
1

CS21
Decidability
and
Tractability

Lecture 13
February 5, 2025

1

February 5, 2025 CS21 Lecture 13 2

Outline

• undecidable problems
– computation histories
– surprising contrasts between

decidable/undecidable
• Rice’s Theorem
• Post Correspondence Problem (skip?)
• Beyond RE and co-RE
• Recursion Theorem

2

February 5, 2025 CS21 Lecture 13 3

Dec. and undec. problems

• the boundary between decidability and
undecidability is often quite delicate
– seemingly related problems
– one decidable
– other undecidable

• We will see two examples of this
phenomenon next.

3

February 5, 2025 CS21 Lecture 13 4

Computation histories
• Recall configuration of a TM: string uqv

with u,v ∈ Γ*, q ∈ Q
• The sequence of configurations M goes

through on input w is a computation
history of M on input w
– may be accepting, or rejecting
– reserve the term for halting computations
– nondeterministic machines may have several

computation histories for a given input.

4

February 5, 2025 CS21 Lecture 13 5

Linear Bounded Automata

LBA definition: TM that is prohibited from
moving head off right side of input.
– machine prevents such a move, just like a TM

prevents a move off left of tape
• How many possible configurations for a

LBA M on input w with |w| = n, m states,
and p = |Γ| ?
– counting gives: mnpn

5

February 5, 2025 CS21 Lecture 13 6

Dec. and undec. problems

• two problems we have seen with respect
to TMs, now regarding LBAs:
– LBA acceptance:

ALBA = {<M, w> : LBA M accepts input w}
– LBA emptiness:

ELBA = {<M> : LBA M has L(M) = Ø}
• Both decidable? both undecidable? one

decidable?

6

2

February 5, 2025 CS21 Lecture 13 7

Dec. and undec. problems
Theorem: ALBA is decidable.
Proof:

– input <M, w> where M is a LBA
– key: only mnpn configurations
– if M hasn’t halted after this many steps, it

must be looping forever.
– simulate M for mnpn steps
– if it halts, accept or reject accordingly,
– else reject since it must be looping

7

February 5, 2025 CS21 Lecture 13 8

Dec. and undec. problems

Theorem: ELBA is undecidable.

Proof:
– reduce from co-ATM (i.e. show co-ATM ≤m ELBA)
– what should f(<M, w>) produce?
– Idea:

• produce LBA B that accepts exactly the accepting
computation histories of M on input w

8

February 5, 2025 CS21 Lecture 13 9

Dec. and undec. problems
Proof:

– f(<M, w>) = described below

on input x, check if x has form

#C1#C2#C3#...#Ck#

• check that C1 is the start
configuration for M on input w

• check that Ci ⇒!Ci+1

• check that Ck is an accepting
configuration for M

• is B an LBA?

• is f computable?

• YES maps to YES?

<M, w> ∈	co-ATM ⇒
	f(M, w) ∈	ELBA

• NO maps to NO?

<M, w> ∉ co-ATM ⇒
	f(M, w) ∉ ELBA

9

February 5, 2025 CS21 Lecture 13 10

Dec. and undec. problems

• two problems regarding Context-Free
Grammars:
– does a CFG generate all strings:

ALLCFG = {<G> : G is a CFG and L(G) = Σ*}
– CFG emptiness:

ECFG = {<G> : G is a CFG and L(G) = Ø}

• Both decidable? both undecidable? one
decidable?

10

February 5, 2025 CS21 Lecture 13 11

Dec. and undec. problems

Theorem: ECFG is decidable.

Proof:
– observation: for each nonterminal A, the set

SA = {w : A ⇒* w}
 is non-empty iff there is some rule:

A → x
 and for all non-terminals B in string x, 𝑆! ≠ ∅

11

February 5, 2025 CS21 Lecture 13 12

Dec. and undec. problems

Proof:
– on input <G>
– mark all terminals in G
– repeat until no new non-terminals get marked:

• if there is a production A→x1x2x3…xk

• and each symbol x1, x2, …, xk has been marked
• then mark A

– if S marked, reject (G ∉ ECFG), else accept (G	∈	ECFG).
– terminates? correct?

12

3

February 5, 2025 CS21 Lecture 13 13

Dec. and undec. problems

Theorem: ALLCFG is undecidable.

Proof:
– reduce from co-ATM (i.e. show co-ATM ≤m ALLCFG)
– what should f(<M, w>) produce?
– Idea:

• produce CFG G that generates all strings that are
not accepting computation histories of M on w

13

February 5, 2025 CS21 Lecture 13 14

Dec. and undec. problems

Proof:
– build a NPDA, then convert to CFG
– want to accept strings not of this form,

#C1#C2#C3#...#Ck#
 plus strings of this form but where

• C1 is not the start config. of M on input w, or
• Ck is not an accept. config. of M on input w, or
• Ci does not yield in one step Ci+1 for some i

14

February 5, 2025 CS21 Lecture 13 15

Dec. and undec. problems
Proof:

– our NPDA nondeterministically checks one of:
• C1 is not the start config. of M on input w, or
• Ck is not an accept. config. of M on input w, or
• Ci does not yield in one step Ci+1 for some i
• input has fewer than two #’s

– details of first two?
– to check third condition:

• nondeterministically guess Ci starting position
• how to check that Ci doesn’t yield in 1 step Ci+1 ?

15

February 5, 2025 CS21 Lecture 13 16

Dec. and undec. problems

Proof:
– checking:

• Ci does not yield in one step Ci+1 for some i
– push Ci onto stack
– at #, start popping Ci and compare to Ci+1

• accept if mismatch away from head location, or
• symbols around head changed in a way

inconsistent with M’s transition function.
– is everything described possible with NPDA?

16

February 5, 2025 CS21 Lecture 13 17

Dec. and undec. problems
Proof:

– Problem: cannot compare Ci to Ci+1
– could prove in same way that proved

{ww: w ∈ Σ*} not context-free
– recall that

{wwR: w ∈ Σ*} is context-free
– free to tweak construction of G in the reduction
– solution: write computation history:

#C1#C2R #C3#C4R...#Ck#

17

February 5, 2025 CS21 Lecture 13 18

Dec. and undec. problems
Proof:

– f(<M, w>) = <G> equiv. to NPDA below:
on input x, accept if not of form:

#C1#C2R #C3#C4R...#Ck#

• accept if C1 is the not the start
configuration for M on input w

• accept if check that Ci does
not yield in one step Ci+1

• accept if Ck is not an
accepting configuration for M

• is f computable?

• YES maps to YES?

<M, w> ∈ co-ATM ⇒
	f(M, w) ∈ ALLCFG

• NO maps to NO?

<M, w> ∉ co-ATM ⇒
	f(M, w) ∉ ALLCFG

18

