CS21
Decidability and Tractability

Lecture 10
January 26, 2024

Turing Machine diagrams

- a → R means "read a, move right"
- a → L means "read a, move left"
- a → b, R means "read a, write b, move right"

Example TM diagram

TM formal definition

- A TM is a 7-tuple $\langle Q, \Sigma, \Gamma, \delta, q_0, q_{\text{accept}}, q_{\text{reject}} \rangle$ where:
 - Q is a finite set called the states
 - Σ is a finite set called the input alphabet
 - Γ is a finite set called the tape alphabet
 - $\delta : Q \times \Gamma \rightarrow Q \times \Gamma \times \{L, R\}$ is a function called the transition function
 - q_0 is an element of Q called the start state
 - q_{accept}, q_{reject} are the accept and reject states

Example TM operation

TM configurations

- At every step in a computation, a configuration determined:
 - the contents of the tape
 - the state
 - the location of the read/write head
- next step completely determined by current configuration
- shorthand: string uqv with $u, v \in \Gamma^*$, $q \in Q$
TM configurations

• configuration \(C_1 \) **yields** configuration \(C_2 \) if TM can legally* move from \(C_1 \) to \(C_2 \) in 1 step
 – notation: \(C_1 \Rightarrow C_2 \)
 – also: “yields in 1 step” notation: \(C_1 \Rightarrow_1 C_2 \)
 – “yields in \(k \) steps” notation: \(C_1 \Rightarrow_k C_2 \)
 – also: “yields in some # of steps” \(\Rightarrow^{*} \)
 – Convention: TM halts upon entering \(q_{\text{accept}} \), \(q_{\text{reject}} \)

Formal definition of “yields”:

\[
\begin{align*}
uaq_i & \Rightarrow uq_j acv \\
& \text{if } \delta(q_i, b) = (q_j, c, L), \text{ and} \\
uaq_i & \Rightarrow uacq_j v
\end{align*}
\]

• two special cases:
 – left end: \(q_i bv \Rightarrow q_j cv \if \delta(q_i, b) = (q_j, c, L) \)
 – right end: \(uaq_i \) same as \(uaq_i \)

TM acceptance

• start configuration: \(q_0 w \) (w is input)
• accepting config.: any config. with state \(q_{\text{accept}} \)
• rejecting config.: any config. with state \(q_{\text{reject}} \)

TM M accepts input w if there exist configurations \(C_1, C_2, \ldots, C_k \)
 – \(C_1 \) is start configuration of M on input w
 – \(C_i \Rightarrow C_{i+1} \) for \(i = 1, 2, 3, \ldots, k-1 \)
 – \(C_k \) is an accepting configuration

Deciding and Recognizing

• TM M:
 – \(L(M) \) is the language it recognizes
 – if M rejects every \(x \not\in L(M) \) it decides L
 – set of languages recognized by some TM is called Turing-recognizable or recursively enumerable (RE)
 – set of languages decided by some TM is called Turing-decidable or decidable or recursive

Classes of languages

- We know: regular \(\subseteq \) CFL (proper containment)
- CFL \(\subseteq \) decidable
 – proof?
 – decidable \(\subseteq \) RE \(\subseteq \) all languages
 – proof?
Multitape TMs

• A useful variant: k-tape TM

![Diagram of a k-tape TM with finite control, k read/write heads, and k-1 "work tapes".]

Informal description of k-tape TM:

– input written on left-most squares of tape #1
– rest of squares are blank on all tapes
– at each point, take a step determined by
 • current k symbols being read on k tapes
 • current state of finite control
– a step consists of
 • writing k new symbols on k tapes
 • moving each of k read/write heads left or right
 • changing state

Multitape TM formal definition

• A TM is a 7-tuple

\((Q, \Sigma, \Gamma, \delta, q_0, q_{\text{accept}}, q_{\text{reject}}) \)

where:

– everything is the same as a TM except the transition function:

\[\delta: Q \times \Gamma^k \rightarrow Q \times \Gamma^k \times \{L, R\}^k \]

\[\delta(q_i, a_1, a_2, \ldots, a_k) = (q_j, b_1, b_2, \ldots, b_k, L, R, \ldots, L) \]

in state \(q_i \), reading \(a_1, a_2, \ldots, a_k \) on k tapes,
move to state \(q_j \), write \(b_1, b_2, \ldots, b_k \) on k tapes,
moves L, R on k tapes as specified.

Multitape TLMs

Theorem: every k-tape TM has an equivalent single-tape TM.

Proof:

– Idea: simulate k-tape TM on a 1-tape TM.

Simulation of k-tape TM by single-tape TM:

• add new symbol \(x \) for each old \(x \)
• marks location of "virtual heads"

Repeat:

• scan tape, remembering the symbols under each virtual head in the state (how many new states needed?)
• make changes to reflect 1 step of M
• if hit \(# \), shift to right to make room if M halts, erase all but 1st string
Nondeterministic TMs

• An important variant: Nondeterministic TM
• Informally, several possible next configurations at each step
• Formally, a Nondeterministic TM is a 7-tuple $(Q, \Sigma, \Gamma, \delta, q_0, q_{\text{accept}}, q_{\text{reject}})$ where:
 - Everything is the same as a TM except the transition function:
 $$\delta : Q \times \Gamma \rightarrow \mathcal{P}(Q \times \Gamma \times \{L, R\})$$

NTM acceptance

• Start configuration: $q_0 w$ (w is input)
• Accepting config.: Any config. with state q_{accept}
• Rejecting config.: Any config. with state q_{reject}

NTM M accepts input w if there exist configurations C_1, C_2, \ldots, C_k
- C_1 is the start configuration of M on input w
- $C_i \rightarrow C_{i+1}$ for $i = 1, 2, 3, \ldots, k-1$
- C_k is an accepting configuration

Theorem: Every NTM has an equivalent (deterministic) TM.

Proof:
- Idea: Simulate NTM with a deterministic TM

Simulating NTM M with a deterministic TM:
- Idea: breadth-first search of tree
- If M accepts: We will encounter accepting leaf and accept
- If M rejects: We will encounter all rejecting leaves, finish traversal of tree, and reject
- If M does not halt on some branch: We will not halt...

Simulating NTM M with a 3 tape TM:
- Tape 1: Input tape (read-only)
- Tape 2: Simulation tape (copy of M’s tape at point corresponding to some node in the tree)
- Tape 3: Which node of the tree we are exploring (string in $(1, 2, \ldots, b^*)$)
- Initially, tape 1 has input, others blank
- STEP 1: Copy tape 1 to tape 2
Nondeterministic TMs

Simulating NTM \(M \) with a deterministic TM:

- **STEP 2**: simulate \(M \) using string on tape 3 to determine which choice to take at each step
 - if encounter blank, or a \# larger than the number of choices available at this step, abort, go to STEP 3
 - if get to a rejecting configuration: DONE = 0, go to STEP 3
 - if get to an accepting configuration, ACCEPT
- **STEP 3**: replace tape 3 with lexicographically next string and go to STEP 2
 - if string lengthened and DONE = 1 REJECT; else DONE = 1

Examples of basic operations

- Convince yourself that the following types of operations are easy to implement as part of TM "program"
 (but perhaps tedious to write out...)
 - copying
 - moving
 - incrementing/decrementing
 - arithmetic operations \(+,-,\ast,\div\)