CS21 Decidability and Tractability

Lecture 18 February 14, 2022

February 14, 2022

CS21 Lecture 18

Outline

- · Examples of problems in P
- 2-SAT, 3-SAT
- · The complexity class EXP
- Time Hierarchy Theorem
- · hardness and completeness
 - an EXP-complete problem

February 14, 2022

CS21 Lecture 18

Examples of languages in P

- Recall: positive integers x, y are relatively prime if their Greatest Common Divisor (GCD) is 1.
- will show the following language is in P:

RELPRIME = $\{ < x, y > : x \text{ and } y \text{ are relatively } \}$ prime}

· what is the running time of the algorithm that tries all divisors up to min{x, y}?

February 14, 2022

Euclid's Algorithm

· possibly earliest recorded algorithm

on input <x, y>:

- repeat until y = 0
 - set $x = x \mod y$
 - swap x, y
- x is the GCD(x, y). If x = 1, accept; otherwise reject

Example run on input <10, 22>:

x, y = 10, 22

x, y = 22, 10

x, y = 10, 2

x, y = 2, 0

reject

February 14, 2022

CS21 Lecture 18

Euclid's Algorithm

· possibly earliest recorded algorithm

on input <x, y>: • repeat until y = 0

• set $x = x \mod y$ • swap x, y

• x is the GCD(x, y). If x = 1, accept; otherwise reject

Example run on input <24, 5>:

x, y = 24, 5

x, y = 5, 4

x, y = 4, 1

x, y = 1, 0accept

February 14, 2022

Euclid's Algorithm

on input <x, y>:

- (1) repeat until y = 0
 - (2) set $x = x \mod y$
 - (3) swap x, y
- x is the GCD(x, y). If x = 1, accept; otherwise reject
- · every 2 times through loop, (x, y) each reduced by 1/2

• loops $\leq 2\max\{\log_2 x, \log_2 y\}$

 $= O(n = |\langle x, y \rangle|)$; poly time for each loop

• if $x/2 \ge y$, then x mod y $< y \le x/2$ • if x/2 < y, then x mod y

= x - y < x/2

Claim: value of x

possibly first one.

• after (2) x < y

• after (3) x > y

Proof:

reduced by 1/2 at every execution of (2) except

February 14, 2022

A puzzle

- Find an efficient algorithm to solve the following problem:
- · Input: sequence of pairs of symbols

 Goal: determine if it is possible to circle at least one symbol in each pair without circling upper and lower case of same symbol.

February 14, 2022

CS21 Lecture 18

A puzzle

- Find an efficient algorithm to solve the following problem.
- Input: sequence of pairs of symbols

 Goal: determine if it is possible to circle at least one symbol in each pair without circling upper and lower case of same symbol.

February 14, 2022

CS21 Lecture 18

2SAT

- This is a disguised version of the language 2SAT = {formulas in Conjunctive Normal Form with 2 literals per clause for which there exists a satisfying truth assignment}
 - CNF = "AND of ORs"

(A, b), (E, D), (d, C), (b, a)

 $(x_1 \lor \neg x_2) \land (x_5 \lor x_4) \land (\neg x_4 \lor x_3) \land (\neg x_2 \lor \neg x_1)$

 satisfying truth assignment = assignment of TRUE/FALSE to each variable so that whole formula is TRUE

February 14, 2022

CS21 Lecture 18

2SAT

<u>Theorem</u>: There is a polynomial-time algorithm deciding 2SAT ("2SAT ∈ P").

Proof: algorithm described on next slides.

February 14, 2022

CS21 Lecture 18

Algorithm for 2SAT

- Build a graph with separate nodes for each literal.
 - add directed edge (x, y) iff formula includes clause ($\neg x \lor y$) (equiv. to $x \Rightarrow y$)

e.g. $(x_1 \lor \neg x_2) \land (x_5 \lor x_4) \land (\neg x_4 \lor x_3) \land (\neg x_2 \lor \neg x_1)$

February 14, 2022

CS21 Lecture 18

Algorithm for 2SAT

<u>Claim</u>: formula is unsatisfiable iff there is some variable x with a path from x to $\neg x$ and a path from $\neg x$ to x in derived graph.

- Proof (*⇐*)
 - edges represent implication ⇒. By transitivity of ⇒, a path from x to ¬x means $x \Rightarrow \neg x$, and a path from ¬x to x means ¬x ⇒ x.

February 14, 2022

CS21 Lecture 18

12

Algorithm for 2SAT

- Proof (⇒)
 - to construct a satisfying assign. (if no x with a path from x to $\neg x$ and a path from $\neg x$ to x):
 - pick unassigned literal s with no path from s to ¬s
 - assign it TRUE, as well as all nodes reachable from it; assign negations of these literals FALSE
 - note: path from s to t and s to ¬t implies path from ¬t to ¬s and t to ¬s, implies path from s to ¬s
 - note: path s to t (assigned FALSE) implies path from ¬t (assigned TRUE) to ¬s, so s already assigned at that point.

February 14, 2022

CS21 Lecture 18

Algorithm for 2SAT

- Algorithm:
 - build derived graph
 - for every pair x, $\neg x$ check if there is a path from x to $\neg x$ and from $\neg x$ to x in the graph
- Running time of algorithm (input length n):
 - O(n) to build graph
 - O(n) to perform each check
 - O(n) checks
 - running time $O(n^2)$. $2SAT \in P$.

February 14, 2022

CS21 Lecture 18

Another puzzle

- · Find an efficient algorithm to solve the following problem.
- Input: sequence of triples of symbols e.g. (A, b, C), (E, D, b), (d, A, C), (c, b, a)
- Goal: determine if it is possible to circle at least one symbol in each triple without circling upper and lower case of same symbol.

February 14, 2022

3SAT

• This is a disguised version of the language 3SAT = {formulas in Conjunctive Normal Form with 3 literals per clause for which there exists a satisfying truth assignment}

e.g. (A, b, C), (E, D, b), (d, A, C), (c, b, a) $(x_1 \lor \neg x_2 \lor x_3) \land (x_5 \lor x_4 \lor \neg x_2) \land (\neg x_4 \lor x_1 \lor x_3) \land (\neg x_3 \lor \neg x_2 \lor \neg x_1)$

observe that this language is in TIME(2ⁿ)

February 14, 2022

CS21 Lecture 18

EXP

 $P = \bigcup_{k \ge 1} TIME(n^k)$ $EXP = \bigcup_{k>1} TIME(2^{nk})$

- Note: P ⊆ EXP.
- We have seen 3SAT ∈ EXP.
 - does not rule out possibility that it is in P
- · Is P different from EXP?

February 14, 2022

CS21 Lecture 18

18

Time Complexity

Key definition: "P" or "polynomial-time" is

 $P = \bigcup_{k > 1} TIME(n^k)$

 $EXP = \bigcup_{k \geq 1} TIME(2^{n^k})$

Definition: "EXP" or "exponential-time" is

Time Hierarchy Theorem

<u>Theorem</u>: for every proper complexity function $f(n) \ge n$:

 $\mathsf{TIME}(\mathsf{f}(\mathsf{n})) \subsetneq \mathsf{TIME}(\mathsf{f}(2\mathsf{n})^3).$

- Note: $P \subseteq TIME(2^n) \subsetneq TIME(2^{(2n)3}) \subseteq EXP$
- Most natural functions (and 2ⁿ in particular) are proper complexity functions.
 We will ignore this detail in this class.

February 14, 2022 CS21 Lecture 18

Time Hierarchy Theorem

<u>Theorem</u>: for every proper complexity function $f(n) \ge n$:

 $\mathsf{TIME}(\mathsf{f}(\mathsf{n})) \subsetneq \mathsf{TIME}(\mathsf{f}(2\mathsf{n})^3).$

- · Proof idea:
 - use diagonalization to construct a language that is not in TIME(f(n)).
 - constructed language comes with a TM that decides it and runs in time f(2n)³.

February 14, 2022 CS21 Lecture 18 20

Proof of Time Hierarchy Theorem

- Proof:
 - SIM is TM deciding language

 $\{ <M, x> : M \text{ accepts } x \text{ in } \le f(|x|) \text{ steps } \}$

- Claim: SIM runs in time $g(n) = f(n)^3$.
- define new TM D: on input <M>
 - if SIM accepts <M, <M>>, reject
 - if SIM rejects <M, <M>>, accept
- D runs in time g(2n)

February 14, 2022 CS21 Lecture 18 23

Proof of Time Hierarchy Theorem

- · Proof (continued):
 - suppose M in **TIME(f(n))** decides L(D)
 - M(<M>) = SIM(<M, <M>>) ≠ D(<M>)
 - but M(< M>) = D(< M>)
 - contradiction.

February 14, 2022 CS21 Lecture 18

Proof of Time Hierarchy Theorem

- Claim: there is a TM SIM that decides
 {<M, x> : M accepts x in ≤ f(|x|) steps}
 and runs in time g(n) = f(n)³.
- · Proof sketch: SIM has 4 work tapes
 - contents and "virtual head" positions for M's tapes
 - M's transition function and state
 - f(|x|) "+"s used as a clock
 - scratch space

February 14, 2022

CS21 Lecture 18

25

Proof of Time Hierarchy Theorem

- Proof sketch (continued): 4 work tapes
 - contents and "virtual head" positions for M's tapes
 - M's transition function and state
 - f(|x|) "+"s used as a clock
 - scratch space
 - initialize tapes
 - simulate step of M, advance head on tape 3; repeat.
 - can check running time is as claimed.

February 14, 2022

CS21 Lecture 18

26

So far...

• We have defined the complexity classes P (polynomial time), EXP (exponential time)

some language
decidable languages
context free languages
CS21 Lecture 18