Outline

• reductions
• many-one reductions
• undecidable problems
 – computation histories
 – surprising contrasts between decidable/undecidable
• Rice’s Theorem
Example reduction

• Preceding reduction proved:

Theorem: A_{TM} is undecidable.

Proof (recap):

– suppose A_{TM} is decidable
– we showed how to use A_{TM} to decide HALT
– conclude HALT is decidable. Contradiction.
Another example

• Try to prove undecidable:

\[E_{TM} = \{<M> : L(M) = \emptyset\} \]

• which problem should we **reduce from**?
 – \(HALT = \{<M, w> : M \text{ halts on input } w\} \)
 – \(A_{TM} = \{<M, w> : M \text{ accepts input } w\} \)

• Some things we can do:
 – check if \(<M> \in E_{TM} \)
 – construct another TM \(M' \) and check if \(<M'> \in E_{TM} \)
Another example

- We are given input $<M, w>$
- We want to use a procedure that decides E_{TM} to decide if $<M, w> \in A_{TM}$

Idea:
- check if $<M> \in E_{TM}$
- if not?
 - helpful if could make M reject everything except possibly w.
Another example

• Construct TM M':
 – on input x, if $x \neq w$, then reject
 – else simulate M on x, and accept if M does.

• on input $\langle M, w \rangle$
 – construct M' from description of M
 – check if $M' \in E_{\text{TM}}$
 • if no, M must accept w; ACCEPT
 • if yes, M cannot accept w; REJECT
Another example

• Preceding reduction proved:

Theorem: E_{TM} is undecidable.

Proof (recap):

– suppose E_{TM} is decidable
– we showed how to use E_{TM} to decide A_{TM}
– conclude A_{TM} is decidable. Contradiction.
Example reduction

• We proved
 \[A_{TM} = \{<M, w> : M \text{ accepts input } w\} \]
 undecidable, by reduction from
 \[\text{HALT} = \{<M, w> : M \text{ halts on input } w\} \]

• We proved
 \[E_{TM} = \{<M> : L(M) = \emptyset\} \]
 undecidable by reduction from \(A_{TM} \)
Definition of reduction

• Can you reduce co-HALT to HALT?

• We know that HALT is RE
• Does this show that co-HALT is RE?
 – recall, we showed co-HALT is not RE

• our current notion of reduction cannot distinguish complements
Definition of reduction

• More refined notion of reduction:
 – “many-one” reduction (commonly)
 – “mapping” reduction (book)

A \[\overset{f}{\longrightarrow} \]\ B

\begin{tabular}{c|c}
yes & yes \\
no & no \\
\end{tabular}

reduction from language A to language B
Definition of reduction

- function f should be computable

Definition: $f : \Sigma^* \rightarrow \Sigma^*$ is computable if there exists a TM M_f such that on every $w \in \Sigma^*$, M_f halts on w with $f(w)$ written on its tape.
Definition of reduction

• Notation: “A many-one reduces to B” is written

\[A \leq_m B \]

– “yes maps to yes and no maps to no” means:

\[w \in A \text{ maps to } f(w) \in B \text{ & } w \notin A \text{ maps to } f(w) \notin B \]

• B is at least as “hard” as A

 – more accurate: B at least as “expressive” as A
Using reductions

Definition: $A \leq_m B$ if there is a computable function f such that for all w

\[w \in A \iff f(w) \in B \]

Theorem: If $A \leq_m B$ and B is decidable then A is decidable.

Proof:

- decider for A: on input w, compute $f(w)$, run decider for B, do whatever it does.
Using reductions

• Main use: given language NEW, prove it is undecidable by showing OLD \leq_m NEW, where OLD known to be undecidable
 – proof by contradiction
 – if NEW decidable, then OLD decidable
 – OLD undecidable. Contradiction.

• common to reduce in wrong direction.

• review this argument to check yourself.
Using reductions

Theorem: if $A \leq_m B$ and B is RE then A is RE

Proof:
- TM for recognizing A: on input w, compute $f(w)$, run TM that recognizes B, do whatever it does.

• Main use: given language NEW, prove it is not RE by showing OLD \leq_m NEW, where OLD known to be not RE.
Many-one reduction example

• Showed E_{TM} undecidable. Consider:
 \[\text{co-}E_{TM} = \{<M> : L(M) \neq \emptyset\} \]

\[A_{TM} \quad f \quad \text{yes} \quad f \quad \text{no} \]
\[\text{co-}E_{TM} \quad \text{yes} \quad \text{no} \]

• $f(<M, w>) = <M'>$ where M' is TM that
 • on input x, if $x \neq w$, then reject
 • else simulate M on x, and accept if M does

• f clearly computable
Many-one reduction example

- yes maps to yes?
 - if \(<M, w> \in A_{TM}\) then \(f(M, w) \in \text{co-}E_{TM}\)

- no maps to no?
 - if \(<M, w> \notin A_{TM}\) then \(f(M, w) \notin \text{co-}E_{TM}\)

- \(f(<M, w>) = <M'>\)
 where \(M'\) is TM that
 - on input \(x\), if \(x \neq w\), then reject
 - else simulate \(M\) on \(x\), and accept if \(M\) does

- \(f\) clearly computable
Undecidable problems

Theorem: The language

\[\text{REGULAR} = \{ \langle M \rangle : M \text{ is a TM and } L(M) \text{ is regular} \} \]

is undecidable.

Proof:

– reduce from \(A_{TM} \) (i.e. show \(A_{TM} \leq_m \text{REGULAR} \))
– what should \(f(<M, w>) \) produce?
Undecidable problems

Proof:

\[f(<M, w>) = <M'> \] described below

on input \(x \):

• if \(x \) has form \(0^n1^n \), accept

• else simulate \(M \) on \(w \) and accept \(x \) if \(M \) accepts

• is \(f \) computable?

• YES maps to YES?

\[<M, w> \in A_{TM} \Rightarrow f(M, w) \in \text{REGULAR} \]

• NO maps to NO?

\[<M, w> \notin A_{TM} \Rightarrow f(M, w) \notin \text{REGULAR} \]