CS21
Decidability
and
Tractability

Lecture 11

January 31,
2025

Undecidability

decidable
all languages
regular
languages
context free RE
languages

decidable € RE c all languages

our goal: prove these containments proper

January 31, 2025 CS21 Lecture 11

Countable and Uncountable Sets

« the natural numbers N = {1,2,3,...} are
countable

« Definition: a set S is countable if it is finite,
or itis infinite and there is a bijection

fN—>S

January 31, 2025 CS21 Lecture 11

Countable and Uncountable Sets

» Theorem: the positive rational numbers
Q ={m/n:m, n € N} are countable.
* Proof:

January 31, 2025 CS21 Lecture 11

Countable and Uncountable Sets

Theorem: the real numbers R are NOT
countable (they are “uncountable”).

* How do you prove such a statement?
—assume countable (so there exists bijection f)

— derive contradiction (some element not
mapped to by f)

—technique is called diagonalization (Cantor)

January 31, 2025 CS21 Lecture 11

Countable and Uncountable Sets

* Proof:
—suppose R is countable

— list R according to the bijection f:
n f(n)

1 3.14159...
2 5.55555...
3 0.12345...
4 0.50000...

January 31, 2025 CS21 Lecture 11




Countable and Uncountable Sets

* Proof:
—suppose R is countable
— list R according to the bijection f:

n f(n) tx=0

set x = 0.a1@,a34. ..
1 3.14159... 1

where digit a; # ith digit after
2 5.55555... decimal point of f(i) (not 0, 9)
3 0.12345... e.g. x=0.2312...
4 0.50000...

x cannot be in the list!

January 31, 2025 CS21 Lecture 11

non-RE languages

* Lemma: the set of all TMs is countable.
* Proof:

—each TM M can be described by a finite-
length string <M>

— can enumerate these strings, and give the
natural bijection with N

January 31, 2025 CS21 Lecture 11

non-RE languages

Theorem: there exist languages that are not
Recursively Enumerable.

Proof outline:
—the set of all TMs is countable
— the set of all languages is uncountable

— the function L:{TMs} —{languages} cannot be
onto

January 31, 2025 CS21 Lecture 11

non-RE languages

* Lemma: the set of all languages is
uncountable

* Proof:
— fix an enumeration of all strings s1, s2, S3, ...
(for example, lexicographic order)

—alanguage L is described by its characteristic

vector y; whose i" element is 0 if s; is not in L
and 1ifsjisinL

January 31, 2025 CS21 Lecture 11

10

non-RE languages

— suppose the set of all languages is countable

— list characteristic vectors of all languages
according to the bijection f:

n___fn)
10 setx=1101...
1 0101010...

where ith digit # it digit of f(i)
2 1010011... ) )

x cannot be in the list!
3 1110001... therefore, the language with
4 0100011... characteristic vector x is not

in the list

January 31, 2025 CS21 Lecture 11

9
non-RE languages
— suppose the set of all languages is countable
— list characteristic vectors of all languages
according to the bijection f:
n f(n)
1 0101010...
2 1010011...
3 1110001...
4 0100011...
January 31:‘2(‘)25 CS21 Lecture 11
11

12




So far...
anbn:n=0 some language
¢ }decidable 91ag

all languages
regular

languages

context free

RE
languages

{anbrcn:nz=0}

» This language might be an esoteric,
artificially constructed one. Do we care?

* We will show a natural undecidable L next.

January 31, 2025 CS21 Lecture 11

The Halting Problem

+ Definition of the “Halting Problem”:
HALT ={ <M, x> : TM M halts on input x }

* HALT is recursively enumerable.
— proof?

* Is HALT decidable?

January 31, 2025 CS21 Lecture 11

13

14

The Halting Problem

Theorem: HALT is not decidable
(undecidable).

Proof:
— Suppose TM H decides HALT
— Define new TM H’: on input <M>
« if H accepts <M, <M>> then loop
« if H rejects <M, <M>> then halt

January 31, 2025 CS21 Lecture 11

The Halting Problem

Proof:
— define new TM H’: on input <M>
« if H accepts <M, <M>> then loop
« if H rejects <M, <M>> then halt
— consider H’ on input <H’>:
« if it halts, then H rejects <H’, <H>>, which implies
it cannot halt
« if it loops, then H accepts <H’, <H>> which implies
it must halt
— contradiction.

January 31, 2025 CS21 Lecture 11

15

16

The Halting Problem
box
(M, x):
does M
halt on
x?

inputs

Turing
Machines

The existence of
H which tells us
yes/no for each
box allows us to
constructa TM H’
that cannot be in
the table.

H: [n][Y[n][Y]Y[n]Y]

January 31, 2025 CS21 Lecture 11

17

So far...

{anb":n=0 some language

) decidable

all languages
regular

languages

context free

RE
languages

HALT
{anbcn:n=0}

« Can we exhibit a natural language that is
non-RE?

January 31, 2025 CS21 Lecture 11

18




RE and co-RE

» The complement of a RE language is
called a co-RE language

{anbn:n=0} co-RE SOme language

decidable

all languages
regular

languages

context free RE
languages
{anbrcn:n=20} HALT

January 31, 2025 CS21 Lecture 11

19

RE and co-RE

Theorem: a language L is decidable if and
only if L is RE and L is co-RE.

Proof:

(<) we have TM M that recognizes L, and TM
M’ recognizes complement of L.

—on input X, simulate M, M’ in parallel

—if M accepts, accept; if M’ accepts, reject.

January 31, 2025 CS21 Lecture 11

RE and co-RE

Theorem: a language L is decidable if and
only if L is RE and L is co-RE.

Proof:
(=) we already know decidable implies RE

—if L is decidable, then complement of L is
decidable by flipping accept/reject.

—so Lisin co-RE.

January 31, 2025 CS21 Lecture 11

20

A natural non-RE language

Theorem: the complement of HALT is not
recursively enumerable.

Proof:
—we know that HALT is RE
— suppose complement of HALT is RE
—then HALT is co-RE
—implies HALT is decidable. Contradiction.

January 31, 2025 CS21 Lecture 11

22

21
Summary
co-HALT
fabr:n=0} co-RE Some language
decidable
all languages
regular
languages
context free RE
languages
{anbrc:nz=0} HALT
Main point: some problems have no
algorithms, HALT in particular.
January 31, 2025 CS21 Lecture 11
23

Reductions

» Given a new problem NEW, want to
determine if it is easy or hard
—right now, easy typically means decidable
—right now, hard typically means undecidable
* One option:
— prove from scratch that the problem is
decidable, or

— prove from scratch that the problem is
undecidable (dream up a diag. argument)

January 31, 2025 CS21 Lecture 11

24




Reductions

* A better option:

—to prove NEW is decidable, show how to
transform it into a known decidable problem
OLD so that solution to OLD can be used to
solve NEW.

—to prove NEW is undecidable, show how to
transform a known undecidable problem OLD
into NEW so that solution to NEW can be
used to solve OLD.

« called a reduction

January 31, 2025 CS21 Lecture 11

25

Example reduction

 Try to prove undecidable:
Amv = {<M, w> : M accepts input w}
* We know this language is undecidable:
HALT = {<M, w> : M halts on input w}
* ldea:

— suppose A is decid

—show that we can use Aty to decide HALT
—conclude HALT is decidable. Contradiction.

January 31, 2025 CS21 Lecture 11

27

Example reduction

» Deciding HALT using a procedure that
decides Aqy (“reducing HALT to Aqy’).
—on input <M, w>
—check if <M, w> € Atm
« if yes, the M halts on w; ACCEPT
« if no, then M either rejects w or it loops on w
— construct M’ by swapping Qaccept/Qreject in M
—check if <M’, w> € At
« if yes, then M’ accepts w, so M rejects w; ACCEPT
« if no, then M neither accepts nor rejects w; REJECT

January 31, 2025 CS21 Lecture 11

Reductions

Reductions are one of the most important
and widely used techniques in theoretical
Computer Science.

+ especially for proving problems “hard”
— often difficult to do “from scratch”
— sometimes not known how to do from scratch
—reductions allow proof by giving an algorithm
to perform the transformation

January 31, 2025 CS21 Lecture 11

26

Example reduction

How could we use procedure that decides
A to decide HALT?

—given input to HALT: <M, w>

» Some things we can do:
—check if <M, w> € Amy

— construct another TM M’ and check if
<M’, w> € Atm

January 31, 2025 CS21 Lecture 11

28

29

Example reduction

* Preceding reduction proved:
Theorem: Aty is undecidable.

Proof (recap):
— suppose Amy is decidable
—we showed how to use Arv to decide HALT
—conclude HALT is decidable. Contradiction.

January 31, 2025 CS21 Lecture 11

30




