~ . CS21
" 3 l Decidability
: i and
Tractability

Lecture 12

it - February 3,
1= 2025

ey

Outline

* reductions
* many-one reductions
* undecidable problems

— computation histories

— surprising contrasts between
decidable/undecidable

* Rice’s Theorem

February 3, 2025 CS21 Lecture 12

Another example

» Try to prove undecidable:

Emm = {<M>: L(M) = @}

» which problem should we reduce from?
—HALT ={<M, w> : M halts on input w}
—Am = {<M, w>: M accepts input w}

+ Some things we can do:

—check if <M> € Etm
— construct another TM M’ and check if
<M'> € Etm

February 3, 2025 CS21 Lecture 12

Another example

* We are given input <M, w>

* We want to use a procedure that decides
Eq\y to decide if <M, w> € Apy

* |dea:
—check if <M> € Etm
—if not?
— helpful if could make M reject everything
except possibly w.

February 3, 2025 CS21 Lecture 12

Another example

Is this OK?
finite # of
states?

» Construct TM M’:
—on input x, if x # w, then reject O
— else simulate M on x, and accept if M does.
* on input <M, w>
— construct M’ from description of M
—check if M’ € Etm

« if no, M must accept w; ACCEPT
« if yes, M cannot accept w; REJECT

February 3, 2025 CS21 Lecture 12

Another example

* Preceding reduction proved:
Theorem: Eqy is undecidable.

Proof (recap):
—suppose Emy is decidable
—we showed how to use Etv to decide Arw
—conclude Ary is decidable. Contradiction.

February 3, 2025 CS21 Lecture 12

Example reduction

* We proved
Amv = {<M, w> : M accepts input w}
undecidable, by reduction from
HALT = {<M, w> : M halts on input w}

» We proved
Etm = {<M>: L(M) = &}
undecidable by reduction from Amm

February 3, 2025 CS21 Lecture 12

Definition of reduction

» Can you reduce co-HALT to HALT?

* We know that HALT is RE

* Does this show that co-HALT is RE?
—recall, we showed co-HALT is not RE

« our current notion of reduction cannot
distinguish complements

February 3, 2025 CS21 Lecture 12

Definition of reduction

* More refined notion of reduction:
—“many-one” reduction (commonly)
—“mapping” reduction (book)

A f B

yes yes)
reduction from

f language A to
no no
language B

February 3, 2025 CS21 Lecture 12

Definition of reduction

A f B
yes yes

f
no no

« function f should be computable

Definition: f : ¥*— ¥* is computable if there
exists a TM Mg such that on every w € &*
M halts on w with f(w) written on its tape.

February 3, 2025 CS21 Lecture 12

Definition of reduction

* Notation: “A many-one reduces to B” is
written
A<,B
— “yes maps to yes and no maps to no” means:
w € A maps to f(w) eB &w & A maps to f(w) ¢ B

» Bis at least as “hard” as A
—more accurate: B at least as “expressive” as A

February 3, 2025 CS21 Lecture 12

10

11

Using reductions

Definition: A <, B if there is a computable
function f such that for all w
weAef(w)eB
Theorem: if A <,,B and B is decidable then
A is decidable
Proof:

— decider for A: on input w, compute f(w), run
decider for B, do whatever it does.

February 3, 2025 CS21 Lecture 12

12

Using reductions

* Main use: given language NEW, prove it is
undecidable by showing OLD <, NEW,
where OLD known to be undecidable

— proof by contradiction
—if NEW decidable, then OLD decidable
— OLD undecidable. Contradiction.

« common to reduce in wrong direction.
* review this argument to check yourself.

February 3, 2025 CS21 Lecture 12

Using reductions

Theorem: if A <,,B and B is RE then A is

RE

Proof:

— TM for recognizing A: on input w, compute
f(w), run TM that recognizes B, do whatever it
does.

* Main use: given language NEW, prove it is
not RE by showing OLD <,,NEW, where

OLD known to be not RE.

February 3, 2025 CS21 Lecture 12

13

14

Many-one reduction example

» Showed Eq), undecidable. Consider:
co-Emm = {<M> : L(M) = 3}

- f(<M, w>) = <M'>

yes yes where M’ is TM that
‘ = on input X, if X # w,
@ . then reJ‘ect
* else simulate M on x,
and accept if M does
Amm co-Etm

« f clearly computable

February 3, 2025 CS21 Lecture 12

Many-one reduction example
¢ « f(<M, w>) = <M>

yes yes where M’ is TM that
‘ e oninput X, if X #w,
D . then reJ_ect
« else simulate M on x,
and accept if M does
Amm co-Emm

« yes maps to yes'? « f clearly computable

—if <M, w> € Atv then f(M, W) € co-Etm
* no maps to no?
—if <M, w> & Aqy then f(M, w) € co-Etm

February 3, 2025 CS21 Lecture 12

15

Undecidable problems

Theorem: The language
REGULAR = {<M>: M is a TM and L(M) is
regular}

is undecidable.

Proof:
—reduce from Ay (i.e. show Arv <m REGULAR)
— what should f(<M, w>) produce?

February 3, 2025 CS21 Lecture 12

17

16
Undecidable problems
Proof:
— f(<M, w>) = <M’> described below
on input x: * is f computable?
+ if x has form On1n, accept | * YES maps to YES?
- else simulate M on w <M, w> €Ay =
and accept x if M accepts f(M, w) € REGULAR
* NO maps to NO?
<M, w> & Ay =
f(M, w) ¢ REGULAR
February 3, 2025 CS21 Lecture 12
18

Dec. and undec. problems

the boundary between decidability and
undecidability is often quite delicate

— seemingly related problems

— one decidable

— other undecidable

* We will see two examples of this
phenomenon next.

February 3, 2025 CS21 Lecture 12

19

