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Multitape TMs

* A useful variant: k-tape TM
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Multitape TMs

Theorem: every k-tape TM has an
equivalent single-tape TM.

Proof:
— |dea: simulate k-tape TM on a 1-tape TM.
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Multitape TMs

simulation of k-tape TM by single-tape TM:

[afola[[ TT T add new symbol

o (input tape)  y for each old x

o * marks location of

Blled[ [[T[] “virtual heads”
hog
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Multitape TMs
[a[bJalb] | --- Repeat:
At « scan tape, remembering the symbols
under each virtual head in the state
n... T (how many new states needed?)

Eﬂﬂl ... *make changes to reflect 1 step of M
o

« if hit #, shift to right to make room

if M halts, erase all but 1st string

#a[k[a[b[#a]a[#P

ble[d[# ...
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Nondeterministic TMs

* A important variant: nondeterministic TM

« informally, several possible next
configurations at each step

« formally, a NTM is a 7-tuple
(Q! z! F, 61 o, qaccepty qrejecl) where:

— everything is the same as a TM except the
transition function:
8:QxI'-> PQxTx{L, R})

January 29, 2025 €s21 Leoture 10 6




NTM acceptance

« start configuration: gow  (w is input)
« accepting config.: any config.with state gaccept
* rejecting config.: any config. with state qreject
NTM M accepts input w if there exist
configurations C4, C, ..., Ck
— C, is start configuration of M on input w
-C=>Cyfori=1,2,3, ..., k1
— Cy is an accepting configuration
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Nondeterministic TMs

Theorem: every NTM has an equivalent
(deterministic) TM.

Proof:
— Idea: simulate NTM with a deterministic TM
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Nondeterministic TMs

Simulating NTM M with a deterministic TM:

Cset .+ computations of M are a tree
* nodes are configs
« fanout is b = maximum
number of choices in transition
rej acc function

« leaves are accept/reject
configs.
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Nondeterministic TMs

Simulating NTM M with a deterministic TM:

* idea: breadth-first search of tree

« if M accepts: we will encounter accepting
leaf and accept

« if M rejects: we will encounter all rejecting
leaves, finish traversal of tree, and reject

« if M does not halt on some branch: we will
not halt...
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Nondeterministic TMs

Simulating NTM M with a deterministic TM:
—use a 3 tape TM:
« tape 1: input tape (read-only)

« tape 2: simulation tape (copy of M's tape at point
corresponding to some node in the tree)

« tape 3: which node of the tree we are exploring
(stringin {1,2,...b}*)

— Initially, tape 1 has input, others blank
— STEP 1: copy tape 1 to tape 2
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Nondeterministic TMs

Simulating NTM M with a deterministic TM:

— STEP 2: simulate M using string on tape 3 to
determine which choice to take at each step

« if encounter blank, or a # larger than the number of choices
available at this step, abort, go to STEP 3

« if get to a rejecting configuration: DONE = 0, go to STEP 3
« if get to an accepting configuration, ACCEPT
— STEP 3: replace tape 3 with lexicographically next
string and go to STEP 2
« if string lengthened and DONE = 1 REJECT; else DONE = 1
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Examples of basic operations

» Convince yourself that the following types
of operations are easy to implement as
part of TM “program”

(but perhaps tedious to write out...)
— copying
—moving
— incrementing/decrementing
— arithmetic operations +, -, *, /

January 29, 2025 €s21 Lecture 10 13

13

Universal TMs and encoding

« the input to a TM is always a string in £*
» we must encode our input as such a string
* examples:

—tuples separated by #: #x#y#z
—0/1 matrix given by: #n#x# where x € {0,1}?

* any reasonable encoding is OK
» emphasize “encoding of X” by writing <X>
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Universal TMs and encoding

* We can easily construct a Universal TM
that recognizes the language:
Ay ={<M, w>: Mis a TM and M accepts w}
—how?

« this is a remarkable feature of TMs (not
possessed by FA or NPDAs...)

* means there is a general purpose TM
whose input can be a “program” to run
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Universal TMs and encoding

« the input to a TM is always a string in *
« often we want to interpret the input as
representing another object
* examples:
—tuple of strings (x, y, z)
—0/1 matrix
— graph in adjacency-list format
— Context-Free Grammar
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Universal TMs and encoding

» some strings not valid encodings and
these are not in the language

invalid

L-
l\ Z*
make sure TM can recognize invalid
encodings and reject them
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Church-Turing Thesis

many other models of computation
— we saw multitape TM, nondeterministic TM
— others don’t resemble TM at all
— common features:
« unrestricted access to unlimited memory
« finite amount of work in a single step

every single one can be simulated by TM
many are equivalenttoa TM

problems that can be solved by computer does
not depend on details of model!
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Church-Turing Thesis

« the belief that TMs formalize our intuitive
notion of an algorithm is:
The Church-Turing Thesis

everything we can compute on a
physical computer

can be computed on a Turing Machine
* Note: this is a belief, not a theorem.
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Recursive Enumerability

Theorem: A language is Turing-recog-
nizable iff some enumerator enumerates it.

Proof:
(&) Let E be the enumerator. On input w:

— Simulate E. Compare each string it outputs
with w.

— If w matches a string output by E, accept.
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Recursive Enumerability

* Why is “Turing-recognizable” called RE?

« Definition: a language L € X* is recursively
enumerable if there is exists a TM (an
“enumerator”) that writes on its output tape

#X1#X2#X3#...

andL = {X1, X2, X3, }

» The output may be infinite
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Recursive Enumerability

Theorem: A language is Turing-recog-
nizable iff some enumerator enumerates it.
Proof:
(=) Let M recognize language L € >*.

—letsy, s,, 85, ... be enumeration of * in
lexicographic order.

—fori=1,2,34,...
« simulate M for i steps on s1, s2, s3, ..., Si
— if any simulation accepts, print out that s;
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