
1

CS21
Decidability
and
Tractability

Lecture 18
February 19,
2025

1

February 18, 2025

A puzzle
• Find an efficient algorithm to solve the

following problem:
• Input: sequence of pairs of symbols

e.g. (A, b), (E, D), (d, C), (B, a)
• Goal: determine if it is possible to circle at

least one symbol in each pair without
circling upper and lower case of same
symbol.

CS21 Lecture 18 2

2

February 18, 2025

A puzzle
• Find an efficient algorithm to solve the

following problem.
• Input: sequence of pairs of symbols

e.g. (A, b), (E, D), (d, C), (b, a)
• Goal: determine if it is possible to circle at

least one symbol in each pair without
circling upper and lower case of same
symbol.

CS21 Lecture 18 3

3

February 18, 2025

2SAT
• This is a disguised version of the language

2SAT = {formulas in Conjunctive Normal
Form with 2 literals per clause for which

there exists a satisfying truth assignment}
– CNF = “AND of ORs”

(A, b), (E, D), (d, C), (b, a)
(x1 ∨¬x2)∧(x5 ∨	x4)∧(¬x4 ∨	x3)∧(¬x2 ∨¬x1)
– satisfying truth assignment = assignment of

TRUE/FALSE to each variable so that whole
formula is TRUE

CS21 Lecture 18 4

4

2SAT
Theorem: There is a polynomial-time

algorithm deciding 2SAT (“2SAT ∈	P”).

Proof: algorithm described on next slides.

February 18, 2025 CS21 Lecture 18 5

5

February 18, 2025 CS21 Lecture 18 6

¬x2

¬x1
x4

x1

Algorithm for 2SAT
• Build a graph with separate nodes for

each literal.
– add directed edge (x, y) iff formula includes

clause (¬x	∨ y) (equiv. to x ⇒ y)

e.g. (x1 ∨¬x2)∧(x5 ∨	x4)∧(¬x4 ∨	x3)∧(¬x2 ∨¬x1)
x5

¬x4

x3

x2

¬x5

¬x3

6

2

February 18, 2025 CS21 Lecture 18 7

Algorithm for 2SAT
Claim: formula is unsatisfiable iff there is

some variable x with a path from x to ¬x
and a path from ¬x to x in derived graph.

• Proof (⇐)
– edges represent implication ⇒. By transitivity

of ⇒, a path from x to ¬x means x ⇒ ¬x, and
a path from ¬x to x means ¬x ⇒ x.

7

February 18, 2025 CS21 Lecture 18 8

Algorithm for 2SAT
• Proof (⇒)

– to construct a satisfying assign. (if no x with a
path from x to ¬x and a path from ¬x to x):
• pick unassigned literal s with no path from s to ¬s
• assign it TRUE, as well as all nodes reachable

from it; assign negations of these literals FALSE
• note: path from s to t and s to ¬t implies path from
¬t to ¬s and t to ¬s, implies path from s to ¬s

• note: path s to t (assigned FALSE) implies path
from ¬t (assigned TRUE) to ¬s, so s already
assigned at that point.

8

February 18, 2025 CS21 Lecture 18 9

Algorithm for 2SAT
• Algorithm:

– build derived graph
– for every pair x, ¬x check if there is a path

from x to ¬x and from ¬x to x in the graph
• Running time of algorithm (input length n):

– O(n) to build graph
– O(n) to perform each check
– O(n) checks
– running time O(n2). 2SAT ∈ P.

9

February 18, 2025 CS21 Lecture 18 10

Another puzzle
• Find an efficient algorithm to solve the

following problem.
• Input: sequence of triples of symbols

e.g. (A, b, C), (E, D, b), (d, A, C), (c, b, a)
• Goal: determine if it is possible to circle at

least one symbol in each triple without
circling upper and lower case of same
symbol.

10

February 18, 2025 CS21 Lecture 18 11

3SAT
• This is a disguised version of the language

3SAT = {formulas in Conjunctive Normal
Form with 3 literals per clause for which

there exists a satisfying truth assignment}
e.g. (A, b, C), (E, D, b), (d, A, C), (c, b, a)

(x1∨¬x2∨x3) ∧(x5∨x4∨¬x2)∧(¬x4∨x1∨x3)∧(¬x3∨¬x2 ∨¬x1)

• observe that this language is in TIME(2n)

11

February 18, 2025 CS21 Lecture 18 12

Time Complexity
Key definition: “P” or “polynomial-time” is

P = ∪k ≥ 1 TIME(nk)
Definition: “EXP” or “exponential-time” is

EXP = ∪k ≥ 1 TIME(2nk)

decidable
languages

P

EXP

12

3

February 18, 2025 CS21 Lecture 18 13

EXP
P = ∪k ≥ 1 TIME(nk)

EXP = ∪k ≥ 1 TIME(2nk)
• Note: P ⊆ EXP.
• We have seen 3SAT ∈ EXP.

– does not rule out possibility that it is in P

• Is P different from EXP?

13

Time Hierarchy Theorem
Theorem: for every proper complexity
function f(n) ≥ n:

TIME(f(n)) ⊆ TIME(f(2n)3).

• Note: P ⊆TIME(2n) ⊆	TIME(2(2n)3) ⊆	EXP
• Most natural functions (and 2n in

particular) are proper complexity functions.
We will ignore this detail in this class.

February 18, 2025 CS21 Lecture 18 14

14

Time Hierarchy Theorem
Theorem: for every proper complexity
function f(n) ≥ n:

TIME(f(n)) ⊆ TIME(f(2n)3).
• Proof idea:

– use diagonalization to construct a language
that is not in TIME(f(n)).

– constructed language comes with a TM that
decides it and runs in time f(2n)3.

February 18, 2025 CS21 Lecture 18 15

15

February 18, 2025 CS21 Lecture 18

Recall proof for Halting Problem

Turing
Machines

inputs
Y

n
Y

n
n

Y
n

Y n Y Y nn YH’ :

box
(M, x):
does M
halt on
x?

The existence of
H which tells us
yes/no for each
box allows us to
construct a TM H’
that cannot be in
the table.

16

16

February 18, 2025 CS21 Lecture 18

Proof of Time Hierarchy Theorem

Turing
Machines

inputs
Y

n
Y

n
n

Y
n

Y n Y Y nn YD :

box (M, x): does M
accept x in time f(n)?

• TM SIM tells us
yes/no for each box
in time g(n)
• rows include all of
TIME(f(n))
• construct TM D
running in time g(2n)
that is not in table

17

17

February 18, 2025 CS21 Lecture 18

Proof of Time Hierarchy Theorem

• Proof:
– SIM is TM deciding language

 { <M, x> : M accepts x in ≤ f(|x|) steps }
– Claim: SIM runs in time g(n) = f(n)3.
– define new TM D: on input <M>

• if SIM accepts <M, <M>>, reject
• if SIM rejects <M, <M>>, accept

– D runs in time g(2n)

18

18

4

February 18, 2025 CS21 Lecture 18

Proof of Time Hierarchy Theorem

• Proof (continued):
– suppose M in TIME(f(n)) decides L(D)

• M(<M>) = SIM(<M, <M>>) ≠ D(<M>)
• but M(<M>) = D(<M>)

– contradiction.

19

19

February 18, 2025 CS21 Lecture 18

Proof of Time Hierarchy Theorem
• Claim: there is a TM SIM that decides

 {<M, x> : M accepts x in ≤ f(|x|) steps}
 and runs in time g(n) = f(n)3.
• Proof sketch: SIM has 4 work tapes

• contents and “virtual head” positions for M’s
tapes

• M’s transition function and state
• f(|x|) “+”s used as a clock
• scratch space

20

20

February 18, 2025 CS21 Lecture 18

Proof of Time Hierarchy Theorem

• Proof sketch (continued): 4 work tapes
• contents and “virtual head” positions for M’s tapes
• M’s transition function and state
• f(|x|) “+”s used as a clock
• scratch space

– initialize tapes
– simulate step of M, advance head on tape 3;

repeat.
– can check running time is as claimed.

21

21

February 18, 2025 CS21 Lecture 18

So far…
• We have defined the complexity classes P

(polynomial time), EXP (exponential time)

regular
languages

context free
languages

decidable
languages

P
some language

EXP
22

22

February 18, 2025 CS21 Lecture 18

Poly-time reductions
• Type of reduction we will use:

– “many-one” poly-time reduction (commonly)
– “mapping” poly-time reduction (book)

yes

no

yes

no

A B
reduction from
language A to
language B

f

f

23

23

February 18, 2025 CS21 Lecture 18

Poly-time reductions

• function f should be poly-time computable
Definition: f : Σ*→ Σ* is poly-time

computable if for some g(n) = nO(1) there
exists a g(n)-time TM Mf such that on
every w	∈	Σ*, Mf halts with f(w) on its tape.

yes

no

yes

no

A Bf

f

24

24

5

February 18, 2025 CS21 Lecture 18

Poly-time reductions
Definition: A ≤P B (“A reduces to B”) if there

is a poly-time computable function f such
that for all w

w ∈ A ⇔ f(w) ∈	B
• as before, condition equivalent to:

– YES maps to YES and NO maps to NO
• as before, meaning is:

– B is at least as “hard” (or expressive) as A

25

25

February 18, 2025 CS21 Lecture 18

Poly-time reductions
Theorem: if A ≤P B and B ∈	P then A ∈	P.

Proof:
– a poly-time algorithm for deciding A:
– on input w, compute f(w) in poly-time.
– run poly-time algorithm to decide if f(w) ∈ B
– if it says “yes”, output “yes”
– if it says “no”, output “no”

26

26

February 18, 2025 CS21 Lecture 18

Example
• 2SAT = {CNF formulas with 2 literals per clause

for which there exists a satisfying truth
assignment}

• L = {directed graph G, and list of pairs of vertices
(u1, v1), (u2, v2),…, (uk, vk), such that there is no i
for which [ui is reachable from vi in G and vi is
reachable from ui in G]}

• We gave a poly-time reduction from 2SAT to L.
• determined that 2SAT ∈ P from fact that L ∈ P

27

27

