
1

February 14, 2022 CS21 Lecture 18 1

CS21
Decidability and Tractability

Lecture 18
February 14, 2022

Outline

• Examples of problems in P
• 2-SAT, 3-SAT
• The complexity class EXP
• Time Hierarchy Theorem
• hardness and completeness

– an EXP-complete problem

February 14, 2022 CS21 Lecture 18 2

February 14, 2022 CS21 Lecture 18 3

Examples of languages in P

• Recall: positive integers x, y are relatively
prime if their Greatest Common Divisor
(GCD) is 1.

• will show the following language is in P:
RELPRIME = {<x, y> : x and y are relatively

prime}
• what is the running time of the algorithm

that tries all divisors up to min{x, y}?

February 14, 2022 CS21 Lecture 18 4

Euclid’s Algorithm

• possibly earliest recorded algorithm

on input <x, y>:

• repeat until y = 0

• set x = x mod y

• swap x, y

• x is the GCD(x, y). If x = 1,
accept; otherwise reject

Example run on
input <10, 22>:

x, y = 10, 22

x, y = 22, 10

x, y = 10, 2

x, y = 2, 0

reject

February 14, 2022 CS21 Lecture 18 5

Euclid’s Algorithm

• possibly earliest recorded algorithm

on input <x, y>:

• repeat until y = 0

• set x = x mod y

• swap x, y

• x is the GCD(x, y). If x = 1,
accept; otherwise reject

Example run on
input <24, 5>:

x, y = 24, 5

x, y = 5, 4

x, y = 4, 1

x, y = 1, 0

accept

February 14, 2022 CS21 Lecture 18 6

Euclid’s Algorithm
on input <x, y>:
• (1) repeat until y = 0

• (2) set x = x mod y
• (3) swap x, y

• x is the GCD(x, y). If x = 1,
accept; otherwise reject

Claim: value of x
reduced by ½ at every
execution of (2) except
possibly first one.

Proof:

• after (2) x < y

• after (3) x > y

• if x/2 ≥ y, then x mod y
< y ≤ x/2

• if x/2 < y, then x mod y
= x – y < x/2

• every 2 times through loop,
(x, y) each reduced by ½

• loops ≤ 2max{log2x, log2y}
= O(n = |<x, y>|); poly time
for each loop

2

February 14, 2022

A puzzle

• Find an efficient algorithm to solve the
following problem:

• Input: sequence of pairs of symbols
e.g. (A, b), (E, D), (d, C), (B, a)

• Goal: determine if it is possible to circle at
least one symbol in each pair without
circling upper and lower case of same
symbol.

CS21 Lecture 18 7 February 14, 2022

A puzzle

• Find an efficient algorithm to solve the
following problem.

• Input: sequence of pairs of symbols
e.g. (A, b), (E, D), (d, C), (b, a)

• Goal: determine if it is possible to circle at
least one symbol in each pair without
circling upper and lower case of same
symbol.

CS21 Lecture 18 8

February 14, 2022

2SAT
• This is a disguised version of the language

2SAT = {formulas in Conjunctive Normal
Form with 2 literals per clause for which

there exists a satisfying truth assignment}
– CNF = “AND of ORs”

(A, b), (E, D), (d, C), (b, a)
(x1 ∨ ¬x2)∧(x5 ∨	x4)∧(¬x4 ∨	x3)∧(¬x2 ∨ ¬x1)
– satisfying truth assignment = assignment of

TRUE/FALSE to each variable so that whole
formula is TRUE

CS21 Lecture 18 9

2SAT

Theorem: There is a polynomial-time
algorithm deciding 2SAT (“2SAT ∈	P”).

Proof: algorithm described on next slides.

February 14, 2022 CS21 Lecture 18 10

February 14, 2022 CS21 Lecture 18 11

¬x2

¬x1
x4

x1

Algorithm for 2SAT

• Build a graph with separate nodes for
each literal.
– add directed edge (x, y) iff formula includes

clause (¬x	∨ y) (equiv. to x ⇒ y)

e.g. (x1 ∨ ¬x2)∧(x5 ∨	x4)∧(¬x4 ∨	x3)∧(¬x2 ∨ ¬x1)
x5

¬x4

x3

x2

¬x5

¬x3

February 14, 2022 CS21 Lecture 18 12

Algorithm for 2SAT

Claim: formula is unsatisfiable iff there is
some variable x with a path from x to ¬x
and a path from ¬x to x in derived graph.

• Proof (⇐)
– edges represent implication ⇒. By transitivity

of ⇒, a path from x to ¬x means x ⇒ ¬x, and
a path from ¬x to x means ¬x ⇒ x.

3

February 14, 2022 CS21 Lecture 18 13

Algorithm for 2SAT

• Proof (⇒)
– to construct a satisfying assign. (if no x with a

path from x to ¬x and a path from ¬x to x):
• pick unassigned literal s with no path from s to ¬s
• assign it TRUE, as well as all nodes reachable

from it; assign negations of these literals FALSE
• note: path from s to t and s to ¬t implies path from
¬t to ¬s and t to ¬s, implies path from s to ¬s

• note: path s to t (assigned FALSE) implies path
from ¬t (assigned TRUE) to ¬s, so s already
assigned at that point.

February 14, 2022 CS21 Lecture 18 14

Algorithm for 2SAT

• Algorithm:
– build derived graph
– for every pair x, ¬x check if there is a path

from x to ¬x and from ¬x to x in the graph
• Running time of algorithm (input length n):

– O(n) to build graph
– O(n) to perform each check
– O(n) checks
– running time O(n2). 2SAT ∈ P.

February 14, 2022 CS21 Lecture 18 15

Another puzzle

• Find an efficient algorithm to solve the
following problem.

• Input: sequence of triples of symbols
e.g. (A, b, C), (E, D, b), (d, A, C), (c, b, a)

• Goal: determine if it is possible to circle at
least one symbol in each triple without
circling upper and lower case of same
symbol.

February 14, 2022 CS21 Lecture 18 16

3SAT

• This is a disguised version of the language
3SAT = {formulas in Conjunctive Normal

Form with 3 literals per clause for which
there exists a satisfying truth assignment}

e.g. (A, b, C), (E, D, b), (d, A, C), (c, b, a)
(x1∨ ¬x2∨x3) ∧(x5∨x4∨ ¬x2)∧(¬x4∨x1∨x3)∧(¬x3∨ ¬x2 ∨ ¬x1)

• observe that this language is in TIME(2n)

February 14, 2022 CS21 Lecture 18 17

Time Complexity

Key definition: “P” or “polynomial-time” is
P = ∪k ≥ 1 TIME(nk)

Definition: “EXP” or “exponential-time” is
EXP = ∪k ≥ 1 TIME(2nk)

decidable
languages

P

EXP

February 14, 2022 CS21 Lecture 18 18

EXP
P = ∪k ≥ 1 TIME(nk)

EXP = ∪k ≥ 1 TIME(2nk)
• Note: P ⊆ EXP.
• We have seen 3SAT ∈ EXP.

– does not rule out possibility that it is in P

• Is P different from EXP?

4

Time Hierarchy Theorem

Theorem: for every proper complexity
function f(n) ≥ n:

TIME(f(n)) ⊆ TIME(f(2n)3).

• Note: P ⊆TIME(2n) ⊆	TIME(2(2n)3) ⊆	EXP
• Most natural functions (and 2n in

particular) are proper complexity functions.
We will ignore this detail in this class.

February 14, 2022 CS21 Lecture 18 19

Time Hierarchy Theorem

Theorem: for every proper complexity
function f(n) ≥ n:

TIME(f(n)) ⊆ TIME(f(2n)3).
• Proof idea:

– use diagonalization to construct a language
that is not in TIME(f(n)).

– constructed language comes with a TM that
decides it and runs in time f(2n)3.

February 14, 2022 CS21 Lecture 18 20

February 14, 2022 CS21 Lecture 18 21

Recall proof for Halting Problem

Turing
Machines

inputs

Y
n

Y
n

n
Y

n

Y n Y Y nn YH’ :

box
(M, x):
does M
halt on
x?

The existence of
H which tells us
yes/no for each
box allows us to
construct a TM H’
that cannot be in
the table.

February 14, 2022 CS21 Lecture 18 22

Proof of Time Hierarchy Theorem

Turing
Machines

inputs

Y
n

Y
n

n
Y

n

Y n Y Y nn YD :

box (M, x): does M
accept x in time f(n)?

• TM SIM tells us
yes/no for each box
in time g(n)
• rows include all of
TIME(f(n))
• construct TM D
running in time g(2n)
that is not in table

February 14, 2022 CS21 Lecture 18 23

Proof of Time Hierarchy Theorem

• Proof:
– SIM is TM deciding language

{ <M, x> : M accepts x in ≤ f(|x|) steps }
– Claim: SIM runs in time g(n) = f(n)3.
– define new TM D: on input <M>

• if SIM accepts <M, <M>>, reject
• if SIM rejects <M, <M>>, accept

– D runs in time g(2n)

February 14, 2022 CS21 Lecture 18 24

Proof of Time Hierarchy Theorem

• Proof (continued):
– suppose M in TIME(f(n)) decides L(D)

• M(<M>) = SIM(<M, <M>>) ≠ D(<M>)
• but M(<M>) = D(<M>)

– contradiction.

5

February 14, 2022 CS21 Lecture 18 25

Proof of Time Hierarchy Theorem
• Claim: there is a TM SIM that decides

{<M, x> : M accepts x in ≤ f(|x|) steps}
and runs in time g(n) = f(n)3.

• Proof sketch: SIM has 4 work tapes
• contents and “virtual head” positions for M’s

tapes
• M’s transition function and state
• f(|x|) “+”s used as a clock
• scratch space

February 14, 2022 CS21 Lecture 18 26

Proof of Time Hierarchy Theorem

• Proof sketch (continued): 4 work tapes
• contents and “virtual head” positions for M’s tapes
• M’s transition function and state
• f(|x|) “+”s used as a clock
• scratch space

– initialize tapes
– simulate step of M, advance head on tape 3;

repeat.
– can check running time is as claimed.

February 14, 2022 CS21 Lecture 18 27

So far…

• We have defined the complexity classes P
(polynomial time), EXP (exponential time)

regular
languages

context free
languages

decidable
languages

P
some language

EXP

