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Outline

• Gödel Incompleteness Theorem (finishing)

• Complexity
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Incompleteness Theorem

Theorem: Peano Arithmetic is not complete.

(same holds for any reasonable proof 
system for number theory)

Proof outline:
– the set of theorems of PA is RE
– the set of true sentences (= Th(N)) is not RE
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Incompleteness Theorem

• Lemma: the set of theorems of PA is RE.

• Proof: 
– TM that recognizes the set of theorems of PA:
– systematically try all possible ways of writing 

down sequences of formulas
– accept if encounter a proof of input sentence

(note: true for any reasonable proof system)
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Incompleteness Theorem

• Lemma: Th(N) is not RE

• Proof:
– reduce from co-HALT (show co-HALT ≤m Th(N)) 
– recall co-HALT is not RE

– what should f(<M, w>) produce?
– construct 𝛾	such that M loops on w ⇔ 𝛾	is true
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Incompleteness Theorem
– we will define 

VALCOMPM,w(v) ≡… (details to come)
 so that it is true iff v is a (halting) computation 

history of M on input w
– then define f(<M, w>) to be:

𝛾 ≡ ¬	∃v VALCOMPM,w(v)
– YES maps YES?

• <M, w> ∈	co-HALT ⇒ 𝛾	is true ⇒ 𝛾 ∈ Th(N)
– NO maps to NO?

• <M, w> ∉ co-HALT ⇒ 𝛾 is false ⇒ 𝛾 ∉	Th(N)
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Expressing computation in the 
language of number theory

• Recall: basic building blocks
– x < y ≡ ∃z  x + z = y ∧ ¬(z = 0)
– INTDIV(x, y, q, r) ≡	 x = qy + r ∧ r < y
– DIV(y, x) ≡	∃q INTDIV(x,y,q,0)
– PRIME(x) ≡	
 x ≥ (1+1) ∧ ∀	y (DIV(y, x) ⇒ (y = 1 ∨	 y = x)) 
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Expressing computation in the 
language of number theory

–  we’ll write configurations over an alphabet of 
size p, where p is a prime that depends on M

– d is a power of p:
POWERp(d) ≡ ∀z (DIV(z, d) ∧ PRIME(z)) ⇒ z = p

– d = pk and length of v as a p-ary string is k
LENGTH(v, d) ≡	POWERp(d) ∧	v < d
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Expressing computation in the 
language of number theory

– the p-ary digit of v at position y is b (assuming 
y is a power of p):

DIGIT(v, y, b) ≡ 
∃u ∃a (v = a + by + upy ∧	a < y ∧ b < p)

– the three  p-ary digits of v at position y are b,c, 
and d (assuming y is a power of p):

3DIGIT(v, y, b, c, d) ≡ 
∃u ∃a (v = a + by + cpy + dppy + upppy 

∧	a < y ∧ b < p ∧ c < p ∧	d < p)
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Expressing computation in the 
language of number theory

– the three p-ary digits of v at position y “match” 
the three p-ary digits of v at position z 
according to M’s transition function (assuming 
y and z are powers of p):

MATCH(v, y, z) ≡ 
     

where C = {(a,b,c,d,e,f) : abc in config. Ci can 
legally change to def in config. Ci+1}

(a,b,c,d,e,f) ∈ 𝐶⋁ 3DIGIT(v, y, a, b, c) 
      ∧ 3DIGIT(v, z, d, e, f) 
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Expressing computation in the 
language of number theory

– all pairs of 3-digit sequences in v up to d that 
are exactly c apart “match” according to M’s 
transition function (assuming c, d powers of p)

MOVE(v, c, d) ≡
∀y (POWERp(y) ∧	yppc < d) ⇒ MATCH(v, y, yc)
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Expressing computation in the 
language of number theory

– the string v starts with the start configuration 
of M on input w = w1…wn padded with blanks 
out to length c (assuming c is a power of p):

START(v, c) ≡ 

∧	pn < c	∧ ∀y (POWERp(y) ∧ pn < y < c ⇒ DIGIT(v, y, k))
 where k0k1k2k3…kn is the p-ary encoding of 

the start configuration, and k is the p-ary 
encoding of a blank symbol.

i = 0,1,2,3, …, n∧ DIGIT(v, pi, ki) 
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Expressing computation in the 
language of number theory

– string v has a halt state in it somewhere 
before position d (assuming d is power of p):

HALT(v, d) ≡ 

∃y (POWERp(y) ∧	y < d ∧	 ∧	 DIGIT(v,y,a))

 where H is the set of p-ary digits “containing” 
states qaccept or qreject.

a ∈ 𝐻
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Expressing computation in the 
language of number theory

– string v is a valid (halting) computation history 
of machine M on string w:

VALCOMPM,w(v) ≡ 
∃c ∃d (POWERp(c) ∧c < d ∧ LENGTH(v, d) ∧

	START(v, c) ∧ MOVE(v, c, d) ∧ HALT(v, d))

– M does not halt on input w:                            
  ¬∃v VALCOMPM,w(v)
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Incompleteness Theorem

• Lemma: Th(N) is not RE

• Proof:
– reduce from co-HALT (show co-HALT ≤m Th(N)) 
– recall co-HALT is not RE

– constructed 𝛾	such that 
M loops on w ⇔ 𝛾 is true
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Summary

• full-fledged model of computation: TM
• many equivalent models
• Church-Turing Thesis

• encoding of inputs
• Universal TM
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Summary

• classes of problems:
– decidable (“solvable by algorithms”)
– recursively enumerable (RE)
– co-RE

• counting: 
– not all problems are decidable
– not all problems are RE 
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Summary

• diagonalization: HALT is undecidable
• reductions: other problems undecidable

– many examples
– Rice’s Theorem

• natural problems that are not RE 
• Recursion Theorem: non-obvious 

capability of TMs: printing out own description
• Incompleteness Theorem
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Complexity
• So far we have classified problems by 

whether they have an algorithm at all.
• In real world, we have limited resources 

with which to run an algorithm:
– one resource: time
– another: storage space

• need to further classify decidable 
problems according to resources they 
require
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Complexity
• Complexity Theory = study of what is 

computationally feasible (or tractable) with 
limited resources:
– running time
– storage space
– number of random bits 
– degree of parallelism
– rounds of interaction
– others…

main focus

not in this course
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Worst-case analysis
• Always measure resource (e.g. running 

time) in the following way:
– as a function of the input length
– value of the fn. is the maximum quantity of 

resource used over all inputs of given length
– called “worst-case analysis”

• “input length” is the length of input string, 
which might encode another object with a 
separate notion of size  
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Time complexity

Definition: the running time (“time 
complexity”) of a TM M is a function

f:N → N
 where f(n) is the maximum number of 

steps M uses on any input of length n.

• “M runs in time f(n),” “M is a f(n) time TM”
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Time complexity

• Example: TM M deciding L = {0k1k : k ≥ 0}.
On input x:

• scan tape left-to-right, reject if 0 to 
right of 1

• repeat while 0’s, 1’s on tape:

• scan, crossing off one 0, one 1

• if only 0’s or only 1’s remain, reject; 
if neither 0’s nor 1’s remain, accept

# steps?

# steps?

# steps?
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Time complexity

• We do not care about fine distinctions 
– e.g. how many additional steps M takes to 

check that it is at the left of tape
• We care about the behavior on large 

inputs
– general-purpose algorithm should be 

“scalable”
– overhead for e.g. initialization shouldn’t matter 

in big picture


