
CS21
Decidability
and
Tractability

Lecture 16
February 12, 2025

February 12, 2025 CS21 Lecture 16 2

Outline

• Gödel Incompleteness Theorem (finishing)

• Complexity

Gödel Incompleteness
Theorem

February 12, 2025 CS21 Lecture 16 3

February 12, 2025 CS21 Lecture 16 4

Incompleteness Theorem

Theorem: Peano Arithmetic is not complete.

(same holds for any reasonable proof
system for number theory)

Proof outline:
– the set of theorems of PA is RE
– the set of true sentences (= Th(N)) is not RE

February 12, 2025 CS21 Lecture 16 5

Incompleteness Theorem

• Lemma: the set of theorems of PA is RE.

• Proof:
– TM that recognizes the set of theorems of PA:
– systematically try all possible ways of writing

down sequences of formulas
– accept if encounter a proof of input sentence

(note: true for any reasonable proof system)

February 12, 2025 CS21 Lecture 16 6

Incompleteness Theorem

• Lemma: Th(N) is not RE

• Proof:
– reduce from co-HALT (show co-HALT ≤m Th(N))
– recall co-HALT is not RE

– what should f(<M, w>) produce?
– construct 𝛾	such that M loops on w ⇔ 𝛾	is true

February 12, 2025 CS21 Lecture 16 7

Incompleteness Theorem
– we will define

VALCOMPM,w(v) ≡… (details to come)
 so that it is true iff v is a (halting) computation

history of M on input w
– then define f(<M, w>) to be:

𝛾 ≡ ¬	∃v VALCOMPM,w(v)
– YES maps YES?

• <M, w> ∈	co-HALT ⇒ 𝛾	is true ⇒ 𝛾 ∈ Th(N)
– NO maps to NO?

• <M, w> ∉ co-HALT ⇒ 𝛾 is false ⇒ 𝛾 ∉	Th(N)

February 12, 2025 CS21 Lecture 16 8

Expressing computation in the
language of number theory

• Recall: basic building blocks
– x < y ≡ ∃z x + z = y ∧ ¬(z = 0)
– INTDIV(x, y, q, r) ≡	 x = qy + r ∧ r < y
– DIV(y, x) ≡	∃q INTDIV(x,y,q,0)
– PRIME(x) ≡	
 x ≥ (1+1) ∧ ∀	y (DIV(y, x) ⇒ (y = 1 ∨	 y = x))

February 12, 2025 CS21 Lecture 16 9

Expressing computation in the
language of number theory

– we’ll write configurations over an alphabet of
size p, where p is a prime that depends on M

– d is a power of p:
POWERp(d) ≡ ∀z (DIV(z, d) ∧ PRIME(z)) ⇒ z = p

– d = pk and length of v as a p-ary string is k
LENGTH(v, d) ≡	POWERp(d) ∧	v < d

February 12, 2025 CS21 Lecture 16 10

Expressing computation in the
language of number theory

– the p-ary digit of v at position y is b (assuming
y is a power of p):

DIGIT(v, y, b) ≡
∃u ∃a (v = a + by + upy ∧	a < y ∧ b < p)

– the three p-ary digits of v at position y are b,c,
and d (assuming y is a power of p):

3DIGIT(v, y, b, c, d) ≡
∃u ∃a (v = a + by + cpy + dppy + upppy

∧	a < y ∧ b < p ∧ c < p ∧	d < p)

February 12, 2025 CS21 Lecture 16 11

Expressing computation in the
language of number theory

– the three p-ary digits of v at position y “match”
the three p-ary digits of v at position z
according to M’s transition function (assuming
y and z are powers of p):

MATCH(v, y, z) ≡

where C = {(a,b,c,d,e,f) : abc in config. Ci can
legally change to def in config. Ci+1}

(a,b,c,d,e,f) ∈ 𝐶⋁ 3DIGIT(v, y, a, b, c)
 ∧ 3DIGIT(v, z, d, e, f)

February 12, 2025 CS21 Lecture 16 12

Expressing computation in the
language of number theory

– all pairs of 3-digit sequences in v up to d that
are exactly c apart “match” according to M’s
transition function (assuming c, d powers of p)

MOVE(v, c, d) ≡
∀y (POWERp(y) ∧	yppc < d) ⇒ MATCH(v, y, yc)

February 12, 2025 CS21 Lecture 16 13

Expressing computation in the
language of number theory

– the string v starts with the start configuration
of M on input w = w1…wn padded with blanks
out to length c (assuming c is a power of p):

START(v, c) ≡

∧	pn < c	∧ ∀y (POWERp(y) ∧ pn < y < c ⇒ DIGIT(v, y, k))
 where k0k1k2k3…kn is the p-ary encoding of

the start configuration, and k is the p-ary
encoding of a blank symbol.

i = 0,1,2,3, …, n∧ DIGIT(v, pi, ki)

February 12, 2025 CS21 Lecture 16 14

Expressing computation in the
language of number theory

– string v has a halt state in it somewhere
before position d (assuming d is power of p):

HALT(v, d) ≡

∃y (POWERp(y) ∧	y < d ∧	 ∧	 DIGIT(v,y,a))

 where H is the set of p-ary digits “containing”
states qaccept or qreject.

a ∈ 𝐻

February 12, 2025 CS21 Lecture 16 15

Expressing computation in the
language of number theory

– string v is a valid (halting) computation history
of machine M on string w:

VALCOMPM,w(v) ≡
∃c ∃d (POWERp(c) ∧c < d ∧ LENGTH(v, d) ∧

	START(v, c) ∧ MOVE(v, c, d) ∧ HALT(v, d))

– M does not halt on input w:
 ¬∃v VALCOMPM,w(v)

February 12, 2025 CS21 Lecture 16 16

Incompleteness Theorem

• Lemma: Th(N) is not RE

• Proof:
– reduce from co-HALT (show co-HALT ≤m Th(N))
– recall co-HALT is not RE

– constructed 𝛾	such that
M loops on w ⇔ 𝛾 is true

February 12, 2025 CS21 Lecture 16 17

Summary

• full-fledged model of computation: TM
• many equivalent models
• Church-Turing Thesis

• encoding of inputs
• Universal TM

February 12, 2025 CS21 Lecture 16 18

Summary

• classes of problems:
– decidable (“solvable by algorithms”)
– recursively enumerable (RE)
– co-RE

• counting:
– not all problems are decidable
– not all problems are RE

February 12, 2025 CS21 Lecture 16 19

Summary

• diagonalization: HALT is undecidable
• reductions: other problems undecidable

– many examples
– Rice’s Theorem

• natural problems that are not RE
• Recursion Theorem: non-obvious

capability of TMs: printing out own description
• Incompleteness Theorem

February 12, 2025 CS21 Lecture 16 20

Complexity
• So far we have classified problems by

whether they have an algorithm at all.
• In real world, we have limited resources

with which to run an algorithm:
– one resource: time
– another: storage space

• need to further classify decidable
problems according to resources they
require

February 12, 2025 CS21 Lecture 16 21

Complexity
• Complexity Theory = study of what is

computationally feasible (or tractable) with
limited resources:
– running time
– storage space
– number of random bits
– degree of parallelism
– rounds of interaction
– others…

main focus

not in this course

February 12, 2025 CS21 Lecture 16 22

Worst-case analysis
• Always measure resource (e.g. running

time) in the following way:
– as a function of the input length
– value of the fn. is the maximum quantity of

resource used over all inputs of given length
– called “worst-case analysis”

• “input length” is the length of input string,
which might encode another object with a
separate notion of size

February 12, 2025 CS21 Lecture 16 23

Time complexity

Definition: the running time (“time
complexity”) of a TM M is a function

f:N → N
 where f(n) is the maximum number of

steps M uses on any input of length n.

• “M runs in time f(n),” “M is a f(n) time TM”

February 12, 2025 CS21 Lecture 16 24

Time complexity

• Example: TM M deciding L = {0k1k : k ≥ 0}.
On input x:

• scan tape left-to-right, reject if 0 to
right of 1

• repeat while 0’s, 1’s on tape:

• scan, crossing off one 0, one 1

• if only 0’s or only 1’s remain, reject;
if neither 0’s nor 1’s remain, accept

steps?

steps?

steps?

February 12, 2025 CS21 Lecture 16 25

Time complexity

• We do not care about fine distinctions
– e.g. how many additional steps M takes to

check that it is at the left of tape
• We care about the behavior on large

inputs
– general-purpose algorithm should be

“scalable”
– overhead for e.g. initialization shouldn’t matter

in big picture

