1

Outline

• administrative stuff
• motivation and overview of the course
• problems and languages
• Finite Automata

2

Administrative Stuff

• Text: Introduction to the Theory of Computation – 3rd Edition by Mike Sipser
• Lectures self-contained
• Weekly homework:
 – collaboration in small groups encouraged
 – separate write-ups (clarity counts)
• Midterm and final:
 – indistinguishable from homework except cumulative, no collaboration allowed

3

Administrative Stuff

• No programming in this course
• Things I assume you are familiar with:
 – programming and basic algorithms
 – asymptotic notation “big-oh”
 – sets, graphs
 – proofs, especially induction proofs

4

Motivation/Overview

• This course: introduction to Theory of Computation
 – what does it mean?
 – why do we care?
 – what will this course cover?

5

Motivation/Overview

Computability and Complexity
Theory
Algorithms
Systems and Software Design and Implementation
Motivation/Overview

- At the heart of programs lie algorithms.
- To study algorithms we must be able to speak *mathematically* about:
 - computational problems
 - computers
 - algorithms

- You might imagine that in principle
 - for each problem we would have an *algorithm*
 - the algorithm would be the fastest possible
 (requires *proof* that no others are faster)

Our world (fortunately) is more interesting:
- not all problems have algorithms (we will prove this)
- for many problems we know embarrassingly little about what the fastest algorithm is
 - multiplying two integers
 - factoring an integer into primes
 - determining shortest tour of given n cities
- for certain problems, fast algorithms would change the world (we will see this)

Part One:
- computational problems, models of computation, characterizations of the problems they solve, and limits on their power
- Finite Automata and Regular Languages
- Pushdown Automata and Context Free Grammars

Part Two:
- Turing Machines, and limits on their power (undecidability), reductions between problems

Part Three:
- complexity classes P and NP, NP-completeness, limits of efficient computation

Main Points of Course

- (un)-decidability
 - Some problems have no algorithms!

- (in)-tractability
 - Many problems that we’d like to solve have no efficient algorithms!
 (no one knows how to prove this yet…)
What is a problem?

• Some examples:
 – given \(n \) integers, produce a sorted list
 – given a graph and nodes \(s \) and \(t \), find the (shortest) path from \(s \) to \(t \)
 – given an integer, find its prime factors
• problem associates each input to an output
• input and output are strings over a finite alphabet \(\Sigma \)

What is a problem?

• A problem is a function:
 \[f : \Sigma^* \rightarrow \Sigma^* \]
• Simple. Can we make it simpler?
• Yes. Decision problems:
 \[f : \Sigma^* \rightarrow \{ \text{accept, reject} \} \]
• Does this still capture our notion of problem, or is it too restrictive?

What is a problem?

• Example: factoring:
 – given an integer \(m \), find its prime factors
 \[f_{\text{factor}} : \{0,1\}^* \rightarrow \{0,1\}^* \]
• Decision version:
 – given 2 integers \(m,k \), accept if \(m \) has a prime factor \(p < k \)
• Can use one to solve the other and vice versa. True in general (homework).

What is computation?

• the set of strings that lead to “accept” is the language recognized by this machine
• if every other string leads to “reject”, then this language is decided by the machine

Terminology

• finite alphabet \(\Sigma \) : a set of symbols
• language \(L \subseteq \Sigma^* \): subset of strings over \(\Sigma \)
• a machine takes an input string and either:
 – accepts, rejects, or
 – loops forever
• a machine recognizes the set of strings that lead to accept
• a machine decides a language \(L \) if it accepts \(x \in L \) and rejects \(x \notin L \).