CSs21
Decidability
and
Tractability

Lecture 10

January 29,
2025

Multitape TMs

* A useful variant: k-tape TM
input tape
finite [e[Jofo[a[a]* o[+ e[e[TT] --

control k read/write

@ l heads
1

(o] 7]
k-1“work J [T
tapes”

CINEEN [TTT] -

January 29, 2025 €s21 Lecture 10 2

Multitape TMs

Theorem: every k-tape TM has an
equivalent single-tape TM.

Proof:
— |dea: simulate k-tape TM on a 1-tape TM.

January 29, 2025 cs21 Lecture 10 3

Multitape TMs

simulation of k-tape TM by single-tape TM:

[afola[[TT T add new symbol

o (input tape) y for each old x

o * marks location of

Blled[[[T[] “virtual heads”
hog

[#albla[b[#lala[#e[ele[d[#

January 29, 2025 cs21 Lecture 10 4

Multitape TMs
[a[bJalb] | --- Repeat:
At « scan tape, remembering the symbols
under each virtual head in the state
n... T (how many new states needed?)

Eﬂﬂl ... *make changes to reflect 1 step of M
o

« if hit #, shift to right to make room

if M halts, erase all but 1st string

#a[k[a[b[#a]a[#P

ble[d[# ...

January 29, 2025 €s21 Leoture 10 5

Nondeterministic TMs

* A important variant: nondeterministic TM

« informally, several possible next
configurations at each step

« formally, a NTM is a 7-tuple
(Q! z! F, 61 o, qaccepty qrejecl) where:

— everything is the same as a TM except the
transition function:
8:QxI'-> PQxTx{L, R})

January 29, 2025 €s21 Leoture 10 6

NTM acceptance

« start configuration: gow (w is input)
« accepting config.: any config.with state gaccept
* rejecting config.: any config. with state qreject
NTM M accepts input w if there exist
configurations C4, C, ..., Ck
— C, is start configuration of M on input w
-C=>Cyfori=1,2,3, ..., k1
— Cy is an accepting configuration

January 29, 2025 C€s21 Lecture 10 7

Nondeterministic TMs

Theorem: every NTM has an equivalent
(deterministic) TM.

Proof:
— Idea: simulate NTM with a deterministic TM

January 29, 2025 €521 Lecture 10 8

Nondeterministic TMs

Simulating NTM M with a deterministic TM:

Cset .+ computations of M are a tree
* nodes are configs
« fanout is b = maximum
number of choices in transition
rej acc function

« leaves are accept/reject
configs.

January 29, 2025 Cs21 Lecture 10 9

Nondeterministic TMs

Simulating NTM M with a deterministic TM:

* idea: breadth-first search of tree

« if M accepts: we will encounter accepting
leaf and accept

« if M rejects: we will encounter all rejecting
leaves, finish traversal of tree, and reject

« if M does not halt on some branch: we will
not halt...

January 29, 2025 Cs21 Lecture 10 10

10

Nondeterministic TMs

Simulating NTM M with a deterministic TM:
—use a 3 tape TM:
« tape 1: input tape (read-only)

« tape 2: simulation tape (copy of M's tape at point
corresponding to some node in the tree)

« tape 3: which node of the tree we are exploring
(stringin {1,2,...b}*)

— Initially, tape 1 has input, others blank
— STEP 1: copy tape 1 to tape 2

January 29, 2025 ©s21 Lecture 10 1

11

Nondeterministic TMs

Simulating NTM M with a deterministic TM:

— STEP 2: simulate M using string on tape 3 to
determine which choice to take at each step

« if encounter blank, or a # larger than the number of choices
available at this step, abort, go to STEP 3

« if get to a rejecting configuration: DONE = 0, go to STEP 3
« if get to an accepting configuration, ACCEPT
— STEP 3: replace tape 3 with lexicographically next
string and go to STEP 2
« if string lengthened and DONE = 1 REJECT; else DONE = 1

January 29, 2025 ©s21 Lecture 10 12

12

Examples of basic operations

» Convince yourself that the following types
of operations are easy to implement as
part of TM “program”

(but perhaps tedious to write out...)
— copying
—moving
— incrementing/decrementing
— arithmetic operations +, -, *, /

January 29, 2025 €s21 Lecture 10 13

13

Universal TMs and encoding

« the input to a TM is always a string in £*
» we must encode our input as such a string
* examples:

—tuples separated by #: #x#y#z
—0/1 matrix given by: #n#x# where x € {0,1}?

* any reasonable encoding is OK
» emphasize “encoding of X” by writing <X>

January 29, 2025 cs21 Lecture 10 15

15

Universal TMs and encoding

* We can easily construct a Universal TM
that recognizes the language:
Ay ={<M, w>: Mis a TM and M accepts w}
—how?

« this is a remarkable feature of TMs (not
possessed by FA or NPDAs...)

* means there is a general purpose TM
whose input can be a “program” to run

January 29, 2025 Cs21 Lecture 10 17

Universal TMs and encoding

« the input to a TM is always a string in *
« often we want to interpret the input as
representing another object
* examples:
—tuple of strings (x, y, z)
—0/1 matrix
— graph in adjacency-list format
— Context-Free Grammar

January 29, 2025 €s21 Lecture 10 14

14

Universal TMs and encoding

» some strings not valid encodings and
these are not in the language

invalid

L-
l\ Z*
make sure TM can recognize invalid
encodings and reject them

January 29, 2025 cs21 Lecture 10 16

16

17

Church-Turing Thesis

many other models of computation
— we saw multitape TM, nondeterministic TM
— others don’t resemble TM at all
— common features:
« unrestricted access to unlimited memory
« finite amount of work in a single step

every single one can be simulated by TM
many are equivalenttoa TM

problems that can be solved by computer does
not depend on details of model!

January 29, 2025 Cs21 Lecture 10 18

18

Church-Turing Thesis

« the belief that TMs formalize our intuitive
notion of an algorithm is:
The Church-Turing Thesis

everything we can compute on a
physical computer

can be computed on a Turing Machine
* Note: this is a belief, not a theorem.

January 29, 2025 C€s21 Lecture 10 19

19

Recursive Enumerability

Theorem: A language is Turing-recog-
nizable iff some enumerator enumerates it.

Proof:
(&) Let E be the enumerator. On input w:

— Simulate E. Compare each string it outputs
with w.

— If w matches a string output by E, accept.

January 29, 2025 Cs21 Lecture 10 21

Recursive Enumerability

* Why is “Turing-recognizable” called RE?

« Definition: a language L € X* is recursively
enumerable if there is exists a TM (an
“enumerator”) that writes on its output tape

#X1#X2#X3#...

andL = {X1, X2, X3, }

» The output may be infinite

January 29, 2025 €521 Lecture 10 20

20

21

Recursive Enumerability

Theorem: A language is Turing-recog-
nizable iff some enumerator enumerates it.
Proof:
(=) Let M recognize language L € >*.

—letsy, s,, 85, ... be enumeration of * in
lexicographic order.

—fori=1,2,34,...
« simulate M for i steps on s1, s2, s3, ..., Si
— if any simulation accepts, print out that s;

January 29, 2025 Cs21 Lecture 10 22

22

