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CS21 
Decidability and Tractability

Lecture 18
February 14, 2022

Outline

• Examples of problems in P
• 2-SAT, 3-SAT
• The complexity class EXP
• Time Hierarchy Theorem
• hardness and completeness 

– an EXP-complete problem 

February 14, 2022 CS21 Lecture 18 2

February 14, 2022 CS21 Lecture 18 3

Examples of languages in P

• Recall: positive integers x, y are relatively 
prime if their Greatest Common Divisor 
(GCD) is 1.

• will show the following language is in P:
RELPRIME = {<x, y> : x and y are relatively 

prime}
• what is the running time of the algorithm 

that tries all divisors up to min{x, y}?
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Euclid’s Algorithm

• possibly earliest recorded algorithm 

on input <x, y>:

• repeat until y = 0

• set x = x mod y

• swap x, y

• x is the GCD(x, y). If x = 1, 
accept; otherwise reject

Example run on 
input <10, 22>:

x, y = 10, 22

x, y = 22, 10

x, y = 10, 2

x, y = 2, 0

reject
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Euclid’s Algorithm

• possibly earliest recorded algorithm 

on input <x, y>:

• repeat until y = 0

• set x = x mod y

• swap x, y

• x is the GCD(x, y). If x = 1, 
accept; otherwise reject

Example run on 
input <24, 5>:

x, y = 24, 5

x, y = 5, 4

x, y = 4, 1

x, y = 1, 0

accept
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Euclid’s Algorithm
on input <x, y>:
• (1) repeat until y = 0

• (2) set x = x mod y
• (3) swap x, y

• x is the GCD(x, y). If x = 1, 
accept; otherwise reject

Claim: value of x 
reduced by ½ at every 
execution of (2) except 
possibly first one.

Proof:

• after (2) x < y

• after (3) x > y

• if x/2 ≥ y, then x mod y 
< y ≤ x/2

• if x/2 < y, then x mod y 
= x – y < x/2

• every 2 times through loop, 
(x, y) each reduced by ½

• loops ≤ 2max{log2x, log2y} 
= O(n = |<x, y>|); poly time 
for each loop 
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A puzzle

• Find an efficient algorithm to solve the 
following problem:

• Input: sequence of pairs of symbols
e.g. (A, b), (E, D), (d, C), (B, a)

• Goal: determine if it is possible to circle at 
least one symbol in each pair without 
circling upper and lower case of same 
symbol.
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A puzzle

• Find an efficient algorithm to solve the 
following problem.

• Input: sequence of pairs of symbols
e.g. (A, b), (E, D), (d, C), (b, a)

• Goal: determine if it is possible to circle at 
least one symbol in each pair without 
circling upper and lower case of same 
symbol.
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2SAT
• This is a disguised version of the language

2SAT = {formulas in Conjunctive Normal 
Form with 2 literals per clause for which 

there exists a satisfying truth assignment}
– CNF = “AND of ORs”

(A, b), (E, D), (d, C), (b, a)
(x1 ∨ ¬x2)∧(x5 ∨	x4)∧(¬x4 ∨	x3)∧(¬x2 ∨ ¬x1)
– satisfying truth assignment = assignment of 

TRUE/FALSE to each variable so that whole 
formula is TRUE 
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2SAT

Theorem: There is a polynomial-time 
algorithm deciding 2SAT (“2SAT ∈	P”). 

Proof: algorithm described on next slides.
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¬x2

¬x1
x4

x1

Algorithm for 2SAT

• Build a graph with separate nodes for 
each literal.
– add directed edge (x, y) iff formula includes 

clause (¬x	∨ y) (equiv. to x ⇒ y)

e.g. (x1 ∨ ¬x2)∧(x5 ∨	x4)∧(¬x4 ∨	x3)∧(¬x2 ∨ ¬x1)
x5

¬x4

x3

x2

¬x5

¬x3
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Algorithm for 2SAT

Claim: formula is unsatisfiable iff there is 
some variable x with a path from x to ¬x 
and a path from ¬x to x in derived graph.

• Proof (⇐)
– edges represent implication ⇒. By transitivity 

of ⇒, a path from x to ¬x means x ⇒ ¬x, and 
a path from ¬x to x means ¬x ⇒ x.  
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Algorithm for 2SAT

• Proof (⇒)
– to construct a satisfying assign. (if no x with a 

path from x to ¬x and a path from ¬x to x):
• pick unassigned literal s with no path from s to ¬s 
• assign it TRUE, as well as all nodes reachable 

from it; assign negations of these literals FALSE
• note: path from s to t and s to ¬t implies path from 
¬t to ¬s and t to ¬s, implies path from s to ¬s

• note: path s to t (assigned FALSE) implies path 
from ¬t (assigned TRUE) to ¬s, so s already 
assigned at that point.
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Algorithm for 2SAT

• Algorithm:
– build derived graph
– for every pair x, ¬x check if there is a path 

from x to ¬x and from ¬x to x in the graph
• Running time of algorithm (input length n): 

– O(n) to build graph
– O(n) to perform each check
– O(n) checks
– running time O(n2). 2SAT ∈ P.
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Another puzzle

• Find an efficient algorithm to solve the 
following problem.

• Input: sequence of triples of symbols
e.g. (A, b, C), (E, D, b), (d, A, C), (c, b, a)

• Goal: determine if it is possible to circle at 
least one symbol in each triple without 
circling upper and lower case of same 
symbol.
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3SAT

• This is a disguised version of the language
3SAT = {formulas in Conjunctive Normal 

Form with 3 literals per clause for which 
there exists a satisfying truth assignment}

e.g. (A, b, C), (E, D, b), (d, A, C), (c, b, a)
(x1∨ ¬x2∨x3) ∧( x5∨x4∨ ¬x2)∧(¬x4∨x1∨x3)∧(¬x3∨ ¬x2 ∨ ¬x1)

• observe that this language is in TIME(2n)
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Time Complexity

Key definition: “P” or “polynomial-time” is
P = ∪k ≥ 1 TIME(nk)

Definition: “EXP” or “exponential-time” is
EXP = ∪k ≥ 1 TIME(2nk)

decidable 
languages

P

EXP
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EXP
P = ∪k ≥ 1 TIME(nk)

EXP = ∪k ≥ 1 TIME(2nk)
• Note: P ⊆ EXP.
• We have seen 3SAT ∈ EXP. 

– does not rule out possibility that it is in P

• Is P different from EXP?
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Time Hierarchy Theorem

Theorem: for every proper complexity 
function f(n) ≥ n:

TIME(f(n)) ⊆ TIME(f(2n)3).

• Note: P ⊆TIME(2n) ⊆	TIME(2(2n)3) ⊆	EXP
• Most natural functions (and 2n in 

particular) are proper complexity functions. 
We will ignore this detail in this class. 
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Time Hierarchy Theorem

Theorem: for every proper complexity 
function f(n) ≥ n:

TIME(f(n)) ⊆ TIME(f(2n)3).
• Proof idea:

– use diagonalization to construct a language 
that is not in TIME(f(n)).

– constructed language comes with a TM that 
decides it and runs in time f(2n)3.
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Recall proof for Halting Problem

Turing 
Machines 

inputs 

Y
n

Y
n

n
Y

n

Y n Y Y nn YH’ :

box   
(M, x): 
does M 
halt on 
x? 

The existence of 
H which tells us 
yes/no for each 
box allows us to 
construct a TM H’ 
that cannot be in 
the table.
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Proof of Time Hierarchy Theorem

Turing 
Machines 

inputs 

Y
n

Y
n

n
Y

n

Y n Y Y nn YD :

box   (M, x): does M 
accept x in time f(n)? 

• TM SIM tells us 
yes/no for each box 
in time g(n)
• rows include all of 
TIME(f(n))
• construct TM D 
running in time g(2n) 
that is not in table
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Proof of Time Hierarchy Theorem

• Proof: 
– SIM is TM deciding language

{ <M, x> : M accepts x in ≤ f(|x|) steps }
– Claim: SIM runs in time g(n) = f(n)3.
– define new TM D: on input <M>

• if SIM accepts <M, <M>>, reject
• if SIM rejects <M, <M>>, accept

– D runs in time g(2n) 
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Proof of Time Hierarchy Theorem

• Proof (continued):
– suppose M in TIME(f(n)) decides L(D) 

• M(<M>) = SIM(<M, <M>>) ≠ D(<M>)
• but M(<M>) = D(<M>)

– contradiction.
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Proof of Time Hierarchy Theorem
• Claim: there is a TM SIM that decides 

{<M, x> : M accepts x in ≤ f(|x|) steps}
and runs in time g(n) = f(n)3.

• Proof sketch: SIM has 4 work tapes
• contents and “virtual head” positions for M’s 

tapes 
• M’s transition function and state
• f(|x|) “+”s used as a clock
• scratch space
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Proof of Time Hierarchy Theorem

• Proof sketch (continued): 4 work tapes
• contents and “virtual head” positions for M’s tapes 
• M’s transition function and state
• f(|x|) “+”s used as a clock
• scratch space

– initialize tapes
– simulate step of M, advance head on tape 3; 

repeat.
– can check running time is as claimed. 
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So far…

• We have defined the complexity classes P 
(polynomial time), EXP (exponential time)

regular 
languages

context free 
languages

decidable 
languages

P
some language

EXP


