CS21
Decidability and Tractability

Lecture 14
February 4, 2022

Outline

• many-one reductions
• undecidable problems
 – computation histories
 – surprising contrasts between decidable/undecidable
• Rice’s Theorem
• Post Correspondence Problem

Definition of reduction

• More refined notion of reduction:
 – "many-one" reduction (commonly)
 – "mapping" reduction (book)

A

f

yes

no

B

f

yes

no

reduction from language A to language B

Undecidable problems

Theorem: The language
REGULAR = {<M>: M is a TM and L(M) is regular}
is undecidable.

Proof:
– reduce from A_TM (i.e. show A_TM ≤_m REGULAR)
– what should f(<M, w>) produce?

Undecidable problems

Proof:
– f(<M, w>) = <M'> described below

on input x:
• if x has form 0^n1^n, accept
• else simulate M on w
and accept x if M accepts

Dec. and undec. problems

• the boundary between decidability and undecidability is often quite delicate
 – seemingly related problems
 – one decidable
 – other undecidable

• We will see two examples of this phenomenon next.
Computation histories

- Recall configuration of a TM: string uqv with $u,v \in \Gamma^*$, $q \in Q$
- The sequence of configurations M goes through on input w is a computation history of M on input w
 - may be accepting, or rejecting
 - reserve the term for halting computations
 - nondeterministic machines may have several computation histories for a given input.

Linear Bounded Automata

LBA definition: TM that is prohibited from moving head off right side of input.
- machine prevents such a move, just like a TM prevents a move off left of tape
- How many possible configurations for a LBA M on input w with $|w| = n$, m states, and $p = |\Gamma|$?
 - counting gives: mnp^n

Dec. and undec. problems

- two problems we have seen with respect to TMs, now regarding LBAs:
 - LBA acceptance: $A_{LBA} = \{<M, w> : \text{LBA } M \text{ accepts input } w\}$
 - LBA emptiness: $E_{LBA} = \{<M> : \text{LBA } M \text{ has } L(M) = \emptyset\}$
- Both decidable? both undecidable? one decidable?

Dec. and undec. problems

Theorem: A_{LBA} is decidable.

Proof: input $<M, w>$ where M is a LBA
- key: only mnp^n configurations
- if M hasn’t halted after this many steps, it must be looping forever.
- simulate M for mnp^n steps
- if it halts, accept or reject accordingly,
 - else reject since it must be looping

Dec. and undec. problems

Theorem: E_{LBA} is undecidable.

Proof: reduce from co-A_{TM} (i.e. show co-$A_{TM} \leq_m E_{LBA}$)
- what should $f(<M, w>)$ produce?
- Idea:
 - produce LBA B that accepts exactly the accepting computation histories of M on input w

Dec. and undec. problems

Proof:
- $f(<M, w>) = $ described below
 - on input x, check if x has form $\#C_1\#C_2\#C_3\#...\#C_k\#$
 - check that C_1 is the start configuration for M on input w
 - check that $C_k \Rightarrow C_{k+1}$
 - check that C_k is an accepting configuration for M

 - is B an LBA?
 - is f computable?
 - YES maps to YES? $<M, w> \in \text{co-}A_{TM} \Rightarrow f(M, w) \in E_{LBA}$
 - NO maps to NO? $<M, w> \in \text{co-}A_{TM} \Rightarrow f(M, w) \notin E_{LBA}$
Dec. and undec. problems

- two problems regarding Context-Free Grammars:
 - does a CFG generate all strings:
 \(\text{ALL}_{\text{CFG}} = \{ \langle G \rangle : G \text{ is a CFG and } L(G) = \Sigma^* \} \)
 - CFG emptiness:
 \(\text{E}_{\text{CFG}} = \{ \langle G \rangle : G \text{ is a CFG and } L(G) = \emptyset \} \)

- Both decidable? both undecidable? one decidable?

Theorem: \(\text{E}_{\text{CFG}} \) is decidable.

Proof:
- observation: for each nonterminal \(A \), the set \(S_A = \{ w : A \Rightarrow^* w \} \) is non-empty iff there is some rule: \(A \to x \) and for all non-terminals \(B \) in string \(x \), \(S_B \neq \emptyset \)
- on input \(\langle G \rangle \)
 - mark all terminals in \(G \)
 - repeat until no new non-terminals get marked:
 - if there is a production \(A \to x_1x_2x_3 \ldots x_k \)
 - and each symbol \(x_1, x_2, \ldots, x_k \) has been marked
 - then mark \(A \)
 - if \(S \) marked, reject (\(G \notin \text{E}_{\text{CFG}} \)), else accept (\(G \in \text{E}_{\text{CFG}} \)).
- terminates? correct?

Theorem: \(\text{ALL}_{\text{CFG}} \) is undecidable.

Proof:
- reduce from \(\text{co-} \text{A}_{\text{TM}} \) (i.e. show \(\text{co-} \text{A}_{\text{TM}} \leq_m \text{ALL}_{\text{CFG}} \))
- what should \(f(<M, w>) \) produce?
- Idea:
 - produce CFG \(G \) that generates all strings that are not accepting computation histories of \(M \) on \(w \)

Dec. and undec. problems

Proof:
- build a NPDA, then convert to CFG
- want to accept strings not of this form,

\[\#C_1\#C_2\#C_3\# \ldots \#C_n\# \]

plus strings of this form but where
- \(C_1 \) is not the start config. of \(M \) on input \(w \), or
- \(C_n \) is not an accept. config. of \(M \) on input \(w \), or
- \(C_i \) does not yield in one step \(C_{i+1} \) for some \(i \)

Dec. and undec. problems

Proof:
- checking:
 - C_i does not yield in one step C_{i+1} for some i
 - push C_i onto stack
 - at $\#$, start popping C_i and compare to C_{i+1}
 - accept if mismatch away from head location, or
 - symbols around head changed in a way inconsistent with M’s transition function.
 - is everything described possible with NPDA?

Dec. and undec. problems

Proof:
- Problem: cannot compare C_i to C_{i+1}
- could prove in same way that proved
 $\{ww: w \in \Sigma^*\}$ not context-free
- recall that
 $\{ww^R: w \in \Sigma^*\}$ is context-free
- free to tweak construction of G in the reduction
- solution: write computation history:
 \[
 \#C_1\#C_2\#\#C_3\#\#C_4\#\ldots\#C_k\#
 \]

Dec. and undec. problems

Proof:
- $f(<M, w>) = <G>$ equiv. to NPDA below:
 on input x, accept if not of form:
 \[
 \#C_1\#C_2\#\#C_3\#\#C_4\#\ldots\#C_k\#
 \]
 - accept if C_1 is the not the start configuration for M on input w
 - accept if check that C_i does not yield in one step C_{i+1}
 - accept if C_k is not an accepting configuration for M
 - is f computable?
 - YES maps to YES?
 - $<M, w> \in \text{co-}\text{A}_{TM} \Rightarrow f(M, w) \in \text{ALL}_{CFG}$
 - NO maps to NO?
 - $<M, w> \in \text{co-}\text{A}_{TM} \Rightarrow f(M, w) \not\in \text{ALL}_{CFG}$