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Out: May 31

1. We first show, in general, that if X,Y, Z ⊆ G satisfy the triple product property with |X| =
|Y | = |Z| = n, then there is a multiplicative matching in G of cardinality at least cn2, for an
absolute constant c > 0. We use the fact that the tensor 〈n, n, n〉 has a diagonal of cardinality
m = cn2. This means that there are sets S, T, U ⊆ [n]2, each of cardinality m, for which the
subset D ⊆ ([n]2)3 given by

D = (S × T × U) ∩ {((i, j), (j, k), (k, i)) : i, j, k ∈ [n]}

has the property that each of three canonical projections is injective.

Identify [n] with each of X, Y , Z, and define the following functions from [n]2 to G:

a(x, y) = xy−1

b(y, z) = yz−1

c(z, x) = zx−1

Our multiplicative matching will be given by the set of triples:

{(a(x, y), b(y, z), c(z, x)) : ((x, y), (y, z), (z, x)) ∈ D}.

Notice that for any such triple we have a(x, y)b(y, z)c(z, x) = 1. Suppose we have three
triples, not all equal:

(a(x, y), b(y, z), c(z, x)), (a(x′, y′), b(y′, z′), c(z′, x′)), (a(x′′, y′′), b(y′′, z′′), c(z′′, x′′)).

Notice that

((x, y), (y, z), (z, x)) ∈ (S × T × U)

(since a(x, y) = xy−1 determines (x, y), b(y, z) = yz−1 determines (y, z), and c(z, x) = zx−1

determines (z, x), by the TPP) and

((x′, y′), (y′, z′), (z′, x′)) ∈ (S × T × U)

and

((x′′, y′′), (y′′, z′′), (z′′, x′′)) ∈ (S × T × U),

for the same reasons. Now, suppose for the purpose of contradiction that

a(x, y)b(y′, z′)c(z′′, x′′) = 1.
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Then by the Triple Product Property, it must be that y = y′, z′ = z′′, and x′′ = x, and so
((x, y), (y′, z′), (z′′, x′′)) is in the support of 〈n, n, n〉. But as we have argued,

((x, y), (y′, z′), (z′′, x′′)) ∈ (S × T × U),

and thus this triple is included in our multiplicative matching, and so not all three projections
can be injective, a contradiction.

Now, we must prove that in the triangle TPP construction in G = SN (for N = n(n+ 1)/2),
then size of each of the subgroups X,Y, Z is at least |G|/eΩ(N). Then plugging in to the
previous argument gives the desired multiplicative matching.

Note that |X| = |Y | = |Z| = n!(n− 1)!(n− 2)! · · · 2!1!.

Using the fact that 2n >
(n
i

)
= n!/((n− i)!i!), we see that

|X|2 ≥ (n+ 1)!n/2n(n+1) ≥ (n/(2e))n(n+1),

where the last inequality used Stirling’s approximation which implies that n! ≥ (n/e)n.

On the other hand we have

|G| = N ! ≤ poly(n) · (n(n+ 1)/2)/e)n(n+1)/2 ≤ poly(n) · eO(N) · nn(n+1),

and combining with the above lower bound on |X|, we obtain the desired result.

2. (a) Set f to be the function which is 1 on 0 ∈ Fnp , and 0 on the rest of the domain; i.e.,

f(X1, X2, . . . , Xn) = α ·
n∏
i=1

∏
a∈Fp,a6=0

(Xi − a),

where α = 1/
∏
a∈Fp,a6=0(−a)n is a normalizing scalar. Clearly this f has degree (p−1)n,

and Mf is a permutation matrix, which has full rank.

(b) Notice that f(i + j) is a polynomial on 2n variables, with total degree d. Let S be the
set of monomials in i of total degree at most d/2. Then because each monomial of total
degree d must have i-degree at most d/2 OR j-degree at most d/2, we can write

f(i+ j) =
∑
M∈S

M(i)QM (j) +
∑
M∈S

M(j)Q′M (i),

where the QM and Q′M are polynomials. But this is a rank 2|S| decomposition of Mf ,

and the claim follows from the observation that |S| =
(d/2+n

n

)
.

3. (a) Assume that the distinct prime powers qi are in increasing order; i.e., q1 < q2 < q3 <
. . . < qt. Set ri = 2qi. Define the map f :

∏
i[ri]

ki → CycN by

f(a(1), a(2), . . . a(t)) =
k1−1∑
j=0

a
(1)
j rj1

+ rk11

k2−1∑
j=0

a
(2)
j rj2



2-3

+ rk11 r
k2
2

k3−1∑
j=0

a
(3)
j rj3

+ · · ·

+ rk11 r
k2
2 · · · r

kt−1

t−1

kt−1∑
j=0

a
(t)
j r

j
t ,

where [n] denotes the integers {0, 1, 2, . . . , n− 1}.
It is clear then that f(a(1), a(2), . . . a(t)) mod rk11 is the integer whose base-r1 digits are
a(1). After subtracting this, and dividing by rk11 , the remaining integer mod rk22 is the
integer whose base-r2 digits are a(2), and so on... Therefore the map is injective.

Moreover, if the entries in the vector a(i) are at most (ri − 1)/2, and the entries in the
vector b(i) are at most (ri − 1)/2, it holds that

f(a(1), a(2), . . . a(t)) + f(b(1), b(2), . . . b(t)) = f(a(1) + b(1), a(2) + b(2), . . . a(t) + b(t)),

since there are no “carries” in the addition in the integers.

We can apply the map f to H by identifying the elements of Zpi with the integers
{0, 1, . . . , pi − 1}. Now if we apply map f to each of the elements of the Ai and Bi
sets that make up the two-families construction, we obtain sets of the same cardinality
(by injectivity), and by the aforementioned observation, we find that f is injective on
H + H. This means that the defining axioms of the two-families construction hold for
the A′i and B′i sets, as required (i.e. if some f(a) + f(b) ∈ A′i +B′i was the same as some
f(c) + f(d) ∈ A′j +B′k, then

f(a+ b) = f(a) + f(b) = f(c) + f(d) = f(c+ d)

which implies a+ b = c+d by injectivity but a+ b ∈ Ai +Bi and c+d ∈ Aj +Bk, etc...)

(b) Fix δ > 0, set k =
∑
i ki, and arrange the prime powers in increasing order (with

repetitions) so that

H ∼= Zp1 × Zp2 × Zp3 × · · · × Zpk
and p1 ≤ p2 ≤ p3 ≤ · · · ≤ pk. We are going to break H into the part with prime
powers less that L = 21/δ and the rest, denoted H0 and H1, so H = H0 × H1. If
|H0| =

∏
i:pi≤L pi ≤ |H|

δ, then we claim N ≤ |H|2δ+(1+δ). This is because 2pi ≤ p2
i for

all i, and so we get that the size of H0 at most squares, while the size of H1 gets raised
to at most (1 + δ) because pi > L implies 2pi < p1+δ

i . So, if N > |H|1+3δ, it must be
that |H0| > |H|δ.
But the prime powers appearing in H0 are bounded by the constant L, and so one of
them must appear at least t = logL |H0|/L times, and then by the Theorem, the slice

rank of H is at most |H|/ct ≤ |H|/|H0|log c/(L logL) = |H|1−c′δ2/21/δ , where c′ > 0 is an
absolute constant.

(c) Suppose we can prove ω ≤ 2 + δ for via and two-families construction in H. We are
given that this implies a multiplicative matching in H3 of cardinality at least |H|3(1−cδ),
which means that the slice rank of TH3 is at least |H|3(1−cδ) as well.
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We claim that N ≤ |H|1+δ′ (for δ′ such that r(δ′) > cδ). If not, then by the previous
part, the slice rank of TH is at most |H|1−r(δ′), which implies that the slice rank of TH3

is at most |H|3(1−r(δ′)), a contradiction.

So by the first part, we have a two-families construction in ZN with N ≤ |H|1+δ′ . If the
two-families conjecture is true in a sequence of groups, then δ can be made arbitrarily
small, and thus δ′ can be made arbitrarily small. Thus we have a construction in cyclic
groups where the size and number of the sets Ai, Bi remains the same, and the size
of the containing group approaches |H|. If the first original construction proved the
two-families conjecture, then this one does as well.


