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Outline

* Godel Incompleteness Theorem (finishing)

« Complexity
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Incompleteness Theorem

Theorem: Peano Arithmetic is not complete.

(same holds for any reasonable proof
system for number theory)

Proof outline:
— the set of theorems of PA is RE
— the set of true sentences (= Th(N)) is not RE
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Incompleteness Theorem

« Lemma: the set of theorems of PA is RE.

* Proof:
— TM that recognizes the set of theorems of PA:

— systematically try all possible ways of writing
down sequences of formulas

— accept if encounter a proof of input sentence
(note: true for any reasonable proof system)
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Incompleteness Theorem

 Lemma: Th(N) is not RE

* Proof:
— reduce from co-HALT (show co-HALT <, Th(N))
—recall co-HALT is not RE

— what should f(<M, w>) produce?
— construct y such that M loops on w © y is true
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Incompleteness Theorem

—we will define
VALCOMP) ,(v) =... (details to come)

so that it is true iff v is a (halting) computation
history of M on input w

— then define f(<M, w>) to be:
y = —3v VALCOMP,, (V)
— YES maps YES?
* <M, w> € co-HALT = yis true = y € Th(N)
— NO maps to NO?
<M, w> & co-HALT = y is false = y & Th(N)
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Expressing computation in the
language of number theory

* Recall: basic building blocks
—x<y=3z X+z=yA=(z=0)
—INTDIV(X,y,q,r)= X=qy+rAar<y
— DIV(y, x) = 3q INTDIV(x,y,q,0)
— PRIME(X) =
X2 (1+1)AVYy (DIV(y,x) = (y=1V y =X))
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Expressing computation in the
language of number theory

— we'll write configurations over an alphabet of
size p, where p is a prime that depends on M

—d is a power of p:
POWER,(d) = Vz (DIV(z, d) A PRIME(z)) = z=p

—d = pkand length of v as a p-ary string is k
LENGTH(v, d) = POWER(d) Av <d
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Expressing computation in the
language of number theory

— the p-ary digit of v at position y is b (assuming
y is a power of p):
DIGIT(v, y, b) =
Ju3da(v=a+by+upyAa<yAb<p)

— the three p-ary digits of v at position y are b,c,
and d (assuming vy is a power of p):

3DIGIT(v,y, b, c,d) =

Ju Ja (v = a + by + cpy + dppy + upppy
Aa<yAb<pAc<pAd<p)
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Expressing computation in the
language of number theory

— the three p-ary digits of v at position y “match”
the three p-ary digits of v at position z
according to M’s transition function (assuming
y and z are powers of p):

MATCH(v, v, z) =

Viabcdenec 3DIGIT(V, v, a, b, c)
A 3DIGIT(v, z, d, e, )

where C ={(a,b,c,d,e,f) : abc in config. C; can
legally change to def in config. C,;4}
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Expressing computation in the
language of number theory

— all pairs of 3-digit sequences in v up to d that
are exactly c apart “match” according to M’s
transition function (assuming c, d powers of p)

MOVE(v, c, d) =
vy (POWER\(y) A yppc <d) = MATCH(v, y, yc)
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Expressing computation in the
language of number theory

— the string v starts with the start configuration
of M on input w = w,...w, padded with blanks
out to length ¢ (assuming c is a power of p):

START(v, c) =
Ni-0123, .. n DIGIT(V. pi. k)

Ap"<cAVy (POWER,(y) A p"<y<c = DIGIT(v, y, k))
where Kok k-Ks.. .k, Is the p-ary encoding of
the start configuration, and k is the p-ary
encoding of a blank symbol.
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Expressing computation in the
language of number theory

— string v has a halt state in it somewhere
before position d (assuming d is power of p):

HALT(v, d) =

3y (POWER(y) Ay <d A é\H DIGIT(v,y,a))
a

where H is the set of p-ary digits “containing”
states qaccept or qreject-
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Expressing computation in the
language of number theory

— string v is a valid (halting) computation history
of machine M on string w:

VALCOMP,; (V) =

3¢ 3d (POWER(C) Ac < d A LENGTH(v, d) A
START(v, ¢) A MOVE(v, c, d) A HALT(v, d))

— M does not halt on input w:
—3v VALCOMP; w(V)
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Incompleteness Theorem

 Lemma: Th(N) is not RE

* Proof:
— reduce from co-HALT (show co-HALT <, Th(N))
—recall co-HALT is not RE

— constructed y such that
M loops on w & y iIs true

February 12, 2025 CS21 Lecture 16

16



Summary

* full-fledged model of computation: TM
* many equivalent models
» Church-Turing Thesis

* encoding of inputs
* Universal TM
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Summary

» classes of problems:
— decidable ("solvable by algorithms”)
— recursively enumerable (RE)

— co-RE

e counting:
— not all problems are decidable
— not all problems are RE
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Summary

diagonalization: HALT is undecidable

reductions: other problems undecidable
— many examples
— Rice’s Theorem

natural problems that are not RE

Recursion Theorem: non-obvious
capability of TMs: printing out own description

Incompleteness Theorem
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Complexity

* So far we have classified problems by
whether they have an algorithm at all.

* In real world, we have limited resources
with which to run an algorithm:
— one resource: time
— another: storage space

* need to further classify decidable
problems according to resources they
require
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Complexity

» Complexity Theory = study of what is
computationally feasible (or tractable) with

limited resources:

_ _ / main focus
— running time

— storage space

— number of random bits )
— degree of parallelism
— rounds of interaction

— others...
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Worst-case analysis

» Always measure resource (e.g. running
time) in the following way:
— as a function of the input length

— value of the fn. is the maximum quantity of
resource used over all inputs of given length

— called “worst-case analysis”

* “Input length” is the length of input string,
which might encode another object with a
separate notion of size
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Time complexity

Definition: the running time (“time
complexity”) of a TM M is a function

N — N

where f(n) is the maximum number of
steps M uses on any input of length n.

* "M runs in time f(n),” "M is a f(n) time TM"
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Time complexity

« Example: TM M deciding L = {Ok1k: k = 0}.

On input x:

* scan tape left-to-right, reject if O to
right of 1

 repeat while O’s, 1's on tape:
e scan, crossing off one 0, one 1

* if only O’s or only 1’s remain, reject;
iIf neither O’s nor 1's remain, accept
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Time complexity

* \We do not care about fine distinctions
— e.g. how many additional steps M takes to
check that it is at the left of tape

» We care about the behavior on large
iInputs
— general-purpose algorithm should be
“scalable”

— overhead for e.qg. initialization shouldn’'t matter
In big picture
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