Outline

• undecidable problems
 – computation histories
 – surprising contrasts between decidable/undecidable

• Rice’s Theorem

• Post Correspondence Problem
Dec. and undec. problems

• the boundary between decidability and undecidability is often quite delicate
 – seemingly related problems
 – one decidable
 – other undecidable

• We will see two examples of this phenomenon next.
Computation histories

• Recall configuration of a TM: string uqv with $u,v \in \Gamma^*$, $q \in Q$

• The sequence of configurations M goes through on input w is a computation history of M on input w
 – may be accepting, or rejecting
 – reserve the term for halting computations
 – nondeterministic machines may have several computation histories for a given input.
Linear Bounded Automata

LBA definition: TM that is prohibited from moving head off right side of input.
 – machine prevents such a move, just like a TM prevents a move off left of tape

• How many possible configurations for a LBA M on input w with \(|w| = n\), \(m \) states, and \(p = |\Gamma|\)?
 – counting gives: \(mnp^n\)
Dec. and undec. problems

• two problems we have seen with respect to TMs, now regarding LBAs:
 – LBA acceptance:
 \[A_{\text{LBA}} = \{<M, w> : \text{LBA } M \text{ accepts input } w\} \]
 – LBA emptiness:
 \[E_{\text{LBA}} = \{<M> : \text{LBA } M \text{ has } L(M) = \emptyset\} \]
• Both decidable? both undecidable? one decidable?
Dec. and undec. problems

Theorem: A_{LBA} is decidable.

Proof:
- input $<M, w>$ where M is a LBA
- key: only mnp^n configurations
- if M hasn’t halted after this many steps, it must be looping forever.
- simulate M for mnp^n steps
- if it halts, accept or reject accordingly,
- else reject since it must be looping
Dec. and undec. problems

Theorem: E_{LBA} is undecidable.

Proof:
– reduce from co-A_{TM} (i.e. show co-$A_{TM} \leq_m E_{LBA}$)
– what should $f(<M, w>)$ produce?
– Idea:
 • produce LBA B that accepts exactly the accepting computation histories of M on input w
Dec. and undec. problems

Proof:

– $f(<M, w>) = $ described below

on input x, check if x has form

$\#C_1\#C_2\#C_3\#\ldots\#C_k\#$

• check that C_1 is the start configuration for M on input w

• check that $C_i \Rightarrow C_{i+1}$

• check that C_k is an accepting configuration for M

• is B an LBA?

• is f computable?

• YES maps to YES?

$<M, w> \in \text{co-}A_{TM} \Rightarrow f(M, w) \in E_{LBA}$

• NO maps to NO?

$<M, w> \notin \text{co-}A_{TM} \Rightarrow f(M, w) \notin E_{LBA}$
Dec. and undec. problems

- two problems regarding Context-Free Grammars:
 - does a CFG generate all strings:
 $$\text{ALL}_{\text{CFG}} = \{<G> : G \text{ is a CFG and } L(G) = \Sigma^*\}$$
 - CFG emptiness:
 $$\text{E}_{\text{CFG}} = \{<G> : G \text{ is a CFG and } L(G) = \emptyset\}$$

- Both decidable? both undecidable? one decidable?
Dec. and undec. problems

Theorem: E_{CFG} is decidable.

Proof:

– observation: for each nonterminal A, the set

 $$S_A = \{w : A \Rightarrow^* w\}$$

 is non-empty iff there is some rule:

 $$A \rightarrow x$$

 and for all non-terminals B in string x, $S_B \neq \emptyset$
Dec. and undec. problems

Proof:
– on input <G>
– mark all terminals in G
– repeat until no new non-terminals get marked:
 • if there is a production $A \rightarrow x_1 x_2 x_3 \ldots x_k$
 • and each symbol x_1, x_2, ..., x_k has been marked
 • then mark A
– if S marked, reject ($G \notin E_{CFG}$), else accept ($G \in E_{CFG}$).
– terminates? correct?
Dec. and undec. problems

Theorem: ALL\textsubscript{CFG} is undecidable.

Proof:

– reduce from co-A\textsubscript{TM} (i.e. show co-A\textsubscript{TM} \leq \text{m} \ ALL\textsubscript{CFG})
– what should f(<M, w>) produce?
– Idea:

 • produce CFG G that generates all strings that are **not** accepting computation histories of M on w
Dec. and undec. problems

Proof:
– build a NPDA, then convert to CFG
– want to accept strings not of this form,
 \[\#C_1\#C_2\#C_3\#\ldots\#C_k\# \]
 plus strings of this form but where
• C₁ is not the start config. of M on input w, or
• Cₖ is not an accept. config. of M on input w, or
• Cᵢ does not yield in one step Cᵢ₊₁ for some i
Dec. and undec. problems

Proof:
– our NPDA nondeterministically checks one of:
 • C_1 is not the start config. of M on input w, or
 • C_k is not an accept. config. of M on input w, or
 • C_i does not yield in one step C_{i+1} for some i
 • input has fewer than two #’s
– details of first two?
– to check third condition:
 • nondeterministically guess C_i starting position
 • how to check that C_i doesn’t yield in 1 step C_{i+1}?
Dec. and undec. problems

Proof:

– checking:
 • C_i does not yield in one step C_{i+1} for some i
 • push C_i onto stack
– at #, start popping C_i and compare to C_{i+1}
 • accept if mismatch away from head location, or
 • symbols around head changed in a way inconsistent with M’s transition function.

– is everything described possible with NPDA?
Dec. and undec. problems

Proof:

– Problem: cannot compare C_i to C_{i+1}
– could prove in same way that proved
 \[\{ww: w \in \Sigma^*\} \text{ not context-free} \]
– recall that
 \[\{ww^R: w \in \Sigma^*\} \text{ is context-free} \]
– free to tweak construction of G in the reduction
– solution: write computation history:
 \[
 \#C_1\#C_2^R\#C_3\#C_4^R\ldots\#C_k\#
 \]
Dec. and undec. problems

Proof:

– $f(<M, w>) = <G>$ equiv. to NPDA below:

on input x, accept if not of form:

$\#C_1\#C_2^R\#C_3\#C_4^R\ldots\#C_k\#$

• accept if C_1 is the not the start configuration for M on input w
• accept if check that C_i does not yield in one step C_{i+1}
• accept if C_k is not an accepting configuration for M

is f computable?

YES maps to YES?

$<M, w> \in \text{co-A}_{\text{TM}} \Rightarrow f(M, w) \in \text{ALL}_{\text{CFG}}$

NO maps to NO?

$<M, w> \notin \text{co-A}_{\text{TM}} \Rightarrow f(M, w) \notin \text{ALL}_{\text{CFG}}$