
1

CS21
Decidability
and
Tractability

Lecture 17
February 14,
2025

1

February 14, 2025 CS21 Lecture 17 2

Time complexity
• Example: TM M deciding L = {0k1k : k ≥ 0}.
On input x:
• scan tape left-to-right, reject if 0 to
right of 1
• repeat while 0’s, 1’s on tape:

• scan, crossing off one 0, one 1
• if only 0’s or only 1’s remain, reject;
if neither 0’s nor 1’s remain, accept

steps?

steps?

steps?

2

February 14, 2025 CS21 Lecture 17 3

Time complexity
• We do not care about fine distinctions

– e.g. how many additional steps M takes to
check that it is at the left of tape

• We care about the behavior on large
inputs
– general-purpose algorithm should be

“scalable”
– overhead for e.g. initialization shouldn’t matter

in big picture

3

February 14, 2025 CS21 Lecture 17 4

Time complexity
• Measure time complexity using asymptotic

notation (“big-oh notation”)
– disregard lower-order terms in running time
– disregard coefficient on highest order term

• example:
f(n) = 6n3 + 2n2 + 100n + 102781

– “f(n) is order n3”
– write f(n) = O(n3)

4

February 14, 2025 CS21 Lecture 17 5

Asymptotic notation
Definition: given functions f,g:N → R+, we

say f(n) = O(g(n)) if there exist positive
integers c, n0 such that for all n ≥ n0

f(n) ≤ cg(n).
• meaning: f(n) is (asymptotically) less than

or equal to g(n)
• if g > 0 can assume n0 = 0, by setting

c’ = max0≤n≤n0{c, f(n)/g(n)}

5

February 14, 2025 CS21 Lecture 17 6

Asymptotic notation facts
• “logarithmic”: O(log n)

– logb n = (log2 n)/(log2 b)
– so logbn = O(log2 n) for any constant b;

therefore suppress base when write it

• “polynomial”: O(nc) = nO(1)

– also: cO(log n) = O(nc’) = nO(1)

• “exponential”: O(2nδ) for δ > 0

each bound
asymptotically
less than next

6

2

February 14, 2025 CS21 Lecture 17 7

Time complexity

• total = O(n) + nO(n) + O(n) = O(n2)

On input x:
• scan tape left-to-right, reject if 0 to
right of 1
• repeat while 0’s, 1’s on tape:

• scan, crossing off one 0, one 1
• if only 0’s or only 1’s remain, reject;
if neither 0’s nor 1’s remain, accept

O(n) steps

O(n) steps

O(n) steps

≤ n repeats

7

February 14, 2025 CS21 Lecture 17 8

Time complexity
• Recall:

– language is a set of strings
– a complexity class is a set of languages
– complexity classes we’ve seen:

• Regular Languages, Context-Free Languages,
Decidable Languages, RE Languages, co-RE
languages

Definition: TIME(t(n)) = {L : there exists a
TM M that decides L in time O(t(n))}

8

February 14, 2025 CS21 Lecture 17 9

Time complexity
• We saw that L = {0k1k : k ≥ 0} is in

TIME(n2).
• Book: it is also in TIME(n log n) by giving a

more clever algorithm
• Can prove: There does not exist a (single

tape) TM which decides L in time
(asymptotically) less than n log n

• How about on a multitape TM?

9

February 14, 2025 CS21 Lecture 17 10

Time complexity
• 2-tape TM M deciding L = {0k1k : k ≥ 0}.
On input x:
• scan tape left-to-right, reject if 0 to right of 1
• scan 0’s on tape 1, copying them to tape 2
• scan 1’s on tape 1, crossing off 0’s on tape 2
• if all 0’s crossed off before done with 1’s
reject
• if 0’s remain after done with ones, reject;
otherwise accept.

O(n)
O(n)

O(n)

total:
3*O(n)
= O(n)

10

February 14, 2025 CS21 Lecture 17 11

Multitape TMs
• Convenient to “program” multitape TMs

rather than single ones
– equivalent when talking about decidability
– not equivalent when talking about time

complexity
Theorem: Let t(n) satisfy t(n) ≥ n. Every

multi-tape TM running in time t(n) has an
equivalent TM running in time O(t(n)2).

11

February 14, 2025 CS21 Lecture 17 12

Multitape TMs
simulation of k-tape TM by single-tape TM:

. . . a b a b

a a

b b c d

. . .

. . .

(input tape)

a b a b # a a # b b c d # . . .

• add new symbol
x for each old x

• marks location of
“virtual heads”

12

3

February 14, 2025 CS21 Lecture 17 13

Multitape TMs
. . . a b a b

a a

b b c d

. . .

. . .

a b a b # a a # b b c d # . . .

Repeat:
• scan tape, remembering the symbols
under each virtual head in the state

• make changes to reflect 1 step of M;
if hit #, shift to right to make room.

when M halts, erase all but 1st string

O(t(n)) times

O(k t(n)) = O(t(n))

O(k t(n)) = O(t(n))

O(t(n))

13

February 14, 2025 CS21 Lecture 17 14

Multitape TMs
• Moral: feel free to use k-tape TMs, but be aware

of slowdown in conversion to TM
– note: if t(n) = O(nc) then t(n)2 = O(n2c)= O(nc’)
– note: if t(n) = O(2nδ) for δ > 0 then t(n)2 = O(22nδ) =

O(2nδ’) for δ’ > 0
• high-level operations you are used to using can

be simulated by TM with only polynomial
slowdown
– e.g., copying, moving, incrementing/decrementing,

arithmetic operations +, -, *, /

14

February 14, 2025 CS21 Lecture 17 15

Extended Church-Turing Thesis
• the belief that TMs formalize our intuitive

notion of an efficient algorithm is:

• quantum computers challenge this belief

The “extended” Church-Turing Thesis

everything we can compute in time t(n)
on a physical computer can be

computed on a Turing Machine in time
t(n)O(1) (polynomial slowdown)

15

February 14, 2025 CS21 Lecture 17 16

Time Complexity
• interested in a coarse classification of

problems. For this purpose,
– treat any polynomial running time as “efficient”

or “tractable”
– treat any exponential running time as

inefficient or “intractable”
Key definition: “P” or “polynomial-time” is

P = ∪k ≥ 1 TIME(nk)

16

February 14, 2025 CS21 Lecture 17 17

Time Complexity
• Why polynomial-time?

– insensitive to particular deterministic model of
computation chosen

– closed under modular composition
– empirically: qualitative breakthrough to

achieve polynomial running time is followed
by quantitative improvements from impractical
(e.g. n100) to practical (e.g. n3 or n2)

17

February 14, 2025 CS21 Lecture 17 18

Examples of languages in P
• Recall: positive integers x, y are relatively

prime if their Greatest Common Divisor
(GCD) is 1.

• will show the following language is in P:
RELPRIME = {<x, y> : x and y are relatively

prime}
• what is the running time of the algorithm

that tries all divisors up to min{x, y}?

18

4

February 14, 2025 CS21 Lecture 17 19

Euclid’s Algorithm
• possibly earliest recorded algorithm

on input <x, y>:
• repeat until y = 0

• set x = x mod y
• swap x, y

• x is the GCD(x, y). If x = 1,
accept; otherwise reject

Example run on
input <10, 22>:

x, y = 10, 22
x, y = 22, 10
x, y = 10, 2
x, y = 2, 0
reject

19

February 14, 2025 CS21 Lecture 17 20

Euclid’s Algorithm
• possibly earliest recorded algorithm

on input <x, y>:
• repeat until y = 0

• set x = x mod y
• swap x, y

• x is the GCD(x, y). If x = 1,
accept; otherwise reject

Example run on
input <24, 5>:

x, y = 24, 5
x, y = 5, 4
x, y = 4, 1
x, y = 1, 0
accept

20

February 14, 2025 CS21 Lecture 17 21

Euclid’s Algorithm
on input <x, y>:
• (1) repeat until y = 0

• (2) set x = x mod y
• (3) swap x, y

• x is the GCD(x, y). If x = 1,
accept; otherwise reject

Claim: value of x
reduced by ½ at every
execution of (2) except
possibly first one.
Proof:
• after (2) x < y

• after (3) x > y
• if x/2 ≥ y, then x mod y
< y ≤ x/2
• if x/2 < y, then x mod y
= x – y < x/2

• every 2 times through loop,
(x, y) each reduced by ½

• loops ≤ 2max{log2x, log2y}
= O(n = |<x, y>|); poly time
for each loop

21

February 14, 2025

A puzzle
• Find an efficient algorithm to solve the

following problem:
• Input: sequence of pairs of symbols

e.g. (A, b), (E, D), (d, C), (B, a)
• Goal: determine if it is possible to circle at

least one symbol in each pair without
circling upper and lower case of same
symbol.

CS21 Lecture 17 22

22

