on input \(w = (x, y) \):
 - height = time taken = \(|w|^c \)
 - width = space used \(\leq |w|^c \)

- Important observation: contents of cell in tableau determined by 3 others above it:

- Can build Boolean circuit \(\text{STEP} \)
 - input (binary encoding of) 3 cells
 - output (binary encoding of) 1 cell
 - each output bit is some function of inputs
 - can build circuit for each
 - size is independent of size of tableau

- \(|w|^c \) copies of \(\text{STEP} \) compute row \(i \) from \(i-1 \)
CIRCUIT-SAT is NP-complete

This circuit $C_{M,w}$ has inputs $w_1 w_2 \ldots w_n$ and $C(w) = 1$ iff M_w accepts input w. Size = $O(|w|^{2c})$.

3SAT is NP-complete

Theorem: 3SAT is NP-complete

3SAT = \{ ϕ : ϕ is a 3-CNF formula for which there exists a satisfying truth assignment \}

Proof:

- Part 1: need to show 3-SAT \in NP
 - already done
- Part 2: need to show 3-SAT is NP-hard
 - we will give a poly-time reduction from CIRCUIT-SAT to 3-SAT

3SAT is NP-complete

- given a circuit C
 - variables x_1, x_2, \ldots, x_n
 - AND (\land), OR (\lor), NOT (\neg) gates g_1, g_2, \ldots, g_m
- reduction $f(C)$ produces these clauses for ϕ on variables $x_1, x_2, \ldots, x_n, g_1, g_2, \ldots, g_m$:

 $\neg g_i$

 $\{ (g_i \lor z) \}$

 $\{ (\neg z \lor \neg g_i) \}$

 $(z \iff \neg g_i)$
3SAT is NP-complete

– given a circuit C
 • variables x_1, x_2, \ldots, x_n
 • AND (\land), OR (\lor), NOT (\neg) gates g_1, g_2, \ldots, g_m
– reduction $f(C)$ produces these clauses for φ on variables $x_1, x_2, \ldots, x_n, g_1, g_2, \ldots, g_m$:
 $$\land g \left\{ \begin{array}{l}
 \neg g \lor z_1 \\
 \neg g \lor z_2 \\
 \neg z_1 \lor \neg z_2 \lor g_i \\
 \end{array} \right\} \iff g_i$$

Search vs. Decision

• We want to talk about languages (or decision problems)
• Most search problems have a natural, related decision problem by adding a bound “k”; for example:
 – search problem: given G, find the largest independent set
 – decision problem: given (G, k), is there an independent set of size at least k