Outline

- Gödel Incompleteness Theorem

Number Theory

- formal language to express properties of $\mathbb{N} = \{0, 1, 2, 3, \ldots\}$
- allowable symbols: parentheses, and
 - variables x, y, z, … ranging over \mathbb{N}
 - operators $+$ (addition) and \ast (multiplication)
 - constants 0 (additive id) and 1 (mult. identity)
 - relation $=$ (equality)
 - quantifiers \forall (for all) and \exists (exists)
 - propositional operators \lor (or), \land (and), \neg (not), \Rightarrow (implies), \iff (iff)

Number Theory

- can formalize syntax of allowable formulas (skip)
- defining comparison relations:
 - $x \leq y \equiv \exists z \ x + z = y$
 - $x < y \equiv \exists z \ x + z = y \land \neg(z = 0)$

Number Theory

- Other natural concepts we will need:
 - quotient q and remainder r when divide x by y
 $\text{INTDIV}(x, y, q, r) \equiv x = qy + r \land r < y$
 - y divides x
 $\text{DIV}(y, x) \equiv \exists q \text{INTDIV}(x, y, q, 0)$
 - x is even
 $\text{EVEN}(x) \equiv \text{DIV}(1 + 1, x)$
 - x is odd
 $\text{ODD}(x) \equiv \neg \text{EVEN}(x)$

Number Theory

- Other natural concepts we will need:
 - x is prime
 $\text{PRIME}(x) \equiv x \geq (1 + 1) \land \forall y (\text{DIV}(y, x) \Rightarrow (y = 1 \lor y = x))$
 - x is a power of 2
 $\text{POWER}_2(x) \equiv \forall y (\text{DIV}(y, x) \land \text{PRIME}(y)) \Rightarrow y = (1 + 1)$
 - $y = 2^k$ and $k^{	ext{th}}$ bit of x is 1
 $\text{BIT}(x, y) \equiv \text{POWER}_2(y) \land \forall q \forall r (\text{INTDIV}(x, y, q, r) \Rightarrow \text{ODD}(q))$
Number Theory

- $y = 2^k$ and kth bit of x is 1

BIT(x, y) ≡ POWER(y) ∧ ∀q ∀r (INTDIV(x, y, q, r) ⇒ ODD(q))

$y = 1000000000$

$x = 101011010111001001001$

Proof systems

- Proof system components:
 - axioms (asserted to be true)
 - rules of inference (mechanical way to derive theorems from axioms)

- axioms for manipulating symbols (e.g.):
 - $(\phi \land \psi) \Rightarrow \phi$
 - $(\forall x \phi(x)) \Rightarrow \phi(1 + 1 + 1)$
 - $\forall x \forall y \forall z (x = y \land y = z \Rightarrow x = z)$
 - others...

Peano Arithmetic

- Peano Arithmetic: proof system for number theory. Axioms:
 - 0 is not a successor: $\forall x \neg(0 = x + 1)$
 - the successor function is one-to-one: $\forall x \forall y (x+1 = y+1 \Rightarrow x = y)$
 - 0 is an identity for +: $\forall x x + 0 = x$

Proof systems

- A sentence is a formula with no unquantified variables
 - every number has a successor: $\forall x \exists y y = x + 1$
 - every number has a predecessor: $\forall x \exists y y = x + 1$
 - not a sentence: $x + y = 1$

- "number theory" = set of true sentences
 - denoted Th(N)

Peano Arithmetic

- rules of inference:
 - modus ponens $\phi \quad \phi \Rightarrow \psi$
 - generalization $\phi \quad \forall x \phi$

- + is associative $\forall x \forall y (x + (y + 1) = (x + y) + 1$
- multiplying by zero gives 0 $\forall x x \cdot 0 = 0$
- * distributes over + $\forall x \forall y x \cdot (y + 1) = (x \cdot y) + x$
- induction axiom $(\phi(0) \land \forall x (\phi(x) \Rightarrow \phi(x+1))) \Rightarrow \forall x \phi(x)$
Proof systems

- a proof is a sequence of formulas $\phi_1, \phi_2, \phi_3, \ldots, \phi_n$ such that each ϕ_i is either
 - an axiom, or
 - follows from formulas earlier in list from rules of inference
- A sentence is a theorem of the proof system if it has a proof

Incompleteness Theorem

- Lemma: the set of theorems of PA is RE.
 - Proof:
 - TM that recognizes the set of theorems of PA:
 - systematically try all possible ways of writing down sequences of formulas
 - accept if encounter a proof of input sentence (note: true for any reasonable proof system)

- Theorem: Peano Arithmetic is not complete.
 (same holds for any reasonable proof system for number theory)
 - the set of theorems of PA is RE
 - the set of true sentences (= $\text{Th}(\mathbb{N})$) is not RE
 - $\text{Th}(\mathbb{N})$ is not RE
 - co-$\text{Th}(\mathbb{N})$ is not RE
 - what should $f(<M, w>)$ produce?
 - construct γ such that M loops on $w \iff \gamma$ is true
Incompleteness Theorem

- we will define
 \[VALCOMP_{M,w}(v) \equiv \ldots \] (details to come)
 so that it is true iff \(v \) is a (halting) computation history of \(M \) on input \(w \)
- then define \(f(<M,w>) \) to be:
 \[\gamma \equiv \neg \exists v \ VALCOMP_{M,w}(v) \]
 - YES maps YES?
 - \(<M,w> \in \text{co-HALT} \Rightarrow \gamma \text{ is true} \Rightarrow \gamma \in \text{Th} (\mathbb{N}) \)
 - NO maps to NO?
 - \(<M,w> \not\in \text{co-HALT} \Rightarrow \gamma \text{ is false} \Rightarrow \gamma \not\in \text{Th} (\mathbb{N}) \)

Expressing computation in the language of number theory

- we’ll write configurations over an alphabet of size \(p \), where \(p \) is a prime that depends on \(M \)

 - \(d \) is a power of \(p \):
 \[\text{POWER}_p(d) \equiv \forall z (\text{DIV}(z, d) \land \text{PRIME}(z)) \Rightarrow z = p \]
 - \(d = p^k \) and length of \(v \) as a \(p \)-ary string is \(k \)
 \[\text{LENGTH}(v, d) \equiv \text{POWER}_p(d) \land v < d \]

Expressing computation in the language of number theory

- the three \(p \)-ary digits of \(v \) at position \(y \) “match” the three \(p \)-ary digits of \(v \) at position \(z \) according to \(M \)’s transition function (assuming \(y \) and \(z \) are powers of \(p \)):
 \[\text{MATCH}(v, y, z) \equiv \bigvee_{(a,b,c,d,e,f) \in C} \text{DIGIT}(v, a, b, c) \land \text{DIGIT}(v, z, d, e, f) \]
 where \(C = \{(a,b,c,d,e,f) : \text{abc in config, C; can legally change to def in config, C_{i+1}} \} \)

Expressing computation in the language of number theory

- the three \(p \)-ary digits of \(v \) at position \(y \) “match” the three \(p \)-ary digits of \(v \) at position \(z \) according to \(M \)’s transition function (assuming \(y \) and \(z \) are powers of \(p \)):

 \[\text{MOVE}(v, c, d) \equiv \forall y (\text{POWER}_p(y) \land yppc < d) \Rightarrow \text{MATCH}(v, y, yc) \]

Expressing computation in the language of number theory

- Recall: basic building blocks
 - \(x < y \equiv \exists z \ x + z = y \land \neg(z = 0) \)
 - \(\text{INTDIV}(x, y, q, r) \equiv x = qy + r \land r < y \)
 - \(\text{DIV}(y, x) \equiv \exists q \text{ INTDIV}(x,y,q,0) \)
 - \(\text{PRIME}(x) \equiv x \geq (1+1) \land \forall y (\text{DIV}(y, x) \Rightarrow (y = 1 \lor y = x)) \)
Expressing computation in the language of number theory

– the string \(v \) starts with the start configuration of \(M \) on input \(w = w_1...w_n \) padded with blanks out to length \(c \) (assuming \(c \) is a power of \(p \)):

\[
\text{START}(v, c) \equiv \bigwedge_{i=0,1,2,3,...}^{p^n < c} \forall y (\text{POWER}(p^i, y) \land p^n < y < c \Rightarrow \text{DIGIT}(v, y, k))
\]

where \(k_0k_1k_2...k_n \) is the \(p \)-ary encoding of the start configuration, and \(k \) is the \(p \)-ary encoding of a blank symbol.

Expressing computation in the language of number theory

– string \(v \) has a halt state in it somewhere before position \(d \) (assuming \(d \) is power of \(p \)):

\[
\text{HALT}(v, d) \equiv \exists y (\text{POWER}(y) \land y < d \land \bigwedge_{a \in H} \text{DIGIT}(v, y, a))
\]

where \(H \) is the set of \(p \)-ary digits “containing” states \(q_{\text{accept}} \) or \(q_{\text{reject}} \).

Incompleteness Theorem

• Lemma: \(\text{Th}(N) \) is not RE

• Proof:
 – reduce from co-HALT (show co-HALT \(\leq_m \text{Th}(N) \))
 – recall co-HALT is not RE
 – constructed \(\gamma \) such that
 \[M \text{ loops on } w \iff \gamma \text{ is true} \]

Incompleteness Theorem

• Lemma: \(\text{Th}(N) \) is not RE

• Proof:
 – reduce from co-HALT (show co-HALT \(\leq_m \text{Th}(N) \))
 – recall co-HALT is not RE
 – constructed \(\gamma \) such that
 \[M \text{ loops on } w \iff \gamma \text{ is true} \]

Summary

• full-fledged model of computation: TM
• many equivalent models
• Church-Turing Thesis
• encoding of inputs
• Universal TM
Summary

• classes of problems:
 – decidable ("solvable by algorithms")
 – recursively enumerable (RE)
 – co-RE

• counting:
 – not all problems are decidable
 – not all problems are RE

Summary

• diagonalization: HALT is undecidable
• reductions: other problems undecidable
 – many examples
 – Rice’s Theorem
• natural problems that are not RE
• Recursion Theorem: non-obvious capability of TMs: printing out own description
• Incompleteness Theorem