CS 153 Current topics in theoretical computer science

Out: May 8

1. The tensor in question is described by this trilinear form:

$$
\begin{array}{ll}
a_{1,1} b_{1,1} c_{1,1}+a_{1,2} b_{2,1} c_{1,1} & + \\
a_{2,1} b_{1,1} c_{1,2}+a_{2,2} b_{2,1} c_{1,2} & + \\
a_{1,1} b_{1,2} c_{2,1}+a_{1,2} b_{2,2} c_{2,1} & + \\
a_{2,1} b_{1,2} c_{2,2}+a_{2,2} b_{2,2} c_{2,2} &
\end{array}
$$

We use the substitution method. Clearly the above trilinear form depends on $a_{1,1}$; thus in any rank decomposition there must be a product $\alpha(\vec{a}) \beta(\vec{b}) \gamma(\vec{c})$ with the coeffcient of $a_{1,1}$ in α not equal to zero. Set $a_{1,1}$ to a linear form in the a 's that makes α (and this entire product) zero. Then by setting $b_{1,1}=0$ and $b_{1,2}=0$, we see that the trilinear form still depends on $a_{1,2}$, and therefore there must be another product in the rank decomposition $\alpha^{\prime}(\vec{a}) \beta^{\prime}(\vec{b}) \gamma^{\prime}(\vec{c})$ with the coeffcient of $a_{1,2}$ in α^{\prime} not equal to zero. Set $a_{1,2}$ to a linear form in the a^{\prime} 's that makes α^{\prime} (and this entire product) zero. Now set $c_{1,1}=c_{2,1}=0$. What remains is the trilinear form of 1×2 by 2×2 matrix multiplication, unaffected by the substitutions so far. Since $\langle 1,2,2\rangle$ has 4 linearly independent slices, there must be at least 4 remaining terms in the rank decomposition, for a total of at least 6 , as desired.
2. We use the fact that $a_{i, j} b_{j, k} c_{k, i}=1$ for all $i \in[n], j \in[m], k \in[p]$, repeatedly. For any group element t, we can replace $b_{j, k}$ with $b_{j, k} t$ and $c_{k, i}$ with $t^{-1} c_{k, i}$ without changing the defining property of the a 's, b 's, and c 's. We will do this for $t=c_{1,1}$. This lets us assume without loss of generality that $c_{1,1}=1$.
We would like to write $\left\{a_{i, j} \mid i \in[n]\right\}$ as a right-translation of a set X by something that depends only on j. We notice that $a_{i, j}=\left(b_{j, k} c_{k, i}\right)^{-1}=c_{k, i}^{-1} b_{j, k}^{-1}$ and this holds for all k, so it holds in particular for $k=1$. Thus we have:

$$
a_{i, j}=c_{1, i}^{-1} b_{j, 1}^{-1} .
$$

We would like to write $\left\{b_{j, k} \mid k \in[p]\right\}$ as a left-translation of a set Z by something that depends only on j. We have that $b_{j, k}=a_{i, j}^{-1} c_{k, i}^{-1}$ for all i, so in particular (with $i=1$) we have:

$$
b_{j, k}=a_{1, j}^{-1} b_{k, 1}^{-1}
$$

We will choose our $x_{i}=c_{1, i}^{-1}$ and our $z_{k}=b_{k, 1}$. We will be done if we can select the y_{j} so that

$$
y_{j}^{-1} y_{j^{\prime}}=b_{j, 1}^{-1} a_{1, j^{\prime}}^{-1} \Leftrightarrow j=j^{\prime},
$$

and indeed, since $a_{1, j} b_{j_{1}}=c_{1,1}=1$ we get that $b_{j, 1}=a_{1, j}^{-1}$ and so $y_{j}=a_{1, j}^{-1}$ meets this requirement. In summary we have

$$
X=\left\{c_{1, i}^{-1}: i \in[n]\right\} \quad Y=\left\{a_{1, j}^{-1}: j \in[m]\right\} \quad Z=\left\{b_{k, 1}: k \in[p]\right\}
$$

Then $x_{i}^{-1} x_{i^{\prime}} y_{j}^{-1} y_{j^{\prime}} z_{k}^{-1} z_{k^{\prime}}=1$ is equivalent to the statement:

$$
c_{1, i} c_{1, i^{\prime}}^{-1}\left(b_{j, 1}^{-1} a_{1, j^{\prime}}^{-1}\right) b_{k, 1}^{-1} b_{k^{\prime}, 1}=1
$$

which is equivalent to:

$$
\left(c_{1, i^{\prime}}^{-1} b_{j, 1}^{-1}\right)\left(a_{1, j^{\prime}}^{-1} b_{k, 1}^{-1}\right)=c_{1, i}^{-1} b_{k^{\prime}, 1}^{-1}=c_{1, i}^{-1} c_{1,1} b_{k^{\prime}, 1}^{-1}=\left(c_{1, i}^{-1} b_{1,1}^{-1}\right)\left(a_{1,1}^{-1} b_{k^{\prime}, 1}^{-1}\right)
$$

The left-hand-side is just $a_{i^{\prime}, j} b_{j^{\prime}, k}$ and the right-hand-side is $a_{i, 1} b_{1, k^{\prime}}=c_{i, k^{\prime}}$, so we get $i=$ $i^{\prime}, j=j^{\prime}, k=k^{\prime}$ as required.
3. Pick uniformly random elements $s, t, u \in G$. The expected size of $|X s \cap A|$ is $|X|$ times $|A| /|G|$ by linearity of expectation, and similarly the expected size of $|Y t \cap A|$ is $|Y|$ times $|A| /|G|$ and the expected size of $|Z u \cap A|$ is $|Z|$ times $|A| /|G|$. Fixe s, t, u that realize at least these expectations.

Note that for any particular s, t, u, the sets $X s, Y t, Z u$ satisfy the triple product property if X, Y, Z do. So the sets $X^{\prime}=(X s \cap A), Y^{\prime}=(Y t \cap A)$ and $Z^{\prime}(Z u \cap A)$ do as well. Since A is abelian:

$$
\left|X^{\prime}\right|\left|Y^{\prime}\right|\left|Z^{\prime}\right| \leq|A|,
$$

and we have just argued that

$$
|X||Y||Z|(|A| /|G|)^{3} \leq\left|X^{\prime}\right|\left|Y^{\prime}\right|\left|Z^{\prime}\right|
$$

putting these together completes the proof.

