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Time complexity
• Example: TM M deciding L = {0k1k : k ≥ 0}.
On input x:
• scan tape left-to-right, reject if 0 to 
right of 1
• repeat while 0’s, 1’s on tape:

• scan, crossing off one 0, one 1
• if only 0’s or only 1’s remain, reject; 
if neither 0’s nor 1’s remain, accept

# steps?

# steps?

# steps?
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Time complexity
• We do not care about fine distinctions 

– e.g. how many additional steps M takes to 
check that it is at the left of tape

• We care about the behavior on large 
inputs
– general-purpose algorithm should be 

“scalable”
– overhead for e.g. initialization shouldn’t matter 

in big picture

3

February 14, 2025 CS21 Lecture 17 4

Time complexity
• Measure time complexity using asymptotic 

notation (“big-oh notation”)
– disregard lower-order terms in running time
– disregard coefficient on highest order term

• example:
f(n) = 6n3 + 2n2 + 100n + 102781

– “f(n) is order n3” 
– write f(n) = O(n3)
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Asymptotic notation
Definition: given functions f,g:N → R+, we 

say f(n) = O(g(n)) if there exist positive 
integers c, n0 such that for all n ≥ n0

f(n) ≤ cg(n).
• meaning: f(n) is (asymptotically) less than 

or equal to g(n)
• if g > 0 can assume n0 = 0, by setting 

c’ = max0≤n≤n0{c, f(n)/g(n)}
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Asymptotic notation facts
• “logarithmic”: O(log n)

– logb n = (log2 n)/(log2 b) 
– so logbn = O(log2 n) for any constant b; 

therefore suppress base when write it

• “polynomial”: O(nc) = nO(1)

– also: cO(log n) = O(nc’) = nO(1)

• “exponential”: O(2nδ) for δ > 0

each bound 
asymptotically 
less than next
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Time complexity

• total = O(n) + nO(n) + O(n) = O(n2)

On input x:
• scan tape left-to-right, reject if 0 to 
right of 1
• repeat while 0’s, 1’s on tape:

• scan, crossing off one 0, one 1
• if only 0’s or only 1’s remain, reject; 
if neither 0’s nor 1’s remain, accept

O(n) steps

O(n) steps

O(n) steps

≤ n repeats
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Time complexity
• Recall:

– language is a set of strings
– a complexity class is a set of languages
– complexity classes we’ve seen:

• Regular Languages, Context-Free Languages, 
Decidable Languages, RE Languages, co-RE 
languages

Definition: TIME(t(n)) = {L : there exists a 
TM M that decides L in time O(t(n))}
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Time complexity
• We saw that L = {0k1k : k ≥ 0} is in 

TIME(n2).
• Book: it is also in TIME(n log n) by giving a 

more clever algorithm
• Can prove: There does not exist a (single 

tape) TM which decides L in time 
(asymptotically) less than n log n

• How about on a multitape TM?
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Time complexity
• 2-tape TM M deciding L = {0k1k : k ≥ 0}.
On input x:
• scan tape left-to-right, reject if 0 to right of 1
• scan 0’s on tape 1, copying them to tape 2
• scan 1’s on tape 1, crossing off 0’s on tape 2
• if all 0’s crossed off before done with 1’s 
reject 
• if 0’s remain after done with ones, reject; 
otherwise accept.

O(n)
O(n)

O(n)

total: 
3*O(n) 
= O(n)
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Multitape TMs
• Convenient to “program” multitape TMs 

rather than single ones
– equivalent when talking about decidability
– not equivalent when talking about time 

complexity
Theorem: Let t(n) satisfy t(n) ≥ n. Every 

multi-tape TM running in time t(n) has an 
equivalent TM running in time O(t(n)2).
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Multitape TMs
simulation of k-tape TM by single-tape TM:

. . . a b a b

a a

b b c d

. . . 

. . . 

(input tape)

# a b a b # a a # b b c d # . . . 

•  add new symbol 
x for each old x

•  marks location of 
“virtual heads”
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Multitape TMs
. . . a b a b

a a

b b c d

. . . 

. . . 

# a b a b # a a # b b c d # . . . 

Repeat:
• scan tape, remembering the symbols 
under each virtual head in the state

• make changes to reflect 1 step of M; 
if hit #, shift to right to make room.   

when M halts, erase all but 1st string

O(t(n)) times

O(k t(n)) = O(t(n))

O(k t(n)) = O(t(n))

O(t(n))
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Multitape TMs
• Moral: feel free to use k-tape TMs, but be aware 

of slowdown in conversion to TM
– note: if t(n) = O(nc) then t(n)2 = O(n2c )= O(nc’)
– note: if t(n) = O(2nδ) for δ > 0 then t(n)2 = O(22nδ) = 

O(2nδ’) for δ’ > 0 
• high-level operations you are used to using can 

be simulated by TM with only polynomial 
slowdown
– e.g., copying, moving, incrementing/decrementing, 

arithmetic operations +, -, *, /
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Extended Church-Turing Thesis
• the belief that TMs formalize our intuitive 

notion of an efficient algorithm is:

• quantum computers challenge this belief

The “extended” Church-Turing Thesis

everything we can compute in time t(n) 
on a physical computer can be 

computed on a Turing Machine in time 
t(n)O(1) (polynomial slowdown)
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Time Complexity
• interested in a coarse classification of 

problems. For this purpose, 
– treat any polynomial running time as “efficient” 

or “tractable”
– treat any exponential running time as 

inefficient or “intractable”
Key definition: “P” or “polynomial-time” is

P = ∪k ≥ 1 TIME(nk)
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Time Complexity
• Why polynomial-time?

– insensitive to particular deterministic model of 
computation chosen

– closed under modular composition
– empirically: qualitative breakthrough to 

achieve polynomial running time is followed 
by quantitative improvements from impractical 
(e.g. n100) to practical (e.g. n3 or n2)
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Examples of languages in P
• Recall: positive integers x, y are relatively 

prime if their Greatest Common Divisor 
(GCD) is 1.

• will show the following language is in P:
RELPRIME = {<x, y> : x and y are relatively 

prime}
• what is the running time of the algorithm 

that tries all divisors up to min{x, y}?
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Euclid’s Algorithm
• possibly earliest recorded algorithm 

on input <x, y>:
• repeat until y = 0

• set x = x mod y
• swap x, y

• x is the GCD(x, y). If x = 1, 
accept; otherwise reject

Example run on 
input <10, 22>:

x, y = 10, 22
x, y = 22, 10
x, y = 10, 2
x, y = 2, 0
reject
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Euclid’s Algorithm
• possibly earliest recorded algorithm 

on input <x, y>:
• repeat until y = 0

• set x = x mod y
• swap x, y

• x is the GCD(x, y). If x = 1, 
accept; otherwise reject

Example run on 
input <24, 5>:

x, y = 24, 5
x, y = 5, 4
x, y = 4, 1
x, y = 1, 0
accept
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Euclid’s Algorithm
on input <x, y>:
• (1) repeat until y = 0

• (2) set x = x mod y
• (3) swap x, y

• x is the GCD(x, y). If x = 1, 
accept; otherwise reject

Claim: value of x 
reduced by ½ at every 
execution of (2) except 
possibly first one.
Proof:
• after (2) x < y

• after (3) x > y
• if x/2 ≥ y, then x mod y 
< y ≤ x/2
• if x/2 < y, then x mod y 
= x – y < x/2

• every 2 times through loop, 
(x, y) each reduced by ½

• loops ≤ 2max{log2x, log2y} 
= O(n = |<x, y>|); poly time 
for each loop 
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A puzzle
• Find an efficient algorithm to solve the 

following problem:
• Input: sequence of pairs of symbols

e.g. (A, b), (E, D), (d, C), (B, a)
• Goal: determine if it is possible to circle at 

least one symbol in each pair without 
circling upper and lower case of same 
symbol.
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