
CS 153 Current topics in theoretical computer science Spring 2018

Problem Set 2

Out: May 22 Due: June 1

You are encouraged to work in groups of two or three; however you must turn in your own write-up
and note with whom you worked. Please don’t consult online solutions or original research papers
or surveys containing such solutions while doing this problem set. Please attempt all problems.

1. Define the triangle-rank of a Boolean matrix to be the sidelength of the largest square sub-
matrix (possibly after permuting the rows and columns) with ones on the diagonal and zeros
below the diagonal. Notice that triangle-rank is at most the standard rank.

(a) Consider a matrix M with rows and columns indexed by sets X and Y . For subsets
S ⊂ X and T ⊂ Y , denote by M1 the submatrix of M restricted to rows indexed by S
and denote by M2 the submatrix of M restricted to columns indexed by T . Show that

triangle-rank(M1) + triangle-rank(M2) ≤ triangle-rank(M).

(b) Let Mf be the matrix associated with function f : X × Y → {0, 1}. Prove that

D(Mf ) ≤ (log2(triangle-rank(Mf ) + 1) + 1)(N0(Mf ) + 1).

Hint: Induction on triangle-rank. Fix a 0-cover. Alice should focus on rectangles S × T
in this cover for which restricting M to the rows indexed by S reduces the triangle rank
by at least a factor 2; Bob should focus on rectangles S × T in this cover for which
restricting M to the columns indexed by T reduces the triangle rank by at least a factor
of 2.

2. Say that the Boolean-rank of an N ×N Boolean matrix M is the smallest r for which

M = UV,

where U is an N × r matrix, and V is an r×N matrix, and U, V are both Boolean matrices.
Prove that the log-rank conjecture holds for this notion of rank: show that for f : X × Y →
{0, 1}, it holds that

D(Mf ) ≤ O(log2 Boolean-rank(Mf )).

3. This problem concerns the k-party number-on-forehead model. Recall that the discrepancy
of f : X1 × · · · ×Xk → {0, 1} with respect to a distribution µ on the inputs, is discµ(f)

= max
S
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where the maximum is taken over all cylinder intersections S. Recall also that small dis-
crepancy for some distribution µ, implies large randomized communication complexity in the
k-party model:

R1/2−ε(f) ≥ log2

(
2ε

discµ(f)

)
.

For example we showed in class that

discuniform(GIPk) ≤ exp (−n/2k)

which led to an asymotically tight lower bound on the randomized communication complexity.
We now turn to the k-party version of disjointness, denoted DISJk, in which player i holds
an n-bit Boolean string xi, viewed as a set, and the output of the protocol is 1 iff there is no
global intersection, i.e., if ∩ixi = ∅.

(a) Prove that for any function f : X1 × · · · × Xk → {0, 1} with nondeterministic or co-
nondeterministic communication complexity t, we have

discµ(f) ≥ Ω(2−t)

for all distributions µ. Recall that nondeterministic communication complexity is the
base-2 log of the cardinality of the smallest (non-disjoint) cover of f−1(1) with 1-
monochromatic cylinder intersections, and the co-nondeterministic communication com-
plexity is the base-2 log of the cardinality of the smallest (non-disjoint) cover of f−1(0)
with 0-monochromatic cylinder intersections. Hint: consider the “full” cylinder X1 ×
· · · ×Xk first.

(b) Prove that DISJk has co-nondeterministic communication complexity at most log2 n.

We conclude that the discrepancy method cannot prove strong lower bounds on the the
randomized communication complexity of disjointness in the k-party number-on-forehead

model. In contrast, the best known lower bound, by Sherstov, is ω
(√

n
2kk

)
.


