Outline

- Deterministic PDAs
- Turing Machines and variants
 - multitape TMs
 - nondeterministic TMs
- Church-Turing Thesis
- decidable, RE, co-RE languages

Deterministic PDA

Proof:
- convert machine into “normal form”
 - always reads to end of input
 - always enters either an accept state or single distinguished “reject” state
- step 1: keep track of when we have read to end of input
- step 2: eliminate infinite loops

Deterministic PDA

step 1: keep track of when we have read to end of input

Deterministic PDA

determine step 2: eliminate infinite loops

for accept state q': replace outgoing “ε, ? → ?” transition with self-loop with same label
Deterministic PDA

step 2: eliminate infinite loops
- on input x, if infinite loop, then:

\[\begin{align*}
 &\text{stack} \\
 &\text{height} \\
 &i_0 \quad i_1 \quad i_2 \quad i_3 \\
 &\text{infinite} \\
 &\text{sequence} i_0 < i_1 < i_2 < \cdots \\
 &\text{such that for all } k, \text{ stack height never decreases below } h(t(i_k)) \text{ after time } i_k
\end{align*} \]

Deterministic PDA

step 2: eliminate infinite loops
- infinite seq. \(i_0 < i_1 < \cdots \) such that for all \(k \), stack height never decreases below \(h(t(i_k)) \) after time \(i_k \)
- infinite subsequence \(j_0 < j_1 < j_2 < \cdots \) such that same transition is applied at each time \(j_k \)

\[\begin{align*}
 &\text{safe to replace:} \\
 &p, t \rightarrow s \\
 &r', a, t \rightarrow t \text{ (for all } a, t) \\
 &\epsilon, t \rightarrow t \text{ (for all } t) \\
 &\epsilon, t \rightarrow s \\
 &p', \epsilon, t \rightarrow s \\
 &r', \epsilon, t \rightarrow s \\
 &\boxed{\text{never see any stack symbol below } t \text{ from } j_k \text{ on}} \\
 &\boxed{\text{we are in a periodic, deterministic sequence of stack operations}} \\
 &\boxed{\text{independent of the input}} \\
\end{align*} \]

Deterministic PDA

- finishing up…
- have a machine \(M \) with no infinite loops
- therefore it always reads to end of input
- either enters an accept state \(q' \), or enters “reject” state \(r' \)
- now, can swap: make \(r' \) unique accept state to get a machine recognizing complement of \(L \)

Summary

- Nondeterministic Pushdown Automata (NPDA)
- Context-Free Grammars (CFGs) describe Context-Free Languages (CFLs)
 - terminals, non-terminals
 - productions
 - yields, derivations
 - parse trees

- NDPAs and CFGs are equivalent
- CFL Pumping Lemma is used to show certain languages are not CFLs
Summary

- deterministic PDAs recognize DCFLs
- DCFLs are closed under complement

there is an efficient algorithm (based on dynamic programming) to determine if a string x is generated by a given grammar G

So far…

- several models of computation
 - finite automata
 - pushdown automata
- fail to capture our intuitive notion of what is computable
 - regular languages
 - context free languages
 - all languages

A more powerful machine

- limitation of NPDA related to fact that their memory is stack-based (last in, first out)
- What is the simplest alteration that adds general-purpose “memory” to our machine?
 - Should be able to recognize, e.g., $\{a^n b^n c^n : n \geq 0\}$

Turing Machines

- New capabilities:
 - infinite tape
 - can read OR write to tape
 - read/write head can move left and right

Turing Machine

- Informal description:
 - input written on left-most squares of tape
 - rest of squares are blank
 - at each point, take a step determined by
 - current symbol being read
 - current state of finite control
 - a step consists of
 - writing new symbol
 - moving read/write head left or right
 - changing state
Example Turing Machine

language \(L = \{ w\#w : w \in \{0,1\}^* \} \)

Example TM diagram

TM formal definition

• A TM is a 7-tuple \((Q, \Sigma, \Gamma, \delta, q_0, q_{\text{accept}}, q_{\text{reject}})\) where:
 – \(Q\) is a finite set called the states
 – \(\Sigma\) is a finite set called the input alphabet
 – \(\Gamma\) is a finite set called the tape alphabet
 – \(\delta : Q \times \Gamma \rightarrow Q \times \Gamma \times \{L, R\}\) is a function called the transition function
 – \(q_0\) is an element of \(Q\) called the start state
 – \(q_{\text{accept}}, q_{\text{reject}}\) are the accept and reject states

Example TM configurations

• At every step in a computation, a configuration determined:
 – the contents of the tape
 – the state
 – the location of the read/write head
• next step completely determined by current configuration
• shorthand: string \(uqv\) with \(u,v \in \Gamma^*\), \(q \in Q\)
TM configurations

- configuration C_1 yields configuration C_2 if TM can legally* move from C_1 to C_2 in 1 step
 - notation: $C_1 \Rightarrow C_2$
 - also: "yields in 1 step" notation: $C_1 \Rightarrow^1 C_2$
 - "yields in k steps" notation: $C_1 \Rightarrow^k C_2$
 if there exists configurations $D_1, D_2, \ldots, D_{k-1}$ for which $C_1 \Rightarrow D_1 \Rightarrow D_2 \Rightarrow \ldots \Rightarrow D_{k-1} \Rightarrow C_2$
 - also: "yields in some # of steps" ($C_1 \Rightarrow^* C_2$)

*Convention: TM halts upon entering q_{accept}, q_{reject}

TM acceptance

- start configuration: $q_0 w$ (w is input)
- accepting config.: any config. with state q_{accept}
- rejecting config.: any config. with state q_{reject}

TM M accepts input w if there exist configurations C_1, C_2, \ldots, C_k
 - C_1 is start configuration of M on input w
 - $C_i \Rightarrow C_{i+1}$ for $i = 1, 2, 3, \ldots, k-1$
 - C_k is an accepting configuration

Deciding and Recognizing

- TM M:
 - $L(M)$ is the language it recognizes
 - if M rejects every $x \notin L(M)$ it decides L
 - set of languages recognized by some TM is called Turing-recognizable or recursively enumerable (RE)
 - set of languages decided by some TM is called Turing-decidable or decidable or recursive

* Formal definition of "yields":
 \[uaq_i bv \Rightarrow uq_j acv \]
 if $\delta(q_i, b) = (q_j, c, L)$, and
 \[uaq_i bv \Rightarrow uaq_j v \]
 if $\delta(q_i, b) = (q_j, c, R)$

- two special cases:
 - left end: $qaqv \Rightarrow qcv$ if $\delta(q_i, b) = (q_j, c, L)$
 - right end: uaq_i same as uaq_{i-1}

- Formal definition of "yields" notation: $C_1 \Rightarrow C_2$
- "yields in 1 step" notation: $C_1 \Rightarrow^1 C_2$
- "yields in k steps" notation: $C_1 \Rightarrow^k C_2$
- "yields in some # of steps" ($C_1 \Rightarrow^* C_2$)

- Convention: TM halts upon entering q_{accept}, q_{reject}