Outline

• reductions
• many-one reductions
• undecidable problems
 – computation histories
 – surprising contrasts between decidable/undecidable
• Rice’s Theorem

Definition of reduction

• Can you reduce co-HALT to HALT?

• We know that HALT is RE
• Does this show that co-HALT is RE?
 – recall, we showed co-HALT is not RE
• our current notion of reduction cannot distinguish complements

Definition of reduction

• More refined notion of reduction:
 – “many-one” reduction (commonly)
 – “mapping” reduction (book)

A \leq_m B

Definition of reduction

• Notation: “A many-one reduces to B” is written
 A \leq_m B
 – “yes maps to yes and no maps to no” means:
 w \in A maps to f(w) \in B & w \not\in A maps to f(w) \not\in B
• B is at least as “hard” as A
 – more accurate: B at least as “expressive” as A

Definition of reduction

• function f should be computable

Definition: f : \Sigma^* \to \Sigma^* is computable if there exists a TM M_f such that on every w \in \Sigma^*
M_f halts on w with f(w) written on its tape.
Using reductions

Definition: A \(\leq_m \) B if there is a computable function \(f \) such that for all \(w \in A \iff f(w) \in B \).

Theorem: If \(A \leq_m B \) and \(B \) is decidable then \(A \) is decidable.

Proof:
- Decider for \(A \): on input \(w \), compute \(f(w) \), run decider for \(B \), do whatever it does.

Main use: given language NEW, prove it is undecidable by showing OLD \(\leq_m \) NEW, where OLD known to be undecidable.
- Proof by contradiction
- If NEW decidable, then OLD decidable
- OLD undecidable. Contradiction.

- Common to reduce in wrong direction.
- Review this argument to check yourself.

Many-one reduction example

Theorem: If \(A \leq_m B \) and \(B \) is RE then \(A \) is RE.

Proof:
- TM for recognizing \(A \): on input \(w \), compute \(f(w) \), run TM that recognizes \(B \), do whatever it does.
- Main use: given language NEW, prove it is not RE by showing OLD \(\leq_m \) NEW, where OLD known to be not RE.

Undecidable problems

Theorem: The language \(\text{REGULAR} = \{<M> : M \text{ is a TM and } L(M) \text{ is regular} \} \) is undecidable.

Proof:
- Reduce from \(A_{TM} \) (i.e. show \(A_{TM} \leq_m \text{REGULAR} \))
- What should \(f(<M, w>) \) produce?
Undecidable problems

Proof:
- \(f(<M, w>) = <M'> \) described below
 - on input \(x \):
 - if \(x \) has form \(0^n1^n \), accept
 - else simulate \(M \) on \(w \) and accept \(x \) if \(M \) accepts
 - is \(f \) computable?
 - \(\text{YES} \) maps to \(\text{YES} \)
 - \(<M, w> \in A_{TM} \Rightarrow f(M, w) \in \text{REGULAR} \)
 - \(\text{NO} \) maps to \(\text{NO} \)
 - \(<M, w> \notin A_{TM} \Rightarrow f(M, w) \notin \text{REGULAR} \)

Dec. and undec. problems

- the boundary between decidability and undecidability is often quite delicate
 - seemingly related problems
 - one decidable
 - other undecidable
 - We will see two examples of this phenomenon next.

Computation histories

- Recall configuration of a TM: string \(uqv \) with \(u,v \in \Gamma^* \), \(q \in Q \)
- The sequence of configurations \(M \) goes through on input \(w \) is a computation history of \(M \) on input \(w \)
 - may be accepting, or rejecting
 - reserve the term for halting computations
 - nondeterministic machines may have several computation histories for a given input.

Linear Bounded Automata

LBA definition: TM that is prohibited from moving head off right side of input.
 - machine prevents such a move, just like a TM prevents a move off left of tape
 - How many possible configurations for a LBA \(M \) on input \(w \) with \(|w| = n \), \(m \) states, and \(p = |\Gamma| \)?
 - counting gives: \(mnp^n \)

Dec. and undec. problems

- two problems we have seen with respect to TMs, now regarding LBAs:
 - LBA acceptance:
 - \(A_{LBA} = \{ <M, w> : \text{LBA } M \text{ accepts input } w \} \)
 - LBA emptiness:
 - \(E_{LBA} = \{ <M> : \text{LBA } M \text{ has } L(M) = \emptyset \} \)
 - Both decidable? both undecidable? one decidable?

Dec. and undec. problems

Theorem: \(A_{LBA} \) is decidable.

Proof:
- input \(<M, w> \) where \(M \) is a LBA
- key: only \(mnp^n \) configurations
- if \(M \) hasn’t halted after this many steps, it must be looping forever:
 - simulate \(M \) for \(mnp^n \) steps
 - if it halts, accept or reject accordingly,
 - else reject since it must be looping
Dec. and undec. problems

Theorem: E_{LBA} is undecidable.

Proof:
- reduce from co-A_{TM} (i.e. show co-$A_{TM} \leq_m E_{LBA}$)
- what should $f(<M, w>)$ produce?
- idea:
 - produce LBA B that accepts exactly the accepting computation histories of M on input w

 on input x, check if x has form
 #C₁#C₂#C₃#...#Cₖ#
 - check that C_1 is the start configuration for M on input w
 - check that $C_i \Rightarrow C_{i+1}$
 - check that C_k is an accepting configuration for M
 - is B an LBA?
 - is f computable?
 - YES maps to YES?
 - NO maps to NO?

 $<M, w> \in \text{co-}A_{TM} \Rightarrow f(M, w) \in E_{LBA}$

 $<M, w> \notin \text{co-}A_{TM} \Rightarrow f(M, w) \notin E_{LBA}$