
1

CS21
Decidability
and
Tractability

Lecture 10
January 29,
2025

1

January 29, 2025 CS21 Lecture 10

Multitape TMs
• A useful variant: k-tape TM

0 1 1 0 0 1 1 1 0 1 0 0

q0

input tape
finite

control
…

k read/write
heads

0 1 1 0 0 1

k-1 “work
tapes”

…
0 1 1 0 0 1 1 1 0 1 0 0 …

0 …
…

2

2

January 29, 2025 CS21 Lecture 10

Multitape TMs
Theorem: every k-tape TM has an

equivalent single-tape TM.

Proof:
– Idea: simulate k-tape TM on a 1-tape TM.

3

3

January 29, 2025 CS21 Lecture 10

Multitape TMs
simulation of k-tape TM by single-tape TM:

. . . a b a b

a a

b b c d

. . .

. . .

(input tape)

a b a b # a a # b b c d # . . .

• add new symbol
x for each old x

• marks location of
“virtual heads”

4

4

January 29, 2025 CS21 Lecture 10

Multitape TMs
. . . a b a b

a a

b b c d

. . .

. . .

a b a b # a a # b b c d # . . .

Repeat:
• scan tape, remembering the symbols
under each virtual head in the state
(how many new states needed?)
• make changes to reflect 1 step of M

• if hit #, shift to right to make room

 if M halts, erase all but 1st string

5

5

January 29, 2025 CS21 Lecture 10

Nondeterministic TMs
• A important variant: nondeterministic TM
• informally, several possible next

configurations at each step
• formally, a NTM is a 7-tuple

(Q, Σ, Γ,	 δ, q0, qaccept, qreject) where:
– everything is the same as a TM except the

transition function:
δ:Q x Γ	→ P(Q x Γ	x {L, R})

6

6

2

January 29, 2025 CS21 Lecture 10

NTM acceptance
• start configuration: q0w (w is input)
• accepting config.: any config.with state qaccept
• rejecting config.: any config. with state qreject
NTM M accepts input w if there exist

configurations C1, C2, …, Ck

– C1 is start configuration of M on input w
– Ci ⇒	Ci+1 for i = 1, 2, 3, …, k-1
– Ck is an accepting configuration

7

7

January 29, 2025 CS21 Lecture 10

Nondeterministic TMs
Theorem: every NTM has an equivalent

(deterministic) TM.

Proof:
– Idea: simulate NTM with a deterministic TM

8

8

January 29, 2025 CS21 Lecture 10

Nondeterministic TMs
Simulating NTM M with a deterministic TM:

Cstart • computations of M are a tree

• nodes are configs

• fanout is b = maximum
number of choices in transition
function

• leaves are accept/reject
configs.

accrej

9

9

January 29, 2025 CS21 Lecture 10

Nondeterministic TMs
Simulating NTM M with a deterministic TM:
• idea: breadth-first search of tree
• if M accepts: we will encounter accepting

leaf and accept
• if M rejects: we will encounter all rejecting

leaves, finish traversal of tree, and reject
• if M does not halt on some branch: we will

not halt…
10

10

January 29, 2025 CS21 Lecture 10

Nondeterministic TMs
Simulating NTM M with a deterministic TM:

– use a 3 tape TM:
• tape 1: input tape (read-only)
• tape 2: simulation tape (copy of M’s tape at point

corresponding to some node in the tree)
• tape 3: which node of the tree we are exploring

(string in {1,2,…b}*)
– Initially, tape 1 has input, others blank
– STEP 1: copy tape 1 to tape 2

11

11

January 29, 2025 CS21 Lecture 10

Nondeterministic TMs
Simulating NTM M with a deterministic TM:

– STEP 2: simulate M using string on tape 3 to
determine which choice to take at each step

• if encounter blank, or a # larger than the number of choices
available at this step, abort, go to STEP 3

• if get to a rejecting configuration: DONE = 0, go to STEP 3
• if get to an accepting configuration, ACCEPT

– STEP 3: replace tape 3 with lexicographically next
string and go to STEP 2

• if string lengthened and DONE = 1 REJECT; else DONE = 1

12

12

3

January 29, 2025 CS21 Lecture 10

Examples of basic operations
• Convince yourself that the following types

of operations are easy to implement as
part of TM “program”

(but perhaps tedious to write out…)
– copying
– moving
– incrementing/decrementing
– arithmetic operations +, -, *, /

13

13

January 29, 2025 CS21 Lecture 10

Universal TMs and encoding
• the input to a TM is always a string in Σ*
• often we want to interpret the input as

representing another object
• examples:

– tuple of strings (x, y, z)
– 0/1 matrix
– graph in adjacency-list format
– Context-Free Grammar

14

14

January 29, 2025 CS21 Lecture 10

Universal TMs and encoding
• the input to a TM is always a string in Σ*
• we must encode our input as such a string
• examples:

– tuples separated by #: #x#y#z
– 0/1 matrix given by: #n#x# where x ∈ {0,1}n2

• any reasonable encoding is OK
• emphasize “encoding of X” by writing <X>

15

15

January 29, 2025 CS21 Lecture 10

Universal TMs and encoding
• some strings not valid encodings and

these are not in the language

∑*
“yes” “no”L

invalid

make sure TM can recognize invalid
encodings and reject them

16

16

January 29, 2025 CS21 Lecture 10

Universal TMs and encoding
• We can easily construct a Universal TM

that recognizes the language:
ATM = {<M, w> : M is a TM and M accepts w}
– how?

• this is a remarkable feature of TMs (not
possessed by FA or NPDAs…)

• means there is a general purpose TM
whose input can be a “program” to run

17

17

January 29, 2025 CS21 Lecture 10

Church-Turing Thesis
• many other models of computation

– we saw multitape TM, nondeterministic TM
– others don’t resemble TM at all
– common features:

• unrestricted access to unlimited memory
• finite amount of work in a single step

• every single one can be simulated by TM
• many are equivalent to a TM
• problems that can be solved by computer does

not depend on details of model!

18

18

4

January 29, 2025 CS21 Lecture 10

Church-Turing Thesis
• the belief that TMs formalize our intuitive

notion of an algorithm is:

• Note: this is a belief, not a theorem.

The Church-Turing Thesis

everything we can compute on a
physical computer

can be computed on a Turing Machine

19

19

January 29, 2025 CS21 Lecture 10

Recursive Enumerability
• Why is “Turing-recognizable” called RE?
• Definition: a language L ⊆ Σ* is recursively

enumerable if there is exists a TM (an
“enumerator”) that writes on its output tape

#x1#x2#x3#...
 and L = {x1, x2, x3, …}.

• The output may be infinite
20

20

January 29, 2025 CS21 Lecture 10

Recursive Enumerability
Theorem: A language is Turing-recog-

nizable iff some enumerator enumerates it.

Proof:
(⇐) Let E be the enumerator. On input w:
– Simulate E. Compare each string it outputs

with w.
– If w matches a string output by E, accept.

21

21

January 29, 2025 CS21 Lecture 10

Recursive Enumerability
Theorem: A language is Turing-recog-

nizable iff some enumerator enumerates it.
Proof:

(⇒) Let M recognize language L ⊆	Σ*.
– let s1, s2, s3, … be enumeration of Σ* in

lexicographic order.
– for i = 1,2,3,4,…

• simulate M for i steps on s1, s2, s3, …, si
– if any simulation accepts, print out that sj

22

22

