CS21
Decidability
and
Tractability

Lecture 11

January 31,
2025

Undecidability

decidable
all languages
regular
languages
context free RE
languages

decidable € RE c all languages

our goal: prove these containments proper
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Countable and Uncountable Sets

« the natural numbers N = {1,2,3,...} are
countable

« Definition: a set S is countable if it is finite,
or itis infinite and there is a bijection

fN—>S
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Countable and Uncountable Sets

» Theorem: the positive rational numbers
Q ={m/n:m, n € N} are countable.
* Proof:
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Countable and Uncountable Sets

Theorem: the real numbers R are NOT
countable (they are “uncountable”).

* How do you prove such a statement?
—assume countable (so there exists bijection f)

— derive contradiction (some element not
mapped to by f)

—technique is called diagonalization (Cantor)
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Countable and Uncountable Sets

* Proof:
—suppose R is countable

— list R according to the bijection f:
n f(n)

1 3.14159...
2 5.55555...
3 0.12345...
4 0.50000...
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Countable and Uncountable Sets

* Proof:
—suppose R is countable
— list R according to the bijection f:

n f(n) tx=0

set x = 0.a1@,a34. ..
1 3.14159... 1

where digit a; # ith digit after
2 5.55555... decimal point of f(i) (not 0, 9)
3 0.12345... e.g. x=0.2312...
4 0.50000...

x cannot be in the list!
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non-RE languages

* Lemma: the set of all TMs is countable.
* Proof:

—each TM M can be described by a finite-
length string <M>

— can enumerate these strings, and give the
natural bijection with N
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non-RE languages

Theorem: there exist languages that are not
Recursively Enumerable.

Proof outline:
—the set of all TMs is countable
— the set of all languages is uncountable

— the function L:{TMs} —{languages} cannot be
onto
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non-RE languages

* Lemma: the set of all languages is
uncountable

* Proof:
— fix an enumeration of all strings s1, s2, S3, ...
(for example, lexicographic order)

—alanguage L is described by its characteristic

vector y; whose i" element is 0 if s; is not in L
and 1ifsjisinL
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non-RE languages

— suppose the set of all languages is countable

— list characteristic vectors of all languages
according to the bijection f:

n___fn)
10 setx=1101...
1 0101010...

where ith digit # it digit of f(i)
2 1010011... ) )

x cannot be in the list!
3 1110001... therefore, the language with
4 0100011... characteristic vector x is not

in the list
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non-RE languages
— suppose the set of all languages is countable
— list characteristic vectors of all languages
according to the bijection f:
n f(n)
1 0101010...
2 1010011...
3 1110001...
4 0100011...
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So far...
anbn:n=0 some language
¢ }decidable 91ag

all languages
regular

languages

context free

RE
languages

{anbrcn:nz=0}

» This language might be an esoteric,
artificially constructed one. Do we care?

* We will show a natural undecidable L next.
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The Halting Problem

+ Definition of the “Halting Problem”:
HALT ={ <M, x> : TM M halts on input x }

* HALT is recursively enumerable.
— proof?

* Is HALT decidable?
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The Halting Problem

Theorem: HALT is not decidable
(undecidable).

Proof:
— Suppose TM H decides HALT
— Define new TM H’: on input <M>
« if H accepts <M, <M>> then loop
« if H rejects <M, <M>> then halt
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The Halting Problem

Proof:
— define new TM H’: on input <M>
« if H accepts <M, <M>> then loop
« if H rejects <M, <M>> then halt
— consider H’ on input <H’>:
« if it halts, then H rejects <H’, <H>>, which implies
it cannot halt
« if it loops, then H accepts <H’, <H>> which implies
it must halt
— contradiction.
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The Halting Problem
box
(M, x):
does M
halt on
x?

inputs

Turing
Machines

The existence of
H which tells us
yes/no for each
box allows us to
constructa TM H’
that cannot be in
the table.

H: [n][Y[n][Y]Y[n]Y]
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So far...

{anb":n=0 some language

) decidable

all languages
regular

languages

context free

RE
languages

HALT
{anbcn:n=0}

« Can we exhibit a natural language that is
non-RE?
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RE and co-RE

» The complement of a RE language is
called a co-RE language

{anbn:n=0} co-RE SOme language

decidable

all languages
regular

languages

context free RE
languages
{anbrcn:n=20} HALT
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RE and co-RE

Theorem: a language L is decidable if and
only if L is RE and L is co-RE.

Proof:

(<) we have TM M that recognizes L, and TM
M’ recognizes complement of L.

—on input X, simulate M, M’ in parallel

—if M accepts, accept; if M’ accepts, reject.
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RE and co-RE

Theorem: a language L is decidable if and
only if L is RE and L is co-RE.

Proof:
(=) we already know decidable implies RE

—if L is decidable, then complement of L is
decidable by flipping accept/reject.

—so Lisin co-RE.

January 31, 2025 CS21 Lecture 11

20

A natural non-RE language

Theorem: the complement of HALT is not
recursively enumerable.

Proof:
—we know that HALT is RE
— suppose complement of HALT is RE
—then HALT is co-RE
—implies HALT is decidable. Contradiction.
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Summary
co-HALT
fabr:n=0} co-RE Some language
decidable
all languages
regular
languages
context free RE
languages
{anbrc:nz=0} HALT
Main point: some problems have no
algorithms, HALT in particular.
January 31, 2025 CS21 Lecture 11
23

Reductions

» Given a new problem NEW, want to
determine if it is easy or hard
—right now, easy typically means decidable
—right now, hard typically means undecidable
* One option:
— prove from scratch that the problem is
decidable, or

— prove from scratch that the problem is
undecidable (dream up a diag. argument)
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Reductions

* A better option:

—to prove NEW is decidable, show how to
transform it into a known decidable problem
OLD so that solution to OLD can be used to
solve NEW.

—to prove NEW is undecidable, show how to
transform a known undecidable problem OLD
into NEW so that solution to NEW can be
used to solve OLD.

« called a reduction

January 31, 2025 CS21 Lecture 11

25

Example reduction

 Try to prove undecidable:
Amv = {<M, w> : M accepts input w}
* We know this language is undecidable:
HALT = {<M, w> : M halts on input w}
* ldea:

— suppose A is decid

—show that we can use Aty to decide HALT
—conclude HALT is decidable. Contradiction.
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Example reduction

» Deciding HALT using a procedure that
decides Aqy (“reducing HALT to Aqy’).
—on input <M, w>
—check if <M, w> € Atm
« if yes, the M halts on w; ACCEPT
« if no, then M either rejects w or it loops on w
— construct M’ by swapping Qaccept/Qreject in M
—check if <M’, w> € At
« if yes, then M’ accepts w, so M rejects w; ACCEPT
« if no, then M neither accepts nor rejects w; REJECT
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Reductions

Reductions are one of the most important
and widely used techniques in theoretical
Computer Science.

+ especially for proving problems “hard”
— often difficult to do “from scratch”
— sometimes not known how to do from scratch
—reductions allow proof by giving an algorithm
to perform the transformation
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Example reduction

How could we use procedure that decides
A to decide HALT?

—given input to HALT: <M, w>

» Some things we can do:
—check if <M, w> € Amy

— construct another TM M’ and check if
<M’, w> € Atm
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Example reduction

* Preceding reduction proved:
Theorem: Aty is undecidable.

Proof (recap):
— suppose Amy is decidable
—we showed how to use Arv to decide HALT
—conclude HALT is decidable. Contradiction.
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