CS21
Decidability and Tractability

Lecture 13
February 2, 2022

Outline

• RE and co-RE
• reductions
• many-one reductions
• undecidable problems
 – computation histories
 – surprising contrasts between decidable/undecidable
• Rice’s Theorem

So far…

• Can we exhibit a natural language that is non-RE?

RE and co-RE

Theorem: a language L is decidable if and only if L is RE and L is co-RE.

Proof:

(⇒) we already know decidable implies RE
 – if L is decidable, then complement of L is decidable by flipping accept/reject.
 – so L is in co-RE.

RE and co-RE

Theorem: a language L is decidable if and only if L is RE and L is co-RE.

Proof:

(⇐) we have TM M that recognizes L, and TM M’ recognizes complement of L.
 – on input x, simulate M, M’ in parallel
 – if M accepts, accept; if M’ accepts, reject.
A natural non-RE language

Theorem: the complement of HALT is not recursively enumerable.

Proof:

– we know that HALT is RE
– suppose complement of HALT is RE
– then HALT is co-RE
– implies HALT is decidable. Contradiction.

Summary

Main point: some problems have no algorithms, HALT in particular.

Reductions

• Given a new problem NEW, want to determine if it is easy or hard
 – right now, easy typically means decidable
 – right now, hard typically means undecidable
• One option:
 – prove from scratch that the problem is decidable, or
 – prove from scratch that the problem is undecidable (dream up a diag. argument)

Reductions

• A better option:
 – to prove NEW is decidable, show how to transform it into a known decidable problem OLD so that solution to OLD can be used to solve NEW.
 – to prove NEW is undecidable, show how to transform a known undecidable problem OLD into NEW so that solution to NEW can be used to solve OLD.
• called a reduction

Example reduction

• Try to prove undecidable:
 \[A_{TM} = \{ <M, w> : M \text{ accepts input } w \} \]
• We know this language is undecidable:
 \[\text{HALT} = \{ <M, w> : M \text{ halts on input } w \} \]
• Idea:
 – suppose \(A_{TM} \) is decidable
 – show that we can use \(A_{TM} \) to decide HALT
 – conclude HALT is decidable. Contradiction.
Example reduction

• How could we use procedure that decides A_{TM} to decide HALT?
 – given input to HALT: $<M, w>$

• Some things we can do:
 – check if $<M, w> \in A_{TM}$
 – construct another TM M' and check if $<M', w> \in A_{TM}$

Example reduction

• Deciding HALT using a procedure that decides A_{TM} (“reducing HALT to A_{TM}”).
 – on input $<M, w>$
 – check if $<M, w> \in A_{TM}$
 • if yes, the M halts on w; ACCEPT
 • if no, then M either rejects w or it loops on w
 – construct M' by swapping q_{accept}/q_{reject} in M
 – check if $<M', w> \in A_{TM}$
 • if yes, then M' accepts w, so M rejects w; ACCEPT
 • if no, then M neither accepts nor rejects w; REJECT

Example reduction

• Preceding reduction proved:

 Theorem: A_{TM} is undecidable.

Proof (recap):
 – suppose A_{TM} is decidable
 – we showed how to use A_{TM} to decide HALT
 – conclude HALT is decidable. Contradiction.

Another example

• Try to prove undecidable:
 $E_{TM} = \{<M> : L(M) = \emptyset\}$
 – which problem should we reduce from?
 – $HALT = \{<M, w> : M$ halts on input $w\}$
 – $A_{TM} = \{<M, w> : M$ accepts input $w\}$
 – Some things we can do:
 – check if $<M> \in E_{TM}$
 – construct another TM M' and check if $<M'> \in E_{TM}$

Another example

• We are given input $<M, w>$
 – We want to use a procedure that decides E_{TM} to decide if $<M, w> \in A_{TM}$

• Idea:
 – check if $<M> \in E_{TM}$
 – if not?
 – helpful if could make M reject everything except possibly w.

Another example

• Construct TM M':
 – on input x, if $x \neq w$, then reject
 – else simulate M on x, and accept if M does.
 – on input $<M, w>$
 – construct M' from description of M
 – check if $M' \in E_{TM}$
 • if no, M must accept w; ACCEPT
 • if yes, M cannot accept w; REJECT

Is this OK? finite # of states?
Another example

- Preceding reduction proved:

Theorem: E_{TM} is undecidable.

Proof (recap):
- suppose E_{TM} is decidable
- we showed how to use E_{TM} to decide A_{TM}
- conclude A_{TM} is decidable. Contradiction.

Example reduction

- We proved $A_{TM} = \{<M, w>: M$ accepts input $w\}$ undecidable, by reduction from $HALT = \{<M, w>: M$ halts on input $w\}$
- We proved $E_{TM} = \{<M>: L(M) = \emptyset\}$ undecidable by reduction from A_{TM}

Definition of reduction

- Can you reduce co-HALT to HALT?
- We know that HALT is RE
- Does this show that co-HALT is RE?
 - recall, we showed co-HALT is not RE
- our current notion of reduction cannot distinguish complements

Definition of reduction

- More refined notion of reduction:
 - "many-one" reduction (commonly)
 - "mapping" reduction (book)

- Notation: "A many-one reduces to B" is written $A \leq_m B$
 - "yes maps to yes and no maps to no" means: $w \in A$ maps to $f(w) \in B$ & $w \notin A$ maps to $f(w) \notin B$
 - B is at least as "hard" as A
 - more accurate: B at least as "expressive" as A

Definition of reduction

- function f should be computable

Definition: $f: \Sigma^* \rightarrow \Sigma^*$ is computable if there exists a TM M_f such that on every $w \in \Sigma^*$ M_f halts on w with $f(w)$ written on its tape.
Using reductions

Definition: $A \leq_m B$ if there is a computable function f such that for all w:

$$w \in A \iff f(w) \in B$$

Theorem: if $A \leq_m B$ and B is decidable then A is decidable

Proof:
- decider for A: on input w, compute $f(w)$, run decider for B, do whatever it does.

Many-one reduction example

• E_{TM} undecidable. Consider:

$f(<M, w>) = <M'>$

where M' is TM that
- on input x, if $x \neq w$, then reject
- else simulate M on x, and accept if M does

• f clearly computable

Yes maps to yes?
- if $<M, w> \in A_{TM}$ then $f(M, w) \in \text{co-}E_{TM}$

No maps to no?
- if $<M, w> \notin A_{TM}$ then $f(M, w) \not\in \text{co-}E_{TM}$

Using reductions

Main use: given language NEW, prove it is undecidable by showing OLD \leq_m NEW, where OLD known to be undecidable
- proof by contradiction
- if NEW decidable, then OLD decidable
- OLD undecidable. Contradiction.

• common to reduce in wrong direction.
• review this argument to check yourself.

Using reductions

Theorem: if $A \leq_m B$ and B is RE then A is RE

Proof:
- TM for recognizing A: on input w, compute $f(w)$, run TM that recognizes B, do whatever it does.

• Main use: given language NEW, prove it is not RE by showing OLD \leq_m NEW, where OLD known to be not RE.