CS 153	Current topics in theoretical computer science	Spring 2018
	Problem Set 1	
Out: May 1		Due: May 11

You are encouraged to work in groups of two or three; however you must turn in your own write-up and note with whom you worked. Please don't consult online solutions or original research papers or surveys containing such solutions while doing this problem set. Please attempt all problems.

- 1. Show that if $f: X \times Y \to \{0, 1\}$ has a fooling set of size t, then $R_0^{\text{pub}}(f) \ge \log t$. Give an example of a function exhibiting an exponential gap between R_0^{pub} and $R_{1/3}^{\text{pub}}$.
- 2. This problem concerns the function TRIBES : $\{0,1\}^n \times \{0,1\}^n \to \{0,1\}$. We view Alice's input x as a $\sqrt{n} \times \sqrt{n}$ matrix and Bob's input y in the same way. Then

$$\text{TRIBES}(x,y) = \bigwedge_{i} \bigvee_{j} (x_{i,j} \land y_{i,j})$$

- (a) Prove that $D(\text{TRIBES}) = \Theta(n)$.
- (b) Prove that $N^1(\text{TRIBES}) = \Theta(\sqrt{n} \log n)$. Hint: for the lower bound, find a 1-fooling set of size $\sqrt{n}^{\sqrt{n}}$.
- (c) Prove that $N^0(\text{TRIBES}) = \Theta(\sqrt{n})$.
- 3. Recall that in the CIS_G problem, Alice holds a clique in an *n* node graph *G* and Bob holds an independent set in *G*. Recall that we proved an upper bound $D(\operatorname{CIS}_G) \leq O(\log^2 n)$.
 - (a) Prove the lower bound $D(CIS_G) \ge \Omega(\log n)$, for some G.
 - (b) Suppose that we discover a better upper bound $D(\operatorname{CIS}_G) \leq O(\log^c n)$ (that holds for all G). Prove that in this scenario $D(f) = O(\log^c C^D(f))$, where $C^D(f)$ is the size of the smallest disjoint cover of f by monochromatic rectangles.