The Halting Problem

• Definition of the "Halting Problem":
 \(\text{HALT} = \{ <M, x> : \text{TM } M \text{ halts on input } x \} \)

• HALT is recursively enumerable.
 – proof?

• Is HALT decidable?

Theorem: HALT is not decidable (undecidable).

Proof:
– Suppose TM H decides HALT
 – Define new TM H': on input <M>
 • if H accepts <M, <M>> then loop
 • if H rejects <M, <M>> then halt

 – consider H' on input <H'>:
 • if it halts, then H rejects <H', <H'>>, which implies it cannot halt
 • if it loops, then H accepts <H', <H'>> which implies it must halt
 – contradiction.
So far…

• Can we exhibit a natural language that is non-RE?

RE and co-RE

Theorem: a language L is decidable if and only if L is RE and L is co-RE.

Proof:

(⇒) we already know decidable implies RE
 - if L is decidable, then complement of L is decidable by flipping accept/reject.
 - so L is in co-RE.

RE and co-RE

Theorem: a language L is decidable if and only if L is RE and L is co-RE.

Proof:

(⇐) we have TM M that recognizes L, and TM M' recognizes complement of L.
 - on input x, simulate M, M' in parallel
 - if M accepts, accept; if M' accepts, reject.

A natural non-RE language

Theorem: the complement of HALT is not recursively enumerable.

Proof:

- we know that HALT is RE
- suppose complement of HALT is RE
- then HALT is co-RE
- implies HALT is decidable. Contradiction.

Summary

Main point: some problems have no algorithms, HALT in particular.
Reductions

• Given a new problem NEW, want to determine if it is easy or hard
 – right now, easy typically means decidable
 – right now, hard typically means undecidable

• One option:
 – prove from scratch that the problem is decidable, or
 – prove from scratch that the problem is undecidable (dream up a diag. argument)

Reductions are one of the most important and widely used techniques in theoretical Computer Science.

• especially for proving problems “hard”
 – often difficult to do “from scratch”
 – sometimes not known how to do from scratch
 – reductions allow proof by giving an algorithm to perform the transformation

Example reduction

• How could we use procedure that decides \(A_{TM} \) to decide HALT?
 – given input to HALT: \(<M, w> \)

• Some things we can do:
 – check if \(<M, w> \in A_{TM} \)
 – construct another TM \(M' \) and check if \(<M', w> \in A_{TM} \)

Example reduction

• Try to prove undecidable:
 \(A_{TM} = \{<M, w> : M \text{ accepts input } w\} \)
 – We know this language is undecidable:
 \(HALT = \{<M, w> : M \text{ halts on input } w\} \)

• Idea:
 – suppose \(A_{TM} \) is decidable
 – show that we can use \(A_{TM} \) to decide HALT
 – conclude HALT is decidable. Contradiction.

Example reduction

• Deciding HALT using a procedure that decides \(A_{TM} \) (“reducing HALT to \(A_{TM} \”).
 – on input \(<M, w> \)
 – check if \(<M, w> \in A_{TM} \)
 • if yes, the \(M \) halts on \(w \); ACCEPT
 • if no, then \(M \) either rejects \(w \) or it loops on \(w \)
 – construct \(M' \) by swapping \(q_{accept}/q_{reject} \) in \(M \)
 – check if \(<M', w> \in A_{TM} \)
 • if yes, then \(M' \) accepts \(w \), so \(M \) rejects \(w \); ACCEPT
 • if no, then \(M \) neither accepts nor rejects \(w \); REJECT
Example reduction

- Preceding reduction proved:

Theorem: A_{TM} is undecidable.

Proof (recap):
- suppose A_{TM} is decidable
- we showed how to use A_{TM} to decide HALT
- conclude HALT is decidable. Contradiction.

Another example

- Try to prove undecidable:
 \[E_{TM} = \{<M> : L(M) = \emptyset\} \]
- which problem should we reduce from?
 - HALT = \{<M, w> : M halts on input w\}
 - $A_{TM} = \{<M, w> : M accepts input w\}$
- Some things we can do:
 - check if $<M> \in E_{TM}$
 - construct another TM M' and check if $<M'> \in E_{TM}$

Another example

- We are given input $<M, w>$
- We want to use a procedure that decides E_{TM} to decide if $<M, w> \in A_{TM}$

 Idea:
 - check if $<M> \in E_{TM}$
 - if not?
 - helpful if could make M reject everything except possibly w.

Another example

- Preceding reduction proved:

 Theorem: E_{TM} is undecidable.

 Proof (recap):
 - suppose E_{TM} is decidable
 - we showed how to use E_{TM} to decide A_{TM}
 - conclude A_{TM} is decidable. Contradiction.

Example reduction

- We proved
 \[A_{TM} = \{<M, w> : M accepts input w\} \]
 undecidable, by reduction from
 \[HALT = \{<M, w> : M halts on input w\} \]
- We proved
 \[E_{TM} = \{<M> : L(M) = \emptyset\} \]
 undecidable by reduction from A_{TM}
Definition of reduction

• Can you reduce co-HALT to HALT?

• We know that HALT is RE
• Does this show that co-HALT is RE?
 – recall, we showed co-HALT is not RE

• our current notion of reduction cannot distinguish complements