This is the final exam. You may consult only the course notes and text (Sipser). You may not collaborate. There are 5 problems on two pages. Please attempt all problems. Please turn in your solutions via Gradescope, by 1pm on the due date.

Good luck!

1. Consider the following 2-person game. The game is played on a directed acyclic graph whose nodes are labeled with integers. There is a specified start-node s.

Starting from node s, the players take turns selecting an outgoing edge from the current node: player one selects an outgoing edge from nodes s, which takes them to a node v, then player two selects an outgoing edge from node v, which takes them to a node u, then player one selects an outgoing edge from node u, and so on. We keep a running sum of the integers encountered as this path from s in the graph is traversed. The game ends when a sink (a node with no outgoing edges) is reached. At that point player one wins if the running sum equals zero; otherwise player two wins.

Given a game instance (a directed acyclic graph G labeled with integers, and a start node s) we can ask whether there is a win for player one (i.e., player one can win no matter what player two does). Prove that the language L consisting of those game instances for which there is a win for player one is PSPACE-complete. In other words prove:

(a) L is in PSPACE, and
(b) L is PSPACE-hard. Here it may be useful to recall the two-player game interpretation of QSAT from Lecture 25.

2. Let L be the language over the alphabet $\Sigma = \{a, b, c\}$ consisting of exactly those strings with an unequal number of a’s and b’s (and any number of c’s). Is L (i) regular, (ii) context-free but not regular, or (iii) not context free? Prove that your classification is correct.

3. For a language $L \subseteq \Sigma^*$ and a string $w \in \Sigma^*$, the language

$$L_w = \{xy : x \in \Sigma^* \text{ and } y \in \Sigma^* \text{ and } xwy \in L\}$$

consists of all strings in L with the string w deleted from them.

(a) Prove that if L is regular, then L_w is regular. Hint: make $|w| + 1$ copies of a DFA recognizing L.

(b) Prove that if L is R.E., then L_w is R.E.
4. Is the following statement true or false? Give a complete proof of your assertion.

“If some NP-complete language has an $O(n^2)$-time algorithm, then every language in NP has an $O(n^4)$-time algorithm.”

5. Each of the following languages is either in P, or it is NP-complete. **Choose 4 out of the 5 problems, and for each one, prove that it is NP-complete, or prove that it is in P. Please indicate clearly which 4 you are choosing, and provide solutions for only those 4.**

For two of the problems below, you will need to recall that in a graph, the *degree* of a vertex v, denoted $d(v)$, is the number of edges that touch that vertex; the *maximum degree* of a graph is the maximum, over vertices v, of $d(v)$.

(a) This problem is a variant of **independent set** in bounded-degree graphs. The language in question is the set of all pairs (G,k) for which G is a graph with maximum degree at most 4 containing an independent set of size at least k.

(b) This problem is a variant of **undirected hamilton path** in bounded-degree graphs. The language in question is the set of all triples (G,s,t) for which G is an undirected graph with maximum degree at most 2 containing a Hamilton path from node s to node t.

(c) Given a universe U and a collection of subsets $C = \{S_1, S_2, S_3, \ldots, S_n\}$, with each $S_i \subseteq U$, we say that a subset $H \subseteq U$ is a *hitting set* if each S_i contains at least one element of H. In this problem we are interested in the case in which each S_i has size at most 2. The language in question is

\[
\text{HITTING SET-2} = \{(C,k) : \text{ for all } S_i \in C, |S_i| \leq 2, \text{ and there is a hitting set } H \subseteq U \text{ with } |H| \leq k\}.
\]

(d) The language consisting of 2-CNF formulas ϕ for which there exists an assignment that satisfies at least $3/4$ of the first 100 clauses, and all of the other clauses.

(e) The language consisting of 2-CNF formulas ϕ for which there exists an assignment that satisfies all of the first 100 clauses, and at least $3/4$ of the other clauses.