CS21
Decidability and Tractability

Lecture 11
January 29, 2021

Outline

• Church-Turing Thesis
• decidable, RE, co-RE languages
• the Halting Problem

Universal TMs and encoding

• the input to a TM is always a string in \(\Sigma^* \)
• often we want to interpret the input as representing another object
• examples:
 – tuple of strings (x, y, z)
 – 0/1 matrix
 – graph in adjacency-list format
 – Context-Free Grammar

Universal TMs and encoding

• some strings not valid encodings and these are not in the language

\[L = \text{"yes"} \quad 	ext{"no"} \quad \Sigma^* \]

• make sure TM can recognize invalid encodings and reject them

Universal TMs and encoding

• We can easily construct a Universal TM that recognizes the language:
 \[A_{TM} = \{ <M, w> : M \text{ is a TM and } M \text{ accepts } w \} \]
 \[\text{– how?} \]
• this is a remarkable feature of TMs (not possessed by FA or NPDAs…)
• means there is a general purpose TM whose input can be a "program" to run
Church-Turing Thesis

• many other models of computation
 – we saw multitape TM, nondeterministic TM
 – others don’t resemble TM at all
 – common features:
 • unrestricted access to unlimited memory
 • finite amount of work in a single step
• every single one can be simulated by TM
• many are equivalent to a TM
• problems that can be solved by computer does not depend on details of model!

Church-Turing Thesis

• the belief that TMs formalize our intuitive notion of an algorithm is:
 The Church-Turing Thesis
 everything we can compute on a physical computer can be computed on a Turing Machine
• Note: this is a belief, not a theorem.

Recursive Enumerability

• Why is “Turing-recognizable” called RE?
• Definition: a language \(L \subseteq \Sigma^* \) is recursively enumerable if there is exists a TM (an “enumerator”) that writes on its output tape
 \(x_1 \# x_2 \# x_3 \# \ldots \)
 and \(L = \{x_1, x_2, x_3, \ldots \} \).
• The output may be infinite

Recursive Enumerability

Theorem: A language is Turing-recognizable iff some enumerator enumerates it.

Proof:
(\(\Rightarrow \)) Let \(E \) be the enumerator. On input \(w \):
 – Simulate \(E \). Compare each string it outputs with \(w \).
 – If \(w \) matches a string output by \(E \), accept.

Recursive Enumerability

Theorem: A language is Turing-recognizable iff some enumerator enumerates it.

Proof:
(\(\Rightarrow \)) Let \(M \) recognize language \(L \subseteq \Sigma^* \).
 – let \(s_1, s_2, s_3, \ldots \) be enumeration of \(\Sigma^* \) in lexicographic order.
 – for \(i = 1, 2, 3, \ldots \)
 • simulate \(M \) for \(i \) steps on \(s_1, s_2, s_3, \ldots, s_i \)
 • if any simulation accepts, print out that \(s_j \)

Undecidability

decidable \(\subseteq \) RE \(\subseteq \) all languages

decidable \(\subseteq \) RE \(\subseteq \) all languages

our goal: prove these containments proper
Countable and Uncountable Sets

- The natural numbers $\mathbb{N} = \{1, 2, 3, \ldots\}$ are **countable**

- Definition: a set S is **countable** if it is finite, or it is infinite and there is a bijection $f: \mathbb{N} \rightarrow S$

Theorem: the positive rational numbers $\mathbb{Q} = \{m/n : m, n \in \mathbb{N}\}$ are countable.

Proof:

1/1 1/2 1/3 1/4 1/5 1/6 ...
2/1 2/2 2/3 2/4 2/5 2/6 ...
3/1 3/2 3/3 3/4 3/5 3/6 ...
4/1 4/2 4/3 4/4 4/5 4/6 ...
5/1 ...

Theorem: the real numbers \mathbb{R} are **not** countable (they are "uncountable").

- How do you prove such a statement?
 - assume countable (so there exists bijection f)
 - derive contradiction (some element not mapped to by f)
 - technique is called diagonalization (Cantor)

Proof:

- suppose \mathbb{R} is countable
- list \mathbb{R} according to the bijection f:

<table>
<thead>
<tr>
<th>n</th>
<th>$f(n)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>3.14159...</td>
</tr>
<tr>
<td>2</td>
<td>5.55555...</td>
</tr>
<tr>
<td>3</td>
<td>0.12345...</td>
</tr>
<tr>
<td>4</td>
<td>0.50000...</td>
</tr>
<tr>
<td>...</td>
<td>...</td>
</tr>
</tbody>
</table>

 set $x = 0.a_1a_2a_3a_4\ldots$
 - where digit $a_i \neq i$th digit after decimal point of $f(i)$ (not 0, 9)
 - e.g. $x = 0.2312\ldots$
 - x cannot be in the list!

non-RE languages

Theorem: there exist languages that are not Recursively Enumerable.

Proof outline:

- the set of all TMs is countable
- the set of all languages is uncountable
- the function $L:\{\text{TMs}\} \rightarrow \{\text{languages}\}$ cannot be onto
non-RE languages

- Lemma: the set of all TMs is countable.
- Proof:
 - each TM M can be described by a finite-length string \(<M>\)
 - can enumerate these strings, and give the natural bijection with \(N\)

non-RE languages

- Lemma: the set of all languages is uncountable
- Proof:
 - fix an enumeration of all strings \(s_1, s_2, s_3, \ldots\)
 (for example, lexicographic order)
 - a language \(L\) is described by its characteristic vector \(\chi_L\) whose \(i^{th}\) element is 0 if \(s_i\) is not in \(L\) and 1 if \(s_i\) is in \(L\)

So far...

- This language might be an esoteric, artificially constructed one. Do we care?
- We will show a natural undecidable \(L\) next.

The Halting Problem

- Definition of the “Halting Problem”:
 \[\text{HALT} = \{ <M, x> : \text{TM } M \text{ halts on input } x \}\]
- HALT is recursively enumerable.
 - proof?
- Is HALT decidable?