CS21
Decidability and Tractability
Lecture 16-17
February 13 + 15, 2017
Outline

- Extended Church-Turing Thesis
- The complexity class P
 - examples of problems in P
- The complexity class EXP
- Time Hierarchy Theorem
- hardness and completeness
- an EXP-complete problem
Multitape TMs

• Convenient to “program” multitape TMs rather than single ones
 – equivalent when talking about decidability
 – not equivalent when talking about time complexity

Theorem: Let \(t(n) \) satisfy \(t(n) \geq n \). Every multi-tape TM running in time \(t(n) \) has an equivalent TM running in time \(O(t(n)^2) \).
Multitape TMs

simulation of k-tape TM by single-tape TM:

- add new symbol x for each old x
- marks location of “virtual heads”

(input tape)
Multitape TMs

Repeat: $O(t(n))$ times

• scan tape, remembering the symbols under each virtual head in the state

• make changes to reflect 1 step of M;

• if hit #, shift to right to make room.

$O(k \ t(n)) = O(t(n))$

when M halts, erase all but 1st string

$O(t(n))$
Multitape TMs

• Moral: feel free to use k-tape TMs, but be aware of slowdown in conversion to TM
 – note: if $t(n) = O(n^c)$ then $t(n)^2 = O(n^{2c}) = O(n^{c'})$
 – note: if $t(n) = O(2^{n\delta})$ for $\delta > 0$ then $t(n)^2 = O(2^{2n\delta}) = O(2^{n\delta'})$ for $\delta' > 0$

• high-level operations you are used to using can be simulated by TM with only polynomial slowdown
 – e.g., copying, moving, incrementing/decrementing, arithmetic operations $+,-,\times,/$
Extended Church-Turing Thesis

• the belief that TMs formalize our intuitive notion of an efficient algorithm is:

The “extended” Church-Turing Thesis

everything we can compute in time \(t(n) \)
on a physical computer can be computed on a Turing Machine in time \(t(n)^{O(1)} \) (polynomial slowdown)

• quantum computers challenge this belief
Time Complexity

• interested in a coarse classification of problems. For this purpose,
 – treat any polynomial running time as “efficient” or “tractable”
 – treat any exponential running time as inefficient or “intractable”

Key definition: “P” or “polynomial-time” is

\[P = \bigcup_{k \geq 1} \text{TIME}(n^k) \]
Time Complexity

• Why polynomial-time?
 – insensitive to particular deterministic model of computation chosen
 – closed under modular composition
 – empirically: qualitative breakthrough to achieve polynomial running time is followed by quantitative improvements from impractical (e.g. \(n^{100} \)) to practical (e.g. \(n^3 \) or \(n^2 \))
Examples of languages in P

• Recall: positive integers x, y are relatively prime if their Greatest Common Divisor (GCD) is 1.

• will show the following language is in P:
 \[\text{RELPRIME} = \{ <x, y> : x \text{ and } y \text{ are relatively prime} \} \]

• what is the running time of the algorithm that tries all divisors up to \(\min\{x, y\} \)?
Euclid’s Algorithm

- possibly earliest recorded algorithm

on input \(<x, y> \):
 - repeat until \(y = 0 \)
 - set \(x = x \mod y \)
 - swap \(x, y \)
 - \(x \) is the \(\text{GCD}(x, y) \). If \(x = 1 \), accept; otherwise reject

Example run on input \(<10, 22> \):

\[
\begin{align*}
x, y &= 10, 22 \\
x, y &= 22, 10 \\
x, y &= 10, 2 \\
x, y &= 2, 0
\end{align*}
\]

reject
Euclid’s Algorithm

• possibly earliest recorded algorithm

on input \(<x, y>\):
 • repeat until \(y = 0\)
 • set \(x = x \mod y\)
 • swap \(x, y\)
 • \(x\) is the GCD\((x, y)\). If \(x = 1\), accept; otherwise reject

Example run on input \(<24, 5>\):

\[
\begin{align*}
x, y &= 24, 5 \\
x, y &= 5, 4 \\
x, y &= 4, 1 \\
x, y &= 1, 0 \\
\text{accept}
\end{align*}
\]
Euclid’s Algorithm

on input \(<x, y>\):

1. repeat until \(y = 0\)
 2. set \(x = x \mod y\)
 3. swap \(x, y\)

\(x\) is the GCD\((x, y)\). If \(x = 1\), accept; otherwise reject

Claim: value of \(x\) reduced by \(\frac{1}{2}\) at every execution of (2) except possibly first one.

Proof:

1. after (2) \(x < y\)
2. after (3) \(x > y\)
3. if \(x/2 \geq y\), then \(x \mod y < y \leq x/2\)
4. if \(x/2 < y\), then \(x \mod y = x - y < x/2\)

\(\text{every 2 times through loop, (}x, y\) each reduced by \(1/2\)\)

\(\text{loops } \leq 2 \cdot \max\{\log_2 x, \log_2 y\} = O(n = |<x, y>|); \text{ poly time for each loop}\)
A puzzle

• Find an efficient algorithm to solve the following problem:
• Input: sequence of pairs of symbols
e.g. (A, b), (E, D), (d, C), (B, a)
• Goal: determine if it is possible to circle at least one symbol in each pair without circling upper and lower case of same symbol.
A puzzle

• Find an efficient algorithm to solve the following problem.
• Input: sequence of pairs of symbols
e.g. (A, b), (E, D), (d, C), (b, a)
• Goal: determine if it is possible to circle at least one symbol in each pair without circling upper and lower case of same symbol.
2SAT

- This is a disguised version of the language $2\text{SAT} = \{\text{formulas in Conjunctive Normal Form with 2 literals per clause for which there exists a satisfying truth assignment}\}$
 - CNF = “AND of ORs”

 \[(A, b), (E, D), (d, C), (b, a)\]
 \[(x_1 \lor \neg x_2) \land (x_5 \lor x_4) \land (\neg x_4 \lor x_3) \land (\neg x_2 \lor \neg x_1)\]

- satisfying truth assignment = assignment of TRUE/FALSE to each variable so that whole formula is TRUE
2SAT

Theorem: There is a polynomial-time algorithm deciding 2SAT ("2SAT \in P").

Proof: algorithm described on next slides.
Algorithm for 2SAT

- Build a graph with separate nodes for each literal.
 - add directed edge \((x, y)\) iff formula includes clause \((\neg x \lor y)\) or \((y \lor \neg x)\) (equiv. to \(x \implies y\))

\[(x_1 \lor \neg x_2) \land (x_5 \lor x_4) \land (\neg x_4 \lor x_3) \land (\neg x_2 \lor \neg x_1) \]
Algorithm for 2SAT

Claim: formula is unsatisfiable iff there is some variable \(x \) with a path from \(x \) to \(\neg x \) and a path from \(\neg x \) to \(x \) in derived graph.

• Proof (\(\equiv \))
 – edges represent implication \(\Rightarrow \). By transitivity of \(\Rightarrow \), a path from \(x \) to \(\neg x \) means \(x \Rightarrow \neg x \), and a path from \(\neg x \) to \(x \) means \(\neg x \Rightarrow x \).
Algorithm for 2SAT

• Proof (\Rightarrow)
 – to construct a satisfying assign. (if no x with a path from x to $\neg x$ and a path from $\neg x$ to x):
 • pick unassigned literal s with no path from s to $\neg s$
 • assign it TRUE, as well as all nodes reachable from it; assign negations of these literals FALSE
 • note: path from s to t and s to $\neg t$ implies path from $\neg t$ to $\neg s$ and t to $\neg s$, implies path from s to $\neg s$
 • note: path s to t (assigned FALSE) implies path from $\neg t$ (assigned TRUE) to $\neg s$, so s already assigned at that point.
Algorithm for 2SAT

• Algorithm:
 – build derived graph
 – for every pair $x, \neg x$ check if there is a path from x to $\neg x$ and from $\neg x$ to x in the graph

• Running time of algorithm (input length n):
 – $O(n)$ to build graph
 – $O(n)$ to perform each check
 – $O(n)$ checks
 – running time $O(n^2)$. 2SAT \in P.
Another puzzle

• Find an efficient algorithm to solve the following problem.
• Input: sequence of *triples* of symbols e.g. \((A, b, C), (E, D, b), (d, A, C), (c, b, a)\)
• Goal: determine if it is possible to circle at least one symbol in each *triple* without circling upper and lower case of same symbol.
3SAT

• This is a disguised version of the language

\[3\text{SAT} = \{\text{formulas in Conjunctive Normal Form with 3 literals per clause for which there exists a satisfying truth assignment}\}\]

\[\text{e.g. } (A, b, C), (E, D, b), (d, A, C), (c, b, a)\]
\[(x_1 \lor \neg x_2 \lor x_3) \land (x_5 \lor x_4 \lor \neg x_2) \land (\neg x_4 \lor x_1 \lor x_3) \land (\neg x_3 \lor \neg x_2 \lor \neg x_1)\]

• observe that this language is in \(\text{TIME}(2^n)\)
Key definition: “P” or “polynomial-time” is

\[P = \bigcup_{k \geq 1} \text{TIME}(n^k) \]

Definition: “EXP” or “exponential-time” is

\[\text{EXP} = \bigcup_{k \geq 1} \text{TIME}(2^{n^k}) \]
\[\text{EXP} \]

\[P = \bigcup_{k \geq 1} \text{TIME}(n^k) \]

\[\text{EXP} = \bigcup_{k \geq 1} \text{TIME}(2^{n^k}) \]

• Note: \(P \subseteq \text{EXP} \).

• We have seen 3SAT \(\in \text{EXP} \).

 – does not rule out possibility that it is in \(P \)

• Is \(P \) different from \(\text{EXP} \)?
Time Hierarchy Theorem

Theorem: For every proper complexity function \(f(n) \geq n: \)
\[
\text{TIME}(f(n)) \text{ } \text{ } \text{TIME}(f(2n)^3).
\]

- **Note:** \(P \subseteq \text{TIME}(2^n) \not\subseteq \text{TIME}(2^{(2n)^3}) \subseteq \text{EXP} \)
- Most natural functions (and \(2^n \) in particular) are proper complexity functions. We will ignore this detail in this class.
Time Hierarchy Theorem

Theorem: For every proper complexity function \(f(n) \geq n \):

\[
\text{TIME}(f(n)) \not\subseteq \text{TIME}(f(2n)^3).
\]

- Proof idea:
 - use diagonalization to construct a language that is not in \(\text{TIME}(f(n)) \).
 - constructed language comes with a TM that decides it and runs in time \(f(2n)^3 \).
Recall proof for Halting Problem

Turing Machines

inputs

box

(M, x): does M halt on x?

The existence of H which tells us yes/no for each box allows us to construct a TM H' that cannot be in the table.
Proof of Time Hierarchy Theorem

Turing Machines

box \ (M, x): \ does \ M \ accept \ x \ in \ time \ f(n) ?

- TM SIM tells us yes/no for each box in time g(n)
- rows include all of \ TIME(f(n))
- construct TM D running in time g(2n) that is not in table

D : \ n \ Y \ n \ Y \ Y \ n \ Y
Proof of Time Hierarchy Theorem

• Proof:
 – SIM is TM deciding language
 \[\{ <M, x> : M \text{ accepts } x \text{ in } \leq f(|x|) \text{ steps} \} \]
 – Claim: SIM runs in time \(g(n) = f(n)^3 \).
 – define new TM D: on input \(<M>\)
 • if SIM accepts \(<M, <M>>\), reject
 • if SIM rejects \(<M, <M>>\), accept
 – D runs in time \(g(2n) \)
Proof of Time Hierarchy Theorem

• Proof (continued):
 – suppose M in $\text{TIME}(f(n))$ decides $L(D)$
 • $M(<M>) = \text{SIM}(<M, <M>>) \neq D(<M>)$
 • but $M(<M>) = D(<M>)$
 – contradiction.
Proof of Time Hierarchy Theorem

• Claim: there is a TM SIM that decides
 \[\{<M, x> : M \text{ accepts } x \text{ in } \leq f(|x|) \text{ steps}\} \]
 and runs in time \(g(n) = f(n)^3 \).

• Proof sketch: SIM has 4 work tapes
 • contents and “virtual head” positions for M’s tapes
 • M’s transition function and state
 • \(f(|x|) \) “+”s used as a clock
 • scratch space
Proof of Time Hierarchy Theorem

- Proof sketch (continued): 4 work tapes
 - contents and “virtual head” positions for M’s tapes
 - M’s transition function and state
 - $f(|x|)$ “+”s used as a clock
 - scratch space
- initialize tapes
- simulate step of M, advance head on tape 3; repeat.
- can check running time is as claimed.
So far…

- We have defined the complexity classes P (polynomial time), EXP (exponential time)
Poly-time reductions

• Type of reduction we will use:
 – “many-one” poly-time reduction (commonly)
 – “mapping” poly-time reduction (book)
Poly-time reductions

- function f should be **poly-time computable**

Definition: $f : \Sigma^* \rightarrow \Sigma^*$ is **poly-time computable** if for some $g(n) = n^{O(1)}$ there exists a $g(n)$-time TM M_f such that on every $w \in \Sigma^*$, M_f halts with $f(w)$ on its tape.
Poly-time reductions

Definition: $A \leq_p B$ (“A reduces to B”) if there is a poly-time computable function f such that for all w

$$w \in A \iff f(w) \in B$$

- as before, condition equivalent to:
 - YES maps to YES and NO maps to NO
- as before, meaning is:
 - B is at least as “hard” (or expressive) as A
Poly-time reductions

Theorem: if $A \leq_P B$ and $B \in P$ then $A \in P$.

Proof:

– a poly-time algorithm for deciding A:
 – on input w, compute $f(w)$ in poly-time.
 – run poly-time algorithm to decide if $f(w) \in B$
 – if it says “yes”, output “yes”
 – if it says “no”, output “no”
Example

- $2\text{SAT} = \{\text{CNF formulas with 2 literals per clause for which there exists a satisfying truth assignment}\}$
- $L = \{\text{directed graph } G, \text{ and list of pairs of vertices } (u_1, v_1), (u_2, v_2), \ldots, (u_k, v_k), \text{ such that there is no } i \text{ for which } [u_i \text{ is reachable from } v_i \text{ in } G \text{ and } v_i \text{ is reachable from } u_i \text{ in } G]\}$
- We gave a poly-time reduction from 2SAT to L.
- determined that $2\text{SAT} \in \text{P}$ from fact that $L \in \text{P}$
Hardness and completeness

• Reasonable that can efficiently transform one problem into another.

• Surprising:
 – can often find a special language L so that every language in a given complexity class reduces to L!
 – powerful tool
Hardness and completeness

• Recall:
 – a language L is a set of strings
 – a complexity class C is a set of languages

Definition: a language L is **C-hard** if for every language $A \in C$, A poly-time reduces to L; i.e., $A \leq_{P} L$.

meaning: L is at least as “hard” as anything in C
Hardness and completeness

• Recall:
 – a language L is a set of strings
 – a complexity class C is a set of languages

Definition: a language L is C-complete if L is C-hard and L ∈ C

meaning: L is a “hardest” problem in C
An EXP-complete problem

• Version of A_{TM} with a time bound:

$$ATM_B = \{<M, x, m> : M \text{ is a TM that accepts } x \text{ within at most } m \text{ steps}\}$$

Theorem: ATM_B is EXP-complete.

Proof:
– what do we need to show?
An EXP-complete problem

- \(\text{ATM}_B = \{<M, x, m> : M \text{ is a TM that accepts } x \text{ within at most } m \text{ steps}\} \)

- Proof that \(\text{ATM}_B \) is EXP-complete:
 - Part 1. Need to show \(\text{ATM}_B \in \text{EXP} \).
 - simulate \(M \) on \(x \) for \(m \) steps; accept if simulation accepts; reject if simulation doesn’t accept.
 - running time \(m^{O(1)} \).
 - \(n = \text{length of input} \geq \log_2 m \)
 - running time \(\leq m^k = 2^{(\log m)^k} \leq 2^{(kn)} \)
An EXP-complete problem

• ATM_B = {<M, x, m> : M is a TM that accepts x within at most m steps}

• Proof that ATM_B is EXP-complete:
 – Part 2. For each language A ∈ EXP, need to give poly-time reduction from A to ATM_B.
 – for a given language A ∈ EXP, we know there is a TM M_A that decides A in time g(n) ≤ 2^{n^k} for some k.
 – what should reduction f(w) produce?
An EXP-complete problem

- \(\text{ATM}_B = \{ <M, x, m> : M \text{ is a TM that accepts } x \text{ within at most } m \text{ steps} \} \)

- Proof that \(\text{ATM}_B \) is EXP-complete:
 - \(f(w) = <M_A, w, m> \) where \(m = 2^{|w|^k} \)
 - is \(f(w) \) poly-time computable?
 * hardcode \(M_A \) and \(k \)...
 - YES maps to YES?
 * \(w \in A \Rightarrow <M_A, w, m> \in \text{ATM}_B \)
 - NO maps to NO?
 * \(w \notin A \Rightarrow <M_A, w, m> \notin \text{ATM}_B \)
An EXP-complete problem

• A C-complete problem is a surrogate for the entire class C.
• For example: if you can find a poly-time algorithm for ATM_B then there is automatically a poly-time algorithm for every problem in EXP (i.e., EXP = P).

• Can you find a poly-time alg for ATM_B?
An EXP-complete problem

• Can you find a poly-time alg for ATM_B?
• NO! we showed that P \subsetneq EXP.
• ATM_B is not tractable (intractable).
Back to 3SAT

• Remember $3\text{SAT} \in \text{EXP}$

$3\text{SAT} = \{\text{formulas in CNF with 3 literals per clause for which there exists a satisfying truth assignment}\}$

• It seems hard. Can we show it is intractable?
 – formally, can we show 3SAT is EXP-complete?
Back to 3SAT

• can we show 3SAT is EXP-complete?

• Don’t know how to. Believed unlikely.

• One reason: there is an important positive feature of 3SAT that doesn’t seem to hold for problems in EXP (e.g. ATM_B):

\[
\text{3SAT is decidable in polynomial time by a nondeterministic TM}
\]
Nondeterministic TMs

• Recall: nondeterministic TM
• informally, TM with several possible next configurations at each step
• formally, A NTM is a 7-tuple
 \[(Q, \Sigma, \Gamma, \delta, q_0, q_{\text{accept}}, q_{\text{reject}})\] where:
 – everything is the same as a TM except the transition function:
 \[\delta : Q \times \Gamma \rightarrow \powerset(Q \times \Gamma \times \{L, R\})\]
Nondeterministic TMs

visualize computation of a NTM M as a tree

- nodes are configurations
- leaves are accept/reject configurations
- M accepts if and only if there exists an accept leaf
- M is a decider, so no paths go on forever
- running time is max. path length
The class NP

Definition: \(\text{TIME}(t(n)) = \{L : \text{there exists a TM } M \text{ that decides } L \text{ in time } O(t(n))\} \)

\[
P = \bigcup_{k \geq 1} \text{TIME}(n^k)
\]

Definition: \(\text{NTIME}(t(n)) = \{L : \text{there exists a NTM } M \text{ that decides } L \text{ in time } O(t(n))\} \)

\[
\text{NP} = \bigcup_{k \geq 1} \text{NTIME}(n^k)
\]
NP in relation to P and EXP

- \(P \subseteq NP \) (poly-time TM is a poly-time NTM)
- \(NP \subseteq EXP \)
 - configuration tree of \(n^k \)-time NTM has \(\leq b^{nk} \) nodes
 - can traverse entire tree in \(O(b^{nk}) \) time

we do not know if either inclusion is proper