Outline

- many-one reductions
- undecidable problems
 - computation histories
 - surprising contrasts between decidable/undecidable
- Rice’s Theorem

Definition of reduction

- Can you reduce co-HALT to HALT?
- We know that HALT is RE
- Does this show that co-HALT is RE?
 -- recall, we showed co-HALT is not RE
- our current notion of reduction cannot distinguish complements

Definition of reduction

- More refined notion of reduction:
 -- "many-one" reduction (commonly)
 -- "mapping" reduction (book)
- \(A \) \(\leq_m \) \(B \) implies:
- yes maps to yes and no maps to no
- \(w \in A \) maps to \(f(w) \in B \) & \(w \notin A \) maps to \(f(w) \notin B \)
- \(B \) is at least as “hard” as \(A \)
 -- more accurate: \(B \) at least as “expressive” as \(A \)

Definition of reduction

- function \(f \) should be computable

Definition: \(f : \Sigma^* \rightarrow \Sigma^* \) is computable if there exists a TM \(M_f \) such that on every \(w \in \Sigma^* \), \(M_f \) halts on \(w \) with \(f(w) \) written on its tape.
Using reductions

Definition: \(A \leq_m B \) if there is a computable function \(f \) such that for all \(w \)
\[w \in A \iff f(w) \in B \]

Theorem: if \(A \leq_m B \) and \(B \) is decidable then \(A \) is decidable

Proof:
- decider for \(A \): on input \(w \), compute \(f(w) \), run decider for \(B \), do whatever it does.

Using reductions

Theorem: if \(A \leq_m B \) and \(B \) is RE then \(A \) is RE

Proof:
- TM for recognizing \(A \): on input \(w \), compute \(f(w) \), run TM that recognizes \(B \), do whatever it does.

Many-one reduction example

Theorem: Showed \(E_{TM} \) undecidable. Consider:
\[\text{co-}E_{TM} = \{<M>: L(M) \neq \emptyset\} \]

\[f(<M, w>) = <M'> \]
where \(M' \) is TM that
\[\begin{cases}
\text{on input } x, & \text{if } x \neq w, \\
\text{then reject} & \\
\text{else simulate } M \text{ on } x, & \\
\text{and accept if } M \text{ does} & \\
\end{cases} \]

\(f \) clearly computable

Undecidable problems

Theorem: The language
\[\text{REGULAR} = \{<M>: M \text{ is a TM and } L(M) \text{ is regular}\} \]
is undecidable.

Proof:
- reduce from \(A_{TM} \) (i.e. show \(A_{TM} \leq_m \text{REGULAR} \))
- what should \(f(<M, w>) \) produce?
Undecidable problems

Proof:
- \(f(<M, w>) = <M'> \) described below

 on input \(x \):
 - if \(x \) has form \(0^n1^n \), accept
 - else simulate \(M \) on \(w \)
 and accept \(x \) if \(M \) accepts

 • is \(f \) computable?
 • YES maps to YES?
 \(<M, w> \in \mathcal{A}_{TM} \Rightarrow f(M, w) \in \mathcal{REGULAR} \)
 • NO maps to NO?
 \(<M, w> \not\in \mathcal{A}_{TM} \Rightarrow f(M, w) \not\in \mathcal{REGULAR} \)

Dec. and undec. problems

• the boundary between decidability and undecidability is often quite delicate
 - seemingly related problems
 - one decidable
 - other undecidable

 • We will see two examples of this phenomenon next.

Computation histories

• Recall configuration of a TM: string \(uqv \) with \(u, v \in \Gamma^* \), \(q \in Q \)

• The sequence of configurations \(M \) goes through on input \(w \) is a computation history of \(M \) on input \(w \)
 - may be accepting, or rejecting
 - reserve the term for halting computations
 - nondeterministic machines may have several computation histories for a given input.

Linear Bounded Automata

LBA definition: TM that is prohibited from moving head off right side of input.
 - machine prevents such a move, just like a TM prevents a move off left of tape

• How many possible configurations for a LBA \(M \) on input \(w \) with \(|w| = n \), \(m \) states, and \(p = |\Gamma| \)?
 - counting gives: \(mnp^n \)

Dec. and undec. problems

• two problems we have seen with respect to TMs, now regarding LBAs:
 - LBA acceptance:
 \(A_{LBA} = \{<M, w> : LBA \ M \ accepts \ input \ w\} \)
 - LBA emptiness:
 \(E_{LBA} = \{<M> : LBA \ M \ has \ L(M) = \emptyset\} \)

• Both decidable? both undecidable? one decidable?

Dec. and undec. problems

Theorem: \(A_{LBA} \) is decidable.

Proof:
 - input \(<M, w> \) where \(M \) is a LBA
 - key: only \(mnp^n \) configurations
 - if \(M \) hasn’t halted after this many steps, it must be looping forever.
 - simulate \(M \) for \(mnp^n \) steps
 - if it halts, accept or reject accordingly,
 - else reject since it must be looping

February 3, 2021

CS21 Lecture 13

13
Dec. and undec. problems

Theorem: \(E_{LBA} \) is undecidable.

Proof:
- reduce from co-A_TM (i.e. show co-A_TM \(\leq _m \) E_LBA)
- what should \(f(<M, w>) \) produce?
- Idea:
 - produce LBA B that accepts exactly the accepting computation histories of M on input w

Dec. and undec. problems

Proof:
- \(f(<M, w>) = \) described below
 on input \(x \), check if \(x \) has form
 \[#C_1#C_2#C_3#...#C_k# \]
 - check that \(C_1 \) is the start configuration for M on input \(w \)
 - check that \(C_i \Rightarrow^* C_{i+1} \)
 - check that \(C_k \) is an accepting configuration for M
- is B an LBA?
- is \(f \) computable?
- YES maps to YES?
 \(<M, w> \in \text{co-A_TM} \Rightarrow f(M, w) \in E_{LBA} \)
- NO maps to NO?
 \(<M, w> \in \text{co-A_TM} \Rightarrow f(M, w) \notin E_{LBA} \)

Dec. and undec. problems

- two problems regarding Context-Free Grammars:
 - does a CFG generate all strings:
 \(\text{ALL_CFG} = \{<G>: G \text{ is a CFG and } L(G) = \Sigma^*\} \)
 - CFG emptiness:
 \(E_{CFG} = \{<G>: G \text{ is a CFG and } L(G) = \emptyset\} \)
- Both decidable? both undecidable? one decidable?