CS21
Decidability and Tractability
Lecture 14
February 5, 2021

Outline
• undecidable problems
 – computation histories
 – surprising contrasts between decidable/undecidable
• Rice’s Theorem
• Post Correspondence Problem

Dec. and undec. problems
• two problems regarding Context-Free Grammars:
 – does a CFG generate all strings:
 \(\text{ALL}_{\text{CFG}} = \{ <G> : G \text{ is a CFG and } L(G) = \Sigma^* \} \)
 – CFG emptiness:
 \(\text{E}_{\text{CFG}} = \{ <G> : G \text{ is a CFG and } L(G) = \emptyset \} \)

Dec. and undec. problems

Theorem: \(\text{E}_{\text{CFG}} \) is decidable.

Proof:
– observation: for each nonterminal \(A \), the set
 \(S_A = \{ w : A \Rightarrow^* w \} \)
 is non-empty iff there is some rule:
 \(A \rightarrow x \)
 and for all non-terminals \(B \) in string \(x \), \(S_B \neq \emptyset \)

Dec. and undec. problems

Theorem: \(\text{ALL}_{\text{CFG}} \) is undecidable.

Proof:
– reduce from co-\(A_{\text{TM}} \) (i.e. show co-\(A_{\text{TM}} \leq_m \text{ALL}_{\text{CFG}} \))
– what should \(f(<M, w>) \) produce?
– Idea:
 • produce CFG \(G \) that generates all strings that are not accepting computation histories of \(M \) on \(w \)

Dec. and undec. problems

Proof:
– on input <\(G \)>
– mark all terminals in \(G \)
– repeat until no new non-terminals get marked:
 • if there is a production \(A \rightarrow x_1x_2...x_n \)
 • and each symbol \(x_1, x_2, ..., x_n \) has been marked
 • then mark \(A \)
 – if \(S \) marked, reject (\(G \notin \text{E}_{\text{CFG}} \)), else accept (\(G \in \text{E}_{\text{CFG}} \)).
 – terminates? correct?
Dec. and undec. problems

Proof:
– build a NPDA, then convert to CFG
– want to accept strings not of this form,
 \#C₁\#C₂\#C₃\#...\#Cₖ\#
 plus strings of this form but where
 • C₁ is not the start config. of M on input w, or
 • Cₖ is not an accept. config. of M on input w, or
 • Cᵢ does not yield in one step Cᵢ₊₁ for some i

Dec. and undec. problems

Proof:
– our NPDA nondeterministically checks one of:
 • C₁ is not the start config. of M on input w, or
 • Cₖ is not an accept. config. of M on input w, or
 • Cᵢ does not yield in one step Cᵢ₊₁ for some i
 • input has fewer than two #'s
 – details of first two?
 – to check third condition:
 • nondeterministically guess Cᵢ starting position
 • how to check that Cᵢ doesn’t yield in 1 step Cᵢ₊₁?

Dec. and undec. problems

Proof:
– checking:
 • Cᵢ does not yield in one step Cᵢ₊₁, for some i
 – push Cᵢ onto stack
 – at #, start popping Cᵢ and compare to Cᵢ₊₁
 • accept if mismatch away from head location, or
 • symbols around head changed in a way inconsistent with M’s transition function.
 – is everything described possible with NPDA?

Dec. and undec. problems

Proof:
– f(<M, w>) = <G> equiv. to NPDA below:
 on input x, accept if not of form:
 \#C₁\#C₂\#C₃\#...\#Cₖ\#
 • is f computable?
 • YES maps to YES?
 • <M, w> ∈ co-\text{A_{TM}} ⇒ f(M, w) ∈ \text{ALL}_{CFG}
 • NO maps to NO?
 • <M, w> ∈ co-\text{A_{TM}} ⇒ f(M, w) ∈ \text{ALL}_{CFG}

Dec. and undec. problems

Rice’s Theorem

• We have seen that the following properties of TM’s are undecidable:
 – TM accepts string w
 – TM halts on input w
 – TM accepts the empty language
 – TM accepts a regular language
• Can we describe a single generic reduction for all these proofs?
 • Yes. Every property of TMs undecidable!
Rice’s Theorem

- A **TM property** is a language P for which
 - if $L(M_1) = L(M_2)$ then $<M_1> \in P$ iff $<M_2> \in P$
- TM property P is **nontrivial** if
 - there exists a TM M_1 for which $<M_1> \in P$, and
 - there exists a TM M_2 for which $<M_2> \notin P$.

Rice’s Theorem: Every nontrivial TM property is undecidable.

Rice’s Theorem

Proof:

- reduce from A_{TM} (i.e. show $A_{TM} \leq_m P$)
- what should $f(<M, w>)$ produce?
- $f(<M, w>) = <M’>$ described below:
 - on input x,
 - accept iff M accepts w and M_1 accepts x
 - (intersection of two RE languages)

 - f computable?
 - YES maps to YES?
 - $<M, w> \in A_{TM}$ ⇒ $L(f(M, w)) = L(M_1)$ ⇒ $f(M, w) \in P$

Post Correspondence Problem

- **Post Correspondence Problem**
 - many undecidable problems unrelated to TMs and automata
 - classic example: Post Correspondence Problem
 $$PCP = \{<x_1, y_1>, (x_2, y_2), \ldots, (x_k, y_k)> : x_i, y_i \in \Sigma^* \text{ and there exists } (a_1, a_2, \ldots, a_n) \text{ for which } x_1x_2\cdots x_n = y_1y_2\cdots y_n\}$$

Post Correspondence Problem

$$PCP = \{<x_1, y_1>, (x_2, y_2), \ldots, (x_k, y_k)> : x_i, y_i \in \Sigma^* \text{ and there exists } (a_1, a_2, \ldots, a_n) \text{ for which } x_1x_2\cdots x_n = y_1y_2\cdots y_n\}$$

- $x_1, x_2, x_3, y_1, y_2, y_3$ are the "tiles"
- $y_1y_2y_3y_4y_5$ is the "match"