Rice’s Theorem

- We have seen that the following properties of TM’s are undecidable:
 - TM accepts string w
 - TM halts on input w
 - TM accepts the empty language
 - TM accepts a regular language
- Can we describe a single generic reduction for all these proofs?
- Yes. Every property of TMs undecidable!

Rice’s Theorem: Every nontrivial TM property is undecidable.

Proof:
- reduce from A_{TM} (i.e. show $A_{TM} \leq_{m} P$)
- what should $f(<M, w>)$ produce?
- $f(<M, w>) = <M’>$ described below:

<table>
<thead>
<tr>
<th>on input x,</th>
</tr>
</thead>
<tbody>
<tr>
<td>accept if M accepts w</td>
</tr>
<tr>
<td>and $M’$ accepts x</td>
</tr>
<tr>
<td>(intersection of two RE languages)</td>
</tr>
</tbody>
</table>

- f computable?
- YES maps to YES?
 - $<M, w> \in A_{TM} \Rightarrow L(M) \neq L(M’)$
 - $f(M, w) \in P$
Post Correspondence Problem

Proof: reduce from \(A_{TM} \) (i.e. show \(A_{TM} \subseteq PCP \))
- what should \(f(M, w) \) produce?
- \(f(M, w) = \langle M' \rangle \) described below:

• NO maps to NO?
 \(\langle M, w \rangle \in A_{TM} \Rightarrow L(M, w) = L(TM) \Rightarrow f(M, w) \notin P \)

经典例子：Post Correspondence Problem

\[PCP = \{ \langle x_1, y_1 \rangle, \langle x_2, y_2 \rangle, \ldots, \langle x_n, y_n \rangle \} : \]
\[x_i, y_i \in \Sigma^* \text{ and there exists } (a_1, a_2, \ldots, a_n) \text{ for which } x_1x_2 \ldots x_n = y_1y_2 \ldots y_n \]

Rice's Theorem

Proof:
- reduce from \(A_{TM} \) (i.e. show \(A_{TM} \subseteq \text{P} \))
- what should \(f(M, w) \) produce?
- \(f(M, w) = \langle M' \rangle \) described below:

• NO maps to NO?
 \(\langle M, w \rangle \in A_{TM} \Rightarrow L(M, w) = L(TM) \Rightarrow f(M, w) \notin P \)

MPCP = \{ \langle x_1, y_1 \rangle, \langle x_2, y_2 \rangle, \ldots, \langle x_n, y_n \rangle \} :
\[x_i, y_i \in \Sigma^* \text{ and there exists } (a_1, a_2, \ldots, a_n) \text{ for which } x_1x_2 \ldots x_n = y_1y_2 \ldots y_n \]

Proof of MPCP \(\subseteq \text{P} \) PCP:
- notation: for a string \(u = u_1u_2u_3 \ldots u_n \)
 - \(x_u \) means the string \(x_{u_1}x_{u_2}x_{u_3} \ldots x_{u_n} \)
 - \(y_u \) means the string \(y_{u_1}y_{u_2}y_{u_3} \ldots y_{u_n} \)
- given a match in original MPCP instance, can produce a match in the new PCP instance
- for \(N \) maps to NO?
 - given a match in the new PCP instance, can produce a match in the original MPCP instance

Post Correspondence Problem

Theorem: PCP is undecidable.

Proof:
- reduce from \(A_{TM} \) (i.e. show \(A_{TM} \subseteq \text{PCP} \))
- two step reduction makes it easier
- first, show \(A_{TM} \subseteq \text{MPCP} \)
 (MPCP = "modified PCP"
- next, show \(\text{MPCP} \subseteq \text{PCP} \)

- classic example: Post Correspondence Problem

\[PCP = \{ \langle x_1, y_1 \rangle, \langle x_2, y_2 \rangle, \ldots, \langle x_n, y_n \rangle \} : \]
\[x_i, y_i \in \Sigma^* \text{ and there exists } (a_1, a_2, \ldots, a_n) \text{ for which } x_1x_2 \ldots x_n = y_1y_2 \ldots y_n \]
CS21 Lecture 15

Post Correspondence Problem

Theorem: PCP is undecidable.

Proof:
- show $A_{TM} \leq_m$ MPCP

 $$\text{MPCP} = \langle (x_i, y_i), (x_0, y_0), \ldots, (x_n, y_n) \rangle$$

 where $x_i, y_i \in \Sigma^*$ and there exists (a_0, a_1, \ldots, a_n) for which $x_0x_1x_2\ldots x_n = y_0y_1y_2\ldots y_n$

- show MPCP \leq_m PCP

Proof of $A_{TM} \leq_m$ MPCP:
- given instance of A_{TM}: $\langle M, w \rangle$
- idea: a match will record an accepting computation history for M on input w
- start tile records starting configuration:
 - add tile $(\#, \#qaww\ldots\#w\#)$

- tiles for head motions to the right:
 - for all $a, b \in \Gamma$ and all $q, r \in Q$ with $q \neq q_{start}$, if $\delta(q, a) = (r, b, R)$, add tile (qa, br)

- tiles for head motions to the left:
 - for all $a, b, c \in \Gamma$ and all $q, r \in Q$ with $q \neq q_{start}$, if $\delta(q, a) = (r, b, L)$, add tile (ca, rcb)

- tiles for copying (not near head)
 - for all $a \in \Gamma$, add tile (a, a)

- tiles for copying # marker
 - add tile $(\#, \#)$

- tiles for copying # marker and adding _ to end of tape
 - add tile $(\#, _$)
Post Correspondence Problem

- tiles for deleting symbols to left of q_{accept}
 - for all $a \in \Gamma$, add tile $(a q_{\text{accept}}, q_{\text{accept}})$

- tiles for deleting symbols to right of q_{accept}
 - for all $a \in \Gamma$, add tile $(q_{\text{accept}} a, q_{\text{accept}})$

- tiles for completing the match
 - for all $a \in \Gamma$, add tile $(q_{\text{accept}} a, q_{\text{accept}})$

-- YES maps to YES?
 - by construction, if M accepts w, there is a way to assemble the tiles to achieve this match:

- NO maps to NO?
 - sketch: at any step if the "intended" next tile is not used, then it is impossible to recover and produce a match in the end (case analysis)

Beyond RE and co-RE

- We saw (by a counting argument) that there is some language that is neither RE nor co-RE.
- We will prove this for a natural language: $\text{EQ}_{TM} = \{<M_1, M_2> : L(M_1) = L(M_2)\}$
- Recall:
 - A_{TM} is undecidable, but RE
 - co-A_{TM} is undecidable, but coRE

We have proved:

Theorem: PCP is undecidable.

by showing:
- $A_{TM} \leq_{m} \text{MPCP}$
- $\text{MPCP} \leq_{m} \text{PCP}$
- conclude $A_{TM} \leq_{m} \text{PCP}$
Beyond RE and co-RE

Theorem: EQ_{TM} is neither RE nor coRE.

Proof:
- not RE:
 - reduce from co-A$_{TM}$ (i.e. show co-A$_{TM}$ \leq_m EQ_{TM})
 - what should $f(<M, w>)$ produce?
- not co-RE:
 - reduce from A$_{TM}$ (i.e. show A$_{TM}$ \leq_m EQ_{TM})
 - what should $f(<M, w>)$ produce?

Beyond RE and co-RE

Proof (A_{TM} \leq_m EQ_{TM})

- $f(<M, w>) = <M_1, M_2>$ described below:

 TM M_1:
 - on input x,
 - accept

 TM M_2:
 - on input x,
 - simulate M on input w
 - accept if M accepts w

 - YES maps to YES?
 - $<M, w> \in A_{TM}$ \Rightarrow $L(M_1) = \Sigma^*$ and $L(M_2) = \Sigma^*$ \Rightarrow $f(<M, w>) \in EQ_{TM}$
 - NO maps to NO?
 - $<M, w> \notin A_{TM}$ \Rightarrow $L(M_1) = \Sigma^*$ and $L(M_2) = \emptyset$ \Rightarrow $f(<M, w>) \notin EQ_{TM}$

Beyond RE and co-RE

Proof (co-A$_{TM}$ \leq_m EQ_{TM})

- $f(<M, w>) = <M_1, M_2>$ described below:

 TM M_1:
 - on input x,
 - reject

 TM M_2:
 - on input x,
 - simulate M on input w
 - accept if M accepts w

 - YES maps to YES?
 - $<M, w> \in$ co-A$_{TM}$ \Rightarrow $L(M_1) = \emptyset$ and $L(M_2) = \emptyset$ \Rightarrow $f(<M, w>) \in EQ_{TM}$
 - NO maps to NO?
 - $<M, w> \notin$ co-A$_{TM}$ \Rightarrow $L(M_1) = \Sigma^*$ and $L(M_2) = \Sigma^*$ \Rightarrow $f(<M, w>) \notin EQ_{TM}$

Summary

- regular languages
- context free languages
- all languages
- RE
- PCP
- some language
- co-RE
- co-HALT
- decidable
- $\{a^nb^n: n \geq 0\}$
- HALT
- $\{a^nb^nc^n: n \geq 0\}$

The Recursion Theorem

- A very useful, and non-obvious, capability of Turing Machines:
 - in the course of computation, can print out a description of itself!
 - why is this useful?
 - example: slick proof that A_{TM} undecidable
 - assume TM M decides A_{TM}
 - construct machine M' as follows:

 on input x:
 - obtain own description $<M>$
 - run M on input $<M, x>$
 - if M accepts, reject. if M rejects, accept.

 - if M' on input x:
 - accepts, then M rejects $<M', x>$, but then M' does not accept!
 - rejects, then M accepts $<M', x>$, but then M' accepts!
The Recursion Theorem

• Lemma: there is a computable function
 \(q: \Sigma^* \rightarrow \Sigma^* \)
such that \(q(w) \) is a description of a TM \(P_w \) that prints out \(w \) and then halts.

• Proof:
 – on input \(w \), construct TM \(P_w \) that has \(w \) hard-coded into it; output \(<P_w> \).

The Recursion Theorem

• Warm-up: produce a TM SELF that prints out its own description.

• Two parts:
 – Part A:
 • output a description of B
 • pass control to B.
 – Part B:
 • prepend a description of A
 • done

The Recursion Theorem

– Part A:
 • output a description of B
 • pass control to B.
– Part B:
 • prepend a description of A
 • done

Note: \(<A> = q() \)
Recall: \(q(w) \) is a description of a TM \(P_w \) that prints out \(w \) and then halts.

The Recursion Theorem

– watch closely as TM AB runs:
 – A runs. Tape contents: \(\)
 – B runs. Tape contents: \(q() = <AB> \)
 – AB is our desired machine SELF.