Outline

- 3-SAT
- The complexity class EXP
- Time Hierarchy Theorem
- hardness and completeness
 - an EXP-complete problem
- The class NP
 - alternate characterization of NP

2SAT

Theorem: There is a polynomial-time algorithm deciding 2SAT (“2SAT ∈ P”).

Proof: algorithm described on next slides.

Algorithm for 2SAT

Claim: formula is unsatisfiable iff there is some variable \(x \) with a path from \(x \) to \(\neg x \) and a path from \(\neg x \) to \(x \) in derived graph.

- **Proof (\(\Leftarrow \))**
 - edges represent implication \(\Rightarrow \). By transitivity of \(\Rightarrow \), a path from \(x \) to \(\neg x \) means \(x \Rightarrow \neg x \), and a path from \(\neg x \) to \(x \) means \(\neg x \Rightarrow x \).

Algorithm for 2SAT

- **Proof (\(\Rightarrow \))**
 - to construct a satisfying assign. (if no \(x \) with a path from \(x \) to \(\neg x \) and a path from \(\neg x \) to \(x \)):
 - pick unassigned literal \(s \) with no path from \(s \) to \(\neg s \)
 - assign it TRUE, as well as all nodes reachable from it; assign negations of these literals FALSE
 - note: path from \(s \) to \(t \) and \(s \) to \(\neg t \) implies path from \(\neg t \) to \(\neg s \) and \(t \) to \(\neg s \), so \(s \) already assigned at that point.
Algorithm for 2SAT

- **Algorithm:**
 - build derived graph
 - for every pair x, $\neg x$ check if there is a path from x to $\neg x$ and from $\neg x$ to x in the graph
- **Running time of algorithm (input length n):**
 - $O(n)$ to build graph
 - $O(n)$ to perform each check
 - $O(n)$ checks
 - running time $O(n^2)$. 2SAT $\in P$.

Another puzzle

- Find an efficient algorithm to solve the following problem.
- **Input:** sequence of *triples* of symbols
 - e.g. (A, b, C), (E, D, b), (d, A, C), (c, b, a)
- **Goal:** determine if it is possible to circle at least one symbol in each *triple* without circling upper and lower case of same symbol.

3SAT

- This is a disguised version of the language $3SAT = \{\text{formulas in Conjunctive Normal Form with 3 literals per clause for which there exists a satisfying truth assignment}\}$
 - e.g. (A, b, C), (E, D, b), (d, A, C), (c, b, a)
 $(x_1V \neg x_2V x_3)\land (x_3V x_2V \neg x_3)\land (\neg x_1V x_3V x_2)\land (\neg x_3V \neg x_2V \neg x_1)$
- observe that this language is in $TIME(2^n)$

Time Complexity

Key definition: "P" or "polynomial-time" is $P = \bigcup_{k \geq 1} TIME(n^k)$

Definition: "EXP" or "exponential-time" is $EXP = \bigcup_{k \geq 1} TIME(2^{n^k})$

- Note: $P \subseteq EXP$.
- We have seen 3SAT $\in EXP$.
 - does not rule out possibility that it is in P
- Is P different from EXP?

Time Hierarchy Theorem

Theorem: for every proper complexity function $f(n) \geq n$:

$TIME(f(n)) \not\subseteq TIME(f(2n)^3)$.

- Note: $P \subseteq TIME(2^n) \not\subseteq TIME(2^{(2n)^3}) \subseteq EXP$
- Most natural functions (and 2^n in particular) are proper complexity functions.
 We will ignore this detail in this class.
Time Hierarchy Theorem

Theorem: for every proper complexity function $f(n) \geq n$:

$$\text{TIME}(f(n)) \subsetneq \text{TIME}(f(2n)^3).$$

- **Proof idea:**
 - Use diagonalization to construct a language that is not in $\text{TIME}(f(n))$.
 - Constructed language comes with a TM that decides it and runs in time $f(2n)^3$.

Recall proof for Halting Problem

- **Inputs:** Turing Machines
 - **Box** (M, x): does M halt on x?

Proof of Time Hierarchy Theorem

- **Proof:**
 - **Claim:** there is a TM SIM that decides
 $$\{ <M, x> : M \text{ accepts } x \text{ in } \leq f(|x|) \text{ steps} \}$$
 - **Proof sketch:** SIM has 4 work tapes
 - Contents and "virtual head" positions for M’s tapes
 - M’s transition function and state
 - $f(|x|)$’s used as a clock
 - Scratch space

- **Proof (continued):**
 - Suppose M in $\text{TIME}(f(n))$ decides $L(D)$
 - $M(<M>) = \text{SIM}(<M, <M>)) \neq D(<M>)$
 - But $M(<M>) = D(<M>)$
 - Contradiction.
Proof of Time Hierarchy Theorem

- Proof sketch (continued): 4 work tapes
 - contents and "virtual head" positions for M's tapes
 - M's transition function and state
 - \(f(|x|) \) "s used as a clock
 - scratch space
- Initialize tapes
- Simulate step of M, advance head on tape 3; repeat.
- Can check running time is as claimed.

So far…

- We have defined the complexity classes \(P \) (polynomial time), \(\text{EXP} \) (exponential time)

Poly-time reductions

- Type of reduction we will use:
 - "many-one" poly-time reduction (commonly)
 - "mapping" poly-time reduction (book)

Definition: \(A \leq_p B \) ("A reduces to B") if there is a poly-time computable function \(f \) such that for all \(w \)

\[w \in A \iff f(w) \in B \]

- As before, condition equivalent to:
 - YES maps to YES and NO maps to NO
- As before, meaning is:
 - B is at least as "hard" (or expressive) as A

Theorem: If \(A \leq_p B \) and \(B \in P \) then \(A \in P \).

Proof:
- A poly-time algorithm for deciding A:
- On input w, compute \(f(w) \) in poly-time.
- Run poly-time algorithm to decide if \(f(w) \in B \)
- If it says "yes", output "yes"
- If it says "no", output "no"
Example

• 2SAT = \{CNF formulas with 2 literals per clause for which there exists a satisfying truth assignment\}
• L = \{directed graph G, and list of pairs of vertices \((u_1, v_1), (u_2, v_2), \ldots, (u_k, v_k)\), such that there is no \(i\) for which \(u_i\) is reachable from \(v_i\) in G and \(v_i\) is reachable from \(u_i\) in G\}
• We gave a poly-time reduction from 2SAT to L.
• determined that 2SAT \(\in\) P from fact that L \(\in\) P

Hardness and completeness

• Reasonable that can efficiently transform one problem into another.

• Surprising:
 – can often find a special language L so that every language in a given complexity class reduces to L!
 – powerful tool

Hardness and completeness

• Recall:
 – a language L is a set of strings
 – a complexity class C is a set of languages

Definition: a language L is C-hard if for every language A \(\in\) C, A poly-time reduces to L; i.e., A \(\leq_P\) L.
meaning: L is at least as “hard” as anything in C

Definition: a language L is C-complete if L is C-hard and L \(\in\) C
meaning: L is a “hardest” problem in C

An EXP-complete problem

• Version of ATM with a time bound:
 ATM_B = \{\langle M, x, m \rangle : M is a TM that accepts x within at most m steps\}

Theorem: ATM_B is EXP-complete.

Proof:
 – what do we need to show?

An EXP-complete problem

• ATM_B = \{\langle M, x, m \rangle : M is a TM that accepts x within at most m steps\}
• Proof that ATM_B is EXP-complete:
 – Part 1. Need to show ATM_B \(\in\) EXP.
 • simulate M on x for m steps; accept if simulation accepts; reject if simulation doesn’t accept.
 • running time \(m^{O(1)}\).
 • \(n = \) length of input \(\geq \log m\)
 • running time \(\leq m = 2^{\log m} \leq 2^{O(1)}\)
An EXP-complete problem

- ATMₖ = {<M, x, m> : M is a TM that accepts x within at most m steps}
- Proof that ATM₂ is EXP-complete:
 - Part 2. For each language A ∈ EXP, need to give poly-time reduction from A to ATM₂.
 - for a given language A ∈ EXP, we know there is a TM Mₐ that decides A in time g(n) ≤ 2ⁿ for some k.
 - what should reduction f(w) produce?

Proof that ATM₂ is EXP-complete:
- f(w) = <Mₐ, w, m> where m = 2ⁿk
- is f(w) poly-time computable?
 - hardcoded Mₐ and k…
 - YES maps to YES?
 - w ∈ A ⇒ <Mₐ, w, m> ∈ ATM₂
 - NO maps to NO?
 - w ∉ A ⇒ <Mₐ, w, m> ∉ ATM₂

An EXP-complete problem

- A C-complete problem is a surrogate for the entire class C.
- For example: if you can find a poly-time algorithm for ATM₂ then there is automatically a poly-time algorithm for every problem in EXP (i.e., EXP = P).
- Can you find a poly-time alg for ATM₂?

An EXP-complete problem

- Can you find a poly-time alg for ATM₂?
 - NO! we showed that P ⊈ EXP.
 - ATM₂ is not tractable (intractable).