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« This language might be an esoteric,
artificially constructed one. Do we care?
» We will show a natural undecidable L next.
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The Halting Problem

« Definition of the “Halting Problem”:
HALT = { <M, x> : TM M halts on input x }

* HALT is recursively enumerable.
— proof?

* Is HALT decidable?
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The Halting Problem

Theorem: HALT is not decidable
(undecidable).

Proof:
— Suppose TM H decides HALT
— Define new TM H’: on input <M>
« if H accepts <M, <M>> then loop
« if H rejects <M, <M>> then halt
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The Halting Problem

Proof:
—define new TM H’: on input <M>
« if H accepts <M, <M>> then loop
« if H rejects <M, <M>> then halt
—consider H' on input <H>:
« if it halts, then H rejects <H’, <H'>>, which implies
it cannot halt
« if it loops, then H accepts <H’, <H>> which implies
it must halt

— contradiction.
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The Halting Problem

inputs ?l\?lxx)'
. { ————does M
Turing halt on
Machines x?

The existence of
H which tells us
yes/no for each
box allows us to
constructa TM H'

H: [Y[n]Y] [thatcannot be in

the table.
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» Can we exhibit a natural language that is
non-RE?
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RE and co-RE

* The complement of a RE language is
called a co-RE language

{a"b":n=0 -RE some Ianguage
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\, N aII languages
regular __ A i

languages

context free "~
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RE and co-RE

Theorem: a language L is decidable if and
only if L is RE and L is co-RE.

Proof:
(=) we already know decidable implies RE
—if L is decidable, then complement of L is
decidable by flipping accept/reject.

—so Lisin co-RE.
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RE and co-RE

Theorem: a language L is decidable if and
only if L is RE and L is co-RE.

Proof:
(<) we have TM M that recognizes L, and TM
M’ recognizes complement of L.
—on input x, simulate M, M’ in parallel
—if M accepts, accept; if M" accepts, reject.
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A natural non-RE language

Theorem: the complement of HALT is not
recursively enumerable.

Proof:
—we know that HALT is RE
— suppose complement of HALT is RE
—then HALT is co-RE
—implies HALT is decidable. Contradiction.
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Summary

-HALT
{abn: Qg 0 dec|§:b|e co RE some language

regular
languages

context free
languages

{a"b"c":n20} HALT
Main point: some problems have no
algorithms, HALT in particular.
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Reductions

« Given a new problem NEW, want to
determine if it is easy or hard

—right now, easy typically means decidable
—right now, hard typically means undecidable
One option:

— prove from scratch that the problem is
decidable, or

— prove from scratch that the problem is
undecidable (dream up a diag. argument)
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Reductions

Reductions are one of the most important
and widely used techniques in theoretical
Computer Science.

« especially for proving problems “hard”
— often difficult to do “from scratch”
— sometimes not known how to do from scratch

—reductions allow proof by giving an algorithm
to perform the transformation
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Example reduction

* How could we use procedure that decides
Amm to decide HALT?

—given input to HALT: <M, w>

» Some things we can do:
—check if <M, w> € Ay

— construct another TM M’ and check if
<M’, w> € Ay
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Reductions

« A better option:

—to prove NEW is decidable, show how to

transform it into a known decidable problem
OLD so that solution to OLD can be used to
solve NEW.

—to prove NEW is undecidable, show how to
transform a known undecidable problem OLD
into NEW so that solution to NEW can be
used to solve OLD.

« called a reduction
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Example reduction

* Try to prove undecidable:
Ay = {<M, w> : M accepts input w}
» We know this language is undecidable:
HALT = {<M, w> : M halts on input w}
* |dea:
reduction
— suppose Ary is decida
— show that we can Use Ay to decide HALT
—conclude HALT is decidable. Contradiction.
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Example reduction

* Deciding HALT using a procedure that
decides Amw (“reducing HALT to Any”).
—on input <M, w>
—check if <M, w> € Ay
« if yes, the M halts on w; ACCEPT
« if no, then M either rejects w or it loops on w
— construct M’ by swapping Qaccept/Areject in M
—check if <M’, w> € Ay
« if yes, then M’ accepts w, so M rejects w; ACCEPT
« if no, then M neither accepts nor rejects w; REJECT
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Example reduction

* Preceding reduction proved:
Theorem: Ay is undecidable.

Proof (recap):
— suppose Aqy, is decidable
—we showed how to use Ary to decide HALT
—conclude HALT is decidable. Contradiction.
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Another example

» We are given input <M, w>

» We want to use a procedure that decides
Erw to decide if <M, w> € Aqy

* |dea:
—check if <M> € Eqy
—if not?
— helpful if could make M reject everything
except possibly w.
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Another example

* Preceding reduction proved:
Theorem: Eqy is undecidable.

Proof (recap):
—suppose Eqy, is decidable
— we showed how to use Ery to decide Ay
—conclude Ay, is decidable. Contradiction.
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Another example

* Try to prove undecidable:
Er = {<M>: L(M) = G}
which problem should we reduce from?
—HALT = {<M, w>: M halts on input w}
— A = {<M, w>: M accepts input w}
Some things we can do:
—check if <M> € E;,

— construct another TM M’ and check if
<M’> € Eqy
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Another example

Is this OK?
finite # of

Construct TM M’:
—on input x, if x # w, then reject 4
— else simulate M on x, and accept if M does.
on input <M, w>

— construct M’ from description of M

—check if M € Eqy

« if no, M must accept w; ACCEPT
« if yes, M cannot accept w; REJECT
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Example reduction

* We proved
Arv = {<M, w> : M accepts input w}
undecidable, by reduction from
HALT = {<M, w> : M halts on input w}

* We proved
Ern = {<M>: L(M) = G}
undecidable by reduction from Ay
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