Outline

- Turing Machines and variants
 - multitape TMs
 - nondeterministic TMs
- Church-Turing Thesis
- decidable, RE, co-RE languages

Deciding and Recognizing

- TM M:
 - L(M) is the language it recognizes
 - if M rejects every x \notin L(M) it decides L
 - set of languages recognized by some TM is called Turing-recognizable or recursively enumerable (RE)
 - set of languages decided by some TM is called Turing-decidable or decidable or recursive

Classes of languages

- We know: regular \subseteq CFL (proper containment)
- CFL \subseteq decidable
 - proof?
 - decidable \subseteq RE \subseteq all languages
 - proof?

Multitape TMs

- A useful variant: k-tape TM
Multitape TMs

- Informal description of k-tape TM:
 - input written on left-most squares of tape #1
 - rest of squares are blank on all tapes
 - at each point, take a step determined by
 - current k symbols being read on k tapes
 - current state of finite control
 - a step consists of
 - writing k new symbols on k tapes
 - moving each of k read/write heads left or right
 - changing state

Multitape TM formal definition

- A TM is a 7-tuple
 \((Q, \Sigma, \Gamma, \delta, q_0, q_{\text{accept}}, q_{\text{reject}})\) where:
 - everything is the same as a TM except the transition function:
 \(\delta: Q \times \Gamma^k \rightarrow Q \times \Gamma^k \times \{L, R\}^k\)
 - \(\delta(q_i, a_1, a_2, \ldots, a_k) = (q_j, b_1, b_2, \ldots, b_k, L, R, \ldots, L)\) =
 "in state \(q_i\), reading \(a_1, a_2, \ldots, a_k\) on k tapes,
 move to state \(q_j\), write \(b_1, b_2, \ldots, b_k\) on k tapes,
 move \(L, R\) on k tapes as specified."

Theorem: every k-tape TM has an equivalent single-tape TM.

Proof:
- Idea: simulate k-tape TM on a 1-tape TM.

Multitape TMs

Simulation of k-tape TM by single-tape TM:

- add new symbol \(x\) for each old \(x\)
- marks location of "virtual heads"

Multitape TMs

Nondeterministic TMs

- A important variant: nondeterministic TM
- informally, several possible next configurations at each step
- formally, a NTM is a 7-tuple
 \((Q, \Sigma, \Gamma, \delta, q_0, q_{\text{accept}}, q_{\text{reject}})\) where:
 - everything is the same as a TM except the transition function:
 \(\delta: Q \times \Gamma \rightarrow \mathcal{P}(Q \times \Gamma \times \{L, R\})\)
NTM acceptance

- start configuration: \(q_0 w \) (w is input)
- accepting config.: any config. with state \(q_{\text{accept}} \)
- rejecting config.: any config. with state \(q_{\text{reject}} \)

NTM M accepts input w if there exist configurations \(C_1, C_2, \ldots, C_k \)
- \(C_1 \) is start configuration of M on input w
- \(C_i \Rightarrow C_{i+1} \) for \(i = 1, 2, 3, \ldots, k-1 \)
- \(C_k \) is an accepting configuration

Nondeterministic TMs

Theorem: every NTM has an equivalent (deterministic) TM.

Proof:
- Idea: simulate NTM with a deterministic TM

Nondeterministic TMs

Simulating NTM M with a deterministic TM:
- computations of M are a tree
- nodes are configs
- fanout is \(b = \) maximum number of choices in transition function
- leaves are accept/reject configs.

Nondeterministic TMs

Simulating NTM M with a deterministic TM:
- idea: breadth-first search of tree
- if M accepts: we will encounter accepting leaf and accept
- if M rejects: we will encounter all rejecting leaves, finish traversal of tree, and reject
- if M does not halt on some branch: we will not halt...

Nondeterministic TMs

Simulating NTM M with a deterministic TM:
- use a 3 tape TM:
 - tape 1: input tape (read-only)
 - tape 2: simulation tape (copy of M’s tape at point corresponding to some node in the tree)
 - tape 3: which node of the tree we are exploring (string in \(\{1,2,\ldots,b\}^* \))
- Initially, tape 1 has input, others blank
- **STEP 1:** copy tape 1 to tape 2

Nondeterministic TMs

Simulating NTM M with a deterministic TM:
- **STEP 2:** simulate M using string on tape 3 to determine which choice to take at each step
 - if encounter blank, or a # larger than the number of choices available at this step, abort, go to STEP 3
 - if get to a rejecting configuration: DONE = 0, go to STEP 3
 - if get to an accepting configuration, ACCEPT
 - **STEP 3:** replace tape 3 with lexicographically next string and go to STEP 2
 - if string lengthened and DONE = 1 REJECT; else DONE = 1
Examples of basic operations

• Convince yourself that the following types of operations are easy to implement as part of TM “program”
 (but perhaps tedious to write out…)
 – copying
 – moving
 – incrementing/decrementing
 – arithmetic operations +, -, *, /

Universal TMs and encoding

• the input to a TM is always a string in Σ*
• often we want to interpret the input as representing another object
• examples:
 – tuple of strings (x, y, z)
 – 0/1 matrix
 – graph in adjacency-list format
 – Context-Free Grammar

Universal TMs and encoding

• the input to a TM is always a string in Σ*
• we must encode our input as such a string
• examples:
 – tuples separated by #: #x#y#z
 – 0/1 matrix given by: #n#x# where x ∈ {0,1}^n
• any reasonable encoding is OK
• emphasize “encoding of X” by writing <X>

Universal TMs and encoding

• some strings not valid encodings and these are not in the language

Church-Turing Thesis

• many other models of computation
 – we saw multitape TM, nondeterministic TM
 – others don’t resemble TM at all
 – common features:
 • unrestricted access to unlimited memory
 • finite amount of work in a single step
 – every single one can be simulated by TM
 – many are equivalent to a TM
 – problems that can be solved by computer does not depend on details of model!
Church-Turing Thesis

- the belief that TMs formalize our intuitive notion of an algorithm is:

 The Church-Turing Thesis
 everything we can compute on a physical computer
 can be computed on a Turing Machine

- Note: this is a belief, not a theorem.