Nondeterministic TMs

Theorem: every NTM has an equivalent (deterministic) TM.

Proof:
- Idea: simulate NTM with a deterministic TM

Simulating NTM M with a deterministic TM:
- idea: breadth-first search of tree
- if M accepts: we will encounter accepting leaf and accept
- if M rejects: we will encounter all rejecting leaves, finish traversal of tree, and reject
- if M does not halt on some branch: we will not halt…

Simulating NTM M with a deterministic TM:
- use a 3 tape TM:
 - tape 1: input tape (read-only)
 - tape 2: simulation tape (copy of M's tape at point corresponding to some node in the tree)
 - tape 3: which node of the tree we are exploring (string in $\{1,2,\ldots,b\}^*$)
- Initially, tape 1 has input, others blank
- **STEP 1:** copy tape 1 to tape 2
Nondeterministic TMs

Simulating NTM M with a deterministic TM:
- **STEP 2**: simulate M using string on tape 3 to determine which choice to take at each step
 - if encounter blank, or a # larger than the number of choices available at this step, abort, go to STEP 3
 - if get to a rejecting configuration: $DONE = 0$, go to STEP 3
 - if get to an accepting configuration, $ACCEPT$
- **STEP 3**: replace tape 3 with lexicographically next string and go to STEP 2
 - if string lengthened and $DONE = 1$ REJECT; else $DONE = 1$

Examples of basic operations

- Convince yourself that the following types of operations are easy to implement as part of TM “program”
 - (but perhaps tedious to write out…)
 - copying
 - moving
 - incrementing/decrementing
 - arithmetic operations $+, -, *, /$

Universal TMs and encoding

- the input to a TM is always a string in Σ^*
- often we want to interpret the input as representing another object
- examples:
 - tuple of strings (x, y, z)
 - 0/1 matrix
 - graph in adjacency-list format
 - Context-Free Grammar

Universal TMs and encoding

- the input to a TM is always a string in Σ^*
- we must encode our input as such a string
- examples:
 - tuples separated by #: $#x#y#z$
 - 0/1 matrix given by: $#n#$ where $x \in \{0,1\}^n$
- any reasonable encoding is OK
- emphasize “encoding of X” by writing $<X>$

Universal TMs and encoding

- some strings not valid encodings and these are not in the language
 - $L \rightarrow \text{"yes"} \quad \text{invalid}$
 - Σ^*
 - make sure TM can recognize invalid encodings and reject them

Universal TMs and encoding

- We can easily construct a Universal TM that recognizes the language:
 - $A_{TM} = \langle <M, w> : M \text{ is a TM and } M \text{ accepts } w \rangle$
 - how?
- this is a remarkable feature of TMs (not possessed by FA or NPDAs…)
- means there is a general purpose TM whose input can be a “program” to run
Church-Turing Thesis

- many other models of computation
 - we saw multitape TM, nondeterministic TM
 - others don’t resemble TM at all
- common features:
 - unrestricted access to unlimited memory
 - finite amount of work in a single step
- every single one can be simulated by TM
- many are equivalent to a TM
- problems that can be solved by computer does not depend on details of model!

Note: this is a belief, not a theorem.

The Church-Turing Thesis

- the belief that TMs formalize our intuitive notion of an algorithm is:
 - everything we can compute on a physical computer can be computed on a Turing Machine

Recursive Enumerability

- Why is “Turing-recognizable” called RE?
- Definition: a language $L \subseteq \Sigma^*$ is recursively enumerable if there is exists a TM (an “enumerator”) that writes on its output tape

 $\#x_1\#x_2\#x_3\#…$

 and $L = \{x_1, x_2, x_3, \ldots\}$.

- The output may be infinite

Theorem: A language is Turing-recognizable iff some enumerator enumerates it.

Proof:

\Rightarrow Let E be the enumerator. On input w:
 - Simulate E. Compare each string it outputs with w.
 - If w matches a string output by E, accept.

Recursive Enumerability

Theorem: A language is Turing-recognizable iff some enumerator enumerates it.

Proof:

\Leftarrow Let M recognize language $L \subseteq \Sigma^*$.
 - let s_1, s_2, s_3, \ldots be enumeration of Σ^* in lexicographic order.
 - for $i = 1, 2, 3, 4,…$
 - simulate M for i steps on $s_1, s_2, s_3, \ldots, s_i$
 - if any simulation accepts, print out that s_j

Undecidability

decidable \subseteq RE \subseteq all languages

our goal: prove these containments proper
Countable and Uncountable Sets

- the natural numbers $\mathbb{N} = \{1, 2, 3, \ldots\}$ are **countable**

- Definition: a set S is **countable** if it is finite, or it is infinite and there is a bijection $f: \mathbb{N} \rightarrow S$

Countable and Uncountable Sets

Theorem: the positive rational numbers $\mathbb{Q} = \{m/n : m, n \in \mathbb{N}\}$ are countable.

Proof:

\[
\begin{array}{cccccccc}
1/1 & 1/2 & 1/3 & 1/4 & 1/5 & 1/6 & \ldots \\
2/1 & 2/2 & 2/3 & 2/4 & 2/5 & 2/6 & \ldots \\
3/1 & 3/2 & 3/3 & 3/4 & 3/5 & 3/6 & \ldots \\
4/1 & 4/2 & 4/3 & 4/4 & 4/5 & 4/6 & \ldots \\
5/1 & \ldots \\
\end{array}
\]

Countable and Uncountable Sets

Theorem: the real numbers \mathbb{R} are NOT countable (they are "uncountable").

- How do you prove such a statement?
 - assume countable (so there exists bijection f)
 - derive contradiction (some element not mapped to by f)
 - technique is called diagonalization (Cantor)

Proof:

- suppose \mathbb{R} is countable
- list \mathbb{R} according to the bijection f:

\[
\begin{array}{ccc}
1 & 2 & 3 \\
3.14159\ldots & 5.55555\ldots & 0.12345\ldots \\
3.14159\ldots & 5.55555\ldots & 0.12345\ldots \\
3.14159\ldots & 5.55555\ldots & 0.12345\ldots \\
\ldots & \ldots & \ldots \\
\end{array}
\]

- set $x = 0.a_1a_2a_3a_4\ldots$
 - where digit a_i \(\neq i^{th}\) digit after decimal point of $f(i)$ (not 0, 9)
 - e.g. $x = 0.2312\ldots$

- x cannot be in the list!

Countable and Uncountable Sets

Theorem: there exist languages that are not Recursively Enumerable.

Proof outline:

- the set of all TMs is **countable**
- the set of all languages is **uncountable**
- the function $L: \{\text{TMs}\} \rightarrow \{\text{languages}\}$ cannot be onto

non-RE languages

Theorem: there exist languages that are not Recursively Enumerable.