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Multitape TMs
• A useful variant: k-tape TM
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Multitape TMs
Theorem: every k-tape TM has an 

equivalent single-tape TM.

Proof: 
– Idea: simulate k-tape TM on a 1-tape TM.
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Multitape TMs
simulation of k-tape TM by single-tape TM:

. . . a b a b

a a

b b c d

. . . 

. . . 

(input tape)

# a b a b # a a # b b c d # . . . 

•  add new symbol 
x for each old x

•  marks location of 
“virtual heads”
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Multitape TMs
. . . a b a b

a a

b b c d

. . . 

. . . 

# a b a b # a a # b b c d # . . . 

Repeat:
• scan tape, remembering the symbols 
under each virtual head in the state 
(how many new states needed?)
• make changes to reflect 1 step of M

• if hit #, shift to right to make room

 if M halts,  erase all but 1st string 
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Nondeterministic TMs
• A important variant: nondeterministic TM
• informally, several possible next 

configurations at each step
• formally, a NTM is a 7-tuple 

(Q, Σ, Γ,	 δ, q0, qaccept, qreject) where:
– everything is the same as a TM except the 

transition function:
δ:Q x Γ	→ P(Q x Γ	x {L, R})
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NTM acceptance
• start configuration: q0w  (w is input)
• accepting config.: any config.with state qaccept
• rejecting config.: any config. with state qreject
NTM M accepts input w if there exist 

configurations C1, C2, …, Ck 

– C1 is start configuration of M on input w
– Ci ⇒	Ci+1 for i = 1, 2, 3, …, k-1
– Ck is an accepting configuration
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Nondeterministic TMs
Theorem: every NTM has an equivalent 

(deterministic) TM.

Proof: 
– Idea: simulate NTM with a deterministic TM
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Nondeterministic TMs
Simulating NTM M with a deterministic TM:

Cstart • computations of M are a tree

• nodes are configs

• fanout is b = maximum 
number of choices in transition 
function

• leaves are accept/reject 
configs.

accrej
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Nondeterministic TMs
Simulating NTM M with a deterministic TM:
• idea: breadth-first search of tree
• if M accepts: we will encounter accepting 

leaf and accept
• if M rejects: we will encounter all rejecting 

leaves, finish traversal of tree, and reject
• if M does not halt on some branch: we will 

not halt…
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Nondeterministic TMs
Simulating NTM M with a deterministic TM:

– use a 3 tape TM:
• tape 1: input tape (read-only)
• tape 2: simulation tape (copy of M’s tape at point 

corresponding to some node in the tree)
• tape 3: which node of the tree we are exploring 

(string in {1,2,…b}*)
– Initially, tape 1 has input, others blank
– STEP 1: copy tape 1 to tape 2
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Nondeterministic TMs
Simulating NTM M with a deterministic TM:

– STEP 2: simulate M using string on tape 3 to 
determine which choice to take at each step

• if encounter blank, or a # larger than the number of choices 
available at this step, abort, go to STEP 3

• if get to a rejecting configuration: DONE = 0, go to STEP 3
• if get to an accepting configuration, ACCEPT

– STEP 3: replace tape 3 with lexicographically next 
string and go to STEP 2

• if string lengthened and DONE = 1 REJECT; else DONE = 1
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Examples of basic operations
• Convince yourself that the following types 

of operations are easy to implement as 
part of TM “program”

(but perhaps tedious to write out…)
– copying
– moving
– incrementing/decrementing 
– arithmetic operations +, -, *, /
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Universal TMs and encoding
• the input to a TM is always a string in Σ*
• often we want to interpret the input as 

representing another object
• examples:

– tuple of strings (x, y, z)
– 0/1 matrix
– graph in adjacency-list format
– Context-Free Grammar
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Universal TMs and encoding
• the input to a TM is always a string in Σ*
• we must encode our input as such a string
• examples:

– tuples separated by #: #x#y#z
– 0/1 matrix given by: #n#x# where x ∈ {0,1}n2

• any reasonable encoding is OK
• emphasize “encoding of X” by writing  <X>
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Universal TMs and encoding
• some strings not valid encodings and 

these are not in the language

∑*
“yes” “no”L

invalid

make sure TM can recognize invalid 
encodings and reject them 
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Universal TMs and encoding
• We can easily construct a Universal TM 

that recognizes the language:
ATM = {<M, w> : M is a TM and M accepts w}
– how?

• this is a remarkable feature of TMs (not 
possessed by FA or NPDAs…)

• means there is a general purpose TM 
whose input can be a “program” to run
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Church-Turing Thesis
• many other models of computation

– we saw multitape TM, nondeterministic TM
– others don’t resemble TM at all
– common features:

• unrestricted access to unlimited memory
• finite amount of work in a single step

• every single one can be simulated by TM
• many are equivalent to a TM 
• problems that can be solved by computer does 

not depend on details of model!
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Church-Turing Thesis
• the belief that TMs formalize our intuitive 

notion of an algorithm is:

• Note: this is a belief, not a theorem.

The Church-Turing Thesis

everything we can compute on a 
physical computer  

can be computed on a Turing Machine
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Recursive Enumerability
• Why is “Turing-recognizable” called RE?
• Definition: a language L ⊆ Σ* is recursively 

enumerable if there is exists a TM (an 
“enumerator”) that writes on its output tape

#x1#x2#x3#...
 and L = {x1, x2, x3, …}.

• The output may be infinite
20
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Recursive Enumerability
Theorem: A language is Turing-recog-

nizable iff some enumerator enumerates it.

Proof: 
(⇐) Let E be the enumerator. On input w:
– Simulate E. Compare each string it outputs 

with w.
– If w matches a string output by E, accept. 
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Recursive Enumerability
Theorem: A language is Turing-recog-

nizable iff some enumerator enumerates it.
Proof: 

(⇒) Let M recognize language L ⊆	Σ*.
– let s1, s2, s3, … be enumeration of Σ* in 

lexicographic order.
– for i = 1,2,3,4,…

• simulate M for i steps on s1, s2, s3, …, si 
– if any simulation accepts, print out that sj 
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