CS 153 Current topics in theoretical computer science

Out: May 31

1. We first show, in general, that if $X, Y, Z \subseteq G$ satisfy the triple product property with $|X|=$ $|Y|=|Z|=n$, then there is a multiplicative matching in G of cardinality at least $c n^{2}$, for an absolute constant $c>0$. We use the fact that the tensor $\langle n, n, n\rangle$ has a diagonal of cardinality $m=c n^{2}$. This means that there are sets $S, T, U \subseteq[n]^{2}$, each of cardinality m, for which the subset $D \subseteq\left([n]^{2}\right)^{3}$ given by

$$
D=(S \times T \times U) \cap\{((i, j),(j, k),(k, i)): i, j, k \in[n]\}
$$

has the property that each of three canonical projections is injective.
Identify $[n]$ with each of X, Y, Z, and define the following functions from $[n]^{2}$ to G :

$$
\begin{aligned}
a(x, y) & =x y^{-1} \\
b(y, z) & =y z^{-1} \\
c(z, x) & =z x^{-1}
\end{aligned}
$$

Our multiplicative matching will be given by the set of triples:

$$
\{(a(x, y), b(y, z), c(z, x)):((x, y),(y, z),(z, x)) \in D\} .
$$

Notice that for any such triple we have $a(x, y) b(y, z) c(z, x)=1$. Suppose we have three triples, not all equal:

$$
(a(x, y), b(y, z), c(z, x)), \quad\left(a\left(x^{\prime}, y^{\prime}\right), b\left(y^{\prime}, z^{\prime}\right), c\left(z^{\prime}, x^{\prime}\right)\right), \quad\left(a\left(x^{\prime \prime}, y^{\prime \prime}\right), b\left(y^{\prime \prime}, z^{\prime \prime}\right), c\left(z^{\prime \prime}, x^{\prime \prime}\right)\right)
$$

Notice that

$$
((x, y),(y, z),(z, x)) \in(S \times T \times U)
$$

(since $a(x, y)=x y^{-1}$ determines $(x, y), b(y, z)=y z^{-1}$ determines (y, z), and $c(z, x)=z x^{-1}$ determines (z, x), by the TPP) and

$$
\left(\left(x^{\prime}, y^{\prime}\right),\left(y^{\prime}, z^{\prime}\right),\left(z^{\prime}, x^{\prime}\right)\right) \in(S \times T \times U)
$$

and

$$
\left(\left(x^{\prime \prime}, y^{\prime \prime}\right),\left(y^{\prime \prime}, z^{\prime \prime}\right),\left(z^{\prime \prime}, x^{\prime \prime}\right)\right) \in(S \times T \times U)
$$

for the same reasons. Now, suppose for the purpose of contradiction that

$$
a(x, y) b\left(y^{\prime}, z^{\prime}\right) c\left(z^{\prime \prime}, x^{\prime \prime}\right)=1
$$

Then by the Triple Product Property, it must be that $y=y^{\prime}, z^{\prime}=z^{\prime \prime}$, and $x^{\prime \prime}=x$, and so $\left((x, y),\left(y^{\prime}, z^{\prime}\right),\left(z^{\prime \prime}, x^{\prime \prime}\right)\right)$ is in the support of $\langle n, n, n\rangle$. But as we have argued,

$$
\left((x, y),\left(y^{\prime}, z^{\prime}\right),\left(z^{\prime \prime}, x^{\prime \prime}\right)\right) \in(S \times T \times U)
$$

and thus this triple is included in our multiplicative matching, and so not all three projections can be injective, a contradiction.
Now, we must prove that in the triangle TPP construction in $G=S_{N}$ (for $\left.N=n(n+1) / 2\right)$, then size of each of the subgroups X, Y, Z is at least $|G| / e^{\Omega(N)}$. Then plugging in to the previous argument gives the desired multiplicative matching.
Note that $|X|=|Y|=|Z|=n!(n-1)!(n-2)!\cdots 2!1!$.
Using the fact that $2^{n}>\binom{n}{i}=n!/((n-i)!!!)$, we see that

$$
|X|^{2} \geq(n+1)!^{n} / 2^{n(n+1)} \geq(n /(2 e))^{n(n+1)}
$$

where the last inequality used Stirling's approximation which implies that $n!\geq(n / e)^{n}$.
On the other hand we have

$$
|G|=N!\leq \operatorname{poly}(n) \cdot(n(n+1) / 2) / e)^{n(n+1) / 2} \leq \operatorname{poly}(n) \cdot e^{O(N)} \cdot n^{n(n+1)}
$$

and combining with the above lower bound on $|X|$, we obtain the desired result.
2. (a) Set f to be the function which is 1 on $0 \in F_{p}^{n}$, and 0 on the rest of the domain; i.e.,

$$
f\left(X_{1}, X_{2}, \ldots, X_{n}\right)=\alpha \cdot \prod_{i=1}^{n} \prod_{a \in F_{p}, a \neq 0}\left(X_{i}-a\right)
$$

where $\alpha=1 / \prod_{a \in F_{p}, a \neq 0}(-a)^{n}$ is a normalizing scalar. Clearly this f has degree $(p-1) n$, and M_{f} is a permutation matrix, which has full rank.
(b) Notice that $f(i+j)$ is a polynomial on $2 n$ variables, with total degree d. Let S be the set of monomials in i of total degree at most $d / 2$. Then because each monomial of total degree d must have i-degree at most $d / 2$ OR j-degree at most $d / 2$, we can write

$$
f(i+j)=\sum_{M \in S} M(i) Q_{M}(j)+\sum_{M \in S} M(j) Q_{M}^{\prime}(i),
$$

where the Q_{M} and Q_{M}^{\prime} are polynomials. But this is a rank $2|S|$ decomposition of M_{f}, and the claim follows from the observation that $|S|=\binom{d / 2+n}{n}$.
3. (a) Assume that the distinct prime powers q_{i} are in increasing order; i.e., $q_{1}<q_{2}<q_{3}<$ $\ldots<q_{t}$. Set $r_{i}=2 q_{i}$. Define the map $f: \prod_{i}\left[r_{i}\right]^{k_{i}} \rightarrow \operatorname{Cyc}_{N}$ by

$$
\begin{aligned}
f\left(a^{(1)}, a^{(2)}, \ldots a^{(t)}\right) & =\sum_{j=0}^{k_{1}-1} a_{j}^{(1)} r_{1}^{j} \\
& +r_{1}^{k_{1}} \sum_{j=0}^{k_{2}-1} a_{j}^{(2)} r_{2}^{j}
\end{aligned}
$$

$$
\begin{aligned}
& +\quad r_{1}^{k_{1}} r_{2}^{k_{2}} \sum_{j=0}^{k_{3}-1} a_{j}^{(3)} r_{3}^{j} \\
& +\quad \cdots \\
& +\quad r_{1}^{k_{1}} r_{2}^{k_{2}} \cdots r_{t-1}^{k_{t-1}} \sum_{j=0}^{k_{t}-1} a_{j}^{(t)} r_{t}^{j}
\end{aligned}
$$

where $[n]$ denotes the integers $\{0,1,2, \ldots, n-1\}$.
It is clear then that $f\left(a^{(1)}, a^{(2)}, \ldots a^{(t)}\right) \bmod r_{1}^{k_{1}}$ is the integer whose base- r_{1} digits are $a^{(1)}$. After subtracting this, and dividing by $r_{1}^{k_{1}}$, the remaining integer $\bmod r_{2}^{k_{2}}$ is the integer whose base- r_{2} digits are $a^{(2)}$, and so on... Therefore the map is injective.
Moreover, if the entries in the vector $a^{(i)}$ are at most $\left(r_{i}-1\right) / 2$, and the entries in the vector $b^{(i)}$ are at most $\left(r_{i}-1\right) / 2$, it holds that

$$
f\left(a^{(1)}, a^{(2)}, \ldots a^{(t)}\right)+f\left(b^{(1)}, b^{(2)}, \ldots b^{(t)}\right)=f\left(a^{(1)}+b^{(1)}, a^{(2)}+b^{(2)}, \ldots a^{(t)}+b^{(t)}\right)
$$

since there are no "carries" in the addition in the integers.
We can apply the map f to H by identifying the elements of $Z_{p_{i}}$ with the integers $\left\{0,1, \ldots, p_{i}-1\right\}$. Now if we apply map f to each of the elements of the A_{i} and B_{i} sets that make up the two-families construction, we obtain sets of the same cardinality (by injectivity), and by the aforementioned observation, we find that f is injective on $H+H$. This means that the defining axioms of the two-families construction hold for the A_{i}^{\prime} and B_{i}^{\prime} sets, as required (i.e. if some $f(a)+f(b) \in A_{i}^{\prime}+B_{i}^{\prime}$ was the same as some $f(c)+f(d) \in A_{j}^{\prime}+B_{k}^{\prime}$, then

$$
f(a+b)=f(a)+f(b)=f(c)+f(d)=f(c+d)
$$

which implies $a+b=c+d$ by injectivity but $a+b \in A_{i}+B_{i}$ and $c+d \in A_{j}+B_{k}$, etc...)
(b) Fix $\delta>0$, set $k=\sum_{i} k_{i}$, and arrange the prime powers in increasing order (with repetitions) so that

$$
H \cong Z_{p_{1}} \times Z_{p_{2}} \times Z_{p_{3}} \times \cdots \times Z_{p_{k}}
$$

and $p_{1} \leq p_{2} \leq p_{3} \leq \cdots \leq p_{k}$. We are going to break H into the part with prime powers less that $L=2^{1 / \delta}$ and the rest, denoted H_{0} and H_{1}, so $H=H_{0} \times H_{1}$. If $\left|H_{0}\right|=\prod_{i: p_{i} \leq L} p_{i} \leq|H|^{\delta}$, then we claim $N \leq|H|^{2 \delta+(1+\delta)}$. This is because $2 p_{i} \leq p_{i}^{2}$ for all i, and so we get that the size of H_{0} at most squares, while the size of H_{1} gets raised to at most $(1+\delta)$ because $p_{i}>L$ implies $2 p_{i}<p_{i}^{1+\delta}$. So, if $N>|H|^{1+3 \delta}$, it must be that $\left|H_{0}\right|>|H|^{\delta}$.
But the prime powers appearing in H_{0} are bounded by the constant L, and so one of them must appear at least $t=\log _{L}\left|H_{0}\right| / L$ times, and then by the Theorem, the slice rank of H is at most $|H| / c^{t} \leq|H| /\left|H_{0}\right|^{\log c /(L \log L)}=|H|^{1-c^{\prime} \delta^{2} / 2^{1 / \delta}}$, where $c^{\prime}>0$ is an absolute constant.
(c) Suppose we can prove $\omega \leq 2+\delta$ for via and two-families construction in H. We are given that this implies a multiplicative matching in H^{3} of cardinality at least $|H|^{3(1-c \delta)}$, which means that the slice rank of $T_{H^{3}}$ is at least $|H|^{3(1-c \delta)}$ as well.

We claim that $N \leq|H|^{1+\delta^{\prime}}$ (for δ^{\prime} such that $r\left(\delta^{\prime}\right)>c \delta$). If not, then by the previous part, the slice rank of T_{H} is at most $|H|^{1-r\left(\delta^{\prime}\right)}$, which implies that the slice rank of $T_{H^{3}}$ is at most $|H|^{3\left(1-r\left(\delta^{\prime}\right)\right)}$, a contradiction.
So by the first part, we have a two-families construction in Z_{N} with $N \leq|H|^{1+\delta^{\prime}}$. If the two-families conjecture is true in a sequence of groups, then δ can be made arbitrarily small, and thus δ^{\prime} can be made arbitrarily small. Thus we have a construction in cyclic groups where the size and number of the sets A_{i}, B_{i} remains the same, and the size of the containing group approaches $|H|$. If the first original construction proved the two-families conjecture, then this one does as well.

