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A puzzle
• Find an efficient algorithm to solve the 

following problem:
• Input: sequence of pairs of symbols

e.g. (A, b), (E, D), (d, C), (B, a)
• Goal: determine if it is possible to circle at 

least one symbol in each pair without 
circling upper and lower case of same 
symbol.
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A puzzle
• Find an efficient algorithm to solve the 

following problem.
• Input: sequence of pairs of symbols

e.g. (A, b), (E, D), (d, C), (b, a)
• Goal: determine if it is possible to circle at 

least one symbol in each pair without 
circling upper and lower case of same 
symbol.
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2SAT
• This is a disguised version of the language

2SAT = {formulas in Conjunctive Normal 
Form with 2 literals per clause for which 

there exists a satisfying truth assignment}
– CNF = “AND of ORs”

(A, b), (E, D), (d, C), (b, a)
(x1 ∨¬x2)∧(x5 ∨	x4)∧(¬x4 ∨	x3)∧(¬x2 ∨¬x1)
– satisfying truth assignment = assignment of 

TRUE/FALSE to each variable so that whole 
formula is TRUE 
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2SAT
Theorem: There is a polynomial-time 

algorithm deciding 2SAT (“2SAT ∈	P”). 

Proof: algorithm described on next slides.
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¬x2

¬x1
x4

x1

Algorithm for 2SAT
• Build a graph with separate nodes for 

each literal.
– add directed edge (x, y) iff formula includes 

clause (¬x	∨ y) (equiv. to x ⇒ y) 

e.g. (x1 ∨¬x2)∧(x5 ∨	x4)∧(¬x4 ∨	x3)∧(¬x2 ∨¬x1)
x5

¬x4

x3

x2

¬x5

¬x3
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Algorithm for 2SAT
Claim: formula is unsatisfiable iff there is 

some variable x with a path from x to ¬x 
and a path from ¬x to x in derived graph.

• Proof (⇐)
– edges represent implication ⇒. By transitivity 

of ⇒, a path from x to ¬x means x ⇒ ¬x, and 
a path from ¬x to x means ¬x ⇒ x.  
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Algorithm for 2SAT
• Proof (⇒)

– to construct a satisfying assign. (if no x with a 
path from x to ¬x and a path from ¬x to x):
• pick unassigned literal s with no path from s to ¬s 
• assign it TRUE, as well as all nodes reachable 

from it; assign negations of these literals FALSE
• note: path from s to t and s to ¬t implies path from 
¬t to ¬s and t to ¬s, implies path from s to ¬s

• note: path s to t (assigned FALSE) implies path 
from ¬t (assigned TRUE) to ¬s, so s already 
assigned at that point.
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Algorithm for 2SAT
• Algorithm:

– build derived graph
– for every pair x, ¬x check if there is a path 

from x to ¬x and from ¬x to x in the graph
• Running time of algorithm (input length n): 

– O(n) to build graph
– O(n) to perform each check
– O(n) checks
– running time O(n2). 2SAT ∈ P.
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Another puzzle
• Find an efficient algorithm to solve the 

following problem.
• Input: sequence of triples of symbols

e.g. (A, b, C), (E, D, b), (d, A, C), (c, b, a)
• Goal: determine if it is possible to circle at 

least one symbol in each triple without 
circling upper and lower case of same 
symbol.
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3SAT
• This is a disguised version of the language

3SAT = {formulas in Conjunctive Normal 
Form with 3 literals per clause for which 

there exists a satisfying truth assignment}
e.g. (A, b, C), (E, D, b), (d, A, C), (c, b, a)

(x1∨¬x2∨x3) ∧( x5∨x4∨¬x2)∧(¬x4∨x1∨x3)∧(¬x3∨¬x2 ∨¬x1)

• observe that this language is in TIME(2n)
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Time Complexity
Key definition: “P” or “polynomial-time” is

P = ∪k ≥ 1 TIME(nk)
Definition: “EXP” or “exponential-time” is

EXP = ∪k ≥ 1 TIME(2nk)

decidable 
languages

P

EXP
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EXP
P = ∪k ≥ 1 TIME(nk)

EXP = ∪k ≥ 1 TIME(2nk)
• Note: P ⊆ EXP.
• We have seen 3SAT ∈ EXP. 

– does not rule out possibility that it is in P

• Is P different from EXP?

13

Time Hierarchy Theorem
Theorem: for every proper complexity 
function f(n) ≥ n:

TIME(f(n)) ⊆ TIME(f(2n)3).

• Note: P ⊆TIME(2n) ⊆	TIME(2(2n)3) ⊆	EXP
• Most natural functions (and 2n in 

particular) are proper complexity functions. 
We will ignore this detail in this class. 
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Time Hierarchy Theorem
Theorem: for every proper complexity 
function f(n) ≥ n:

TIME(f(n)) ⊆ TIME(f(2n)3).
• Proof idea:

– use diagonalization to construct a language 
that is not in TIME(f(n)).

– constructed language comes with a TM that 
decides it and runs in time f(2n)3.
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Recall proof for Halting Problem

Turing 
Machines 

inputs 
Y

n
Y

n
n

Y
n

Y n Y Y nn YH’ :

box   
(M, x): 
does M 
halt on 
x? 

The existence of 
H which tells us 
yes/no for each 
box allows us to 
construct a TM H’ 
that cannot be in 
the table.
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Proof of Time Hierarchy Theorem

Turing 
Machines 

inputs 
Y

n
Y

n
n

Y
n

Y n Y Y nn YD :

box   (M, x): does M 
accept x in time f(n)? 

• TM SIM tells us 
yes/no for each box 
in time g(n)
• rows include all of 
TIME(f(n)) 
• construct TM D 
running in time g(2n) 
that is not in table
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Proof of Time Hierarchy Theorem

• Proof: 
– SIM is TM deciding language

 { <M, x> : M accepts x in ≤ f(|x|) steps }
– Claim: SIM runs in time g(n) = f(n)3.
– define new TM D: on input <M>

• if SIM accepts <M, <M>>, reject
• if SIM rejects <M, <M>>, accept

– D runs in time g(2n) 
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Proof of Time Hierarchy Theorem

• Proof (continued):
– suppose M in TIME(f(n)) decides L(D) 

• M(<M>) = SIM(<M, <M>>) ≠ D(<M>)
• but M(<M>) = D(<M>)

– contradiction.
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Proof of Time Hierarchy Theorem
• Claim: there is a TM SIM that decides 

 {<M, x> : M accepts x in ≤ f(|x|) steps}
 and runs in time g(n) = f(n)3.
• Proof sketch: SIM has 4 work tapes

• contents and “virtual head” positions for M’s 
tapes 

• M’s transition function and state
• f(|x|) “+”s used as a clock
• scratch space

20
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Proof of Time Hierarchy Theorem

• Proof sketch (continued): 4 work tapes
• contents and “virtual head” positions for M’s tapes 
• M’s transition function and state
• f(|x|) “+”s used as a clock
• scratch space

– initialize tapes
– simulate step of M, advance head on tape 3; 

repeat.
– can check running time is as claimed. 
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So far…
• We have defined the complexity classes P 

(polynomial time), EXP (exponential time)

regular 
languages

context free 
languages

decidable 
languages

P
some language

EXP
22
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Poly-time reductions
• Type of reduction we will use:

– “many-one” poly-time reduction (commonly)
– “mapping” poly-time reduction (book)

yes

no

yes

no

A B
reduction from 
language A to 
language B

f

f
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Poly-time reductions

• function f should be poly-time computable
Definition: f : Σ*→ Σ* is poly-time 

computable if for some g(n) = nO(1) there 
exists a g(n)-time TM Mf such that on 
every w	∈	Σ*, Mf halts with f(w) on its tape. 

yes

no

yes

no

A Bf

f
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Poly-time reductions
Definition: A ≤P B (“A reduces to B”) if there 

is a poly-time computable function f such 
that for all w 

w ∈ A ⇔ f(w) ∈	B
• as before, condition equivalent to:

– YES maps to YES and NO maps to NO
• as before, meaning is:

– B is at least as “hard” (or expressive) as A
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Poly-time reductions
Theorem: if A ≤P B and B ∈	P then A ∈	P.

Proof:
– a poly-time algorithm for deciding A:
– on input w, compute f(w) in poly-time.
– run poly-time algorithm to decide if f(w) ∈ B
– if it says “yes”, output “yes”
– if it says “no”, output “no”
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Example
• 2SAT = {CNF formulas with 2 literals per clause 

for which there exists a satisfying truth 
assignment}

• L = {directed graph G, and list of pairs of vertices 
(u1, v1), (u2, v2),…, (uk, vk), such that there is no i 
for which [ui is reachable from vi in G and vi is 
reachable from ui in G]}

• We gave a poly-time reduction from 2SAT to L. 
• determined that 2SAT ∈ P from fact that L ∈ P 
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