
CS 153 Current topics in theoretical computer science Spring 2010

Solution Set 1

Posted: May 10

1. Let S1, S2, . . . , Sk be the sets selected by the greedy algorithm, and let U be the optimal
k-cover. Let Ti be Si \ (S1 ∪S2 ∪ · · · ∪Si−1); i.e. Ti is the set of new elements covered at step
i. Let Ui be the portion of U that remains uncovered by the greedy solution before the i-th
step. Since we know that there exists a k-cover of U (and therefore of Ui), we deduce that
|Ti| ≥ |Ui|/k.

We prove by induction on i that after the i-th greedy choice, the number of elements covered
is at least [1−(1−1/k)i]|U |. This is true for i = 1 by our above observation that |T1| ≥ |U1|/k.

Now for the induction step there are two cases: if |Ui| ≥ (1 − 1/k)i−1|U |, then we have
that |Ti| ≥ |Ui|/k ≥ (1 − 1/k)i−1/k and by induction the first i − 1 steps cover at least
[1 − (1 − 1/k)i−1]|U | elements. Summing these quantities gives at least [1 − (1 − 1/k)i]|U |
covered elements after the i-th greedy choice, as desired.

In the other case, we have |Ui| < (1 − 1/k)i−1|U |. Before the i-th greedy choice, we have
covered at least |U \ Ui| elements (just within U). So after the i-th greedy choice we have
covered at least

|U | − |Ui|+ |Ui|/k = |U | − (1− 1/k)|Ui| ≥ |U | − (1− 1/k)i|U | = [1− (1− 1/k)i]|U |

elements, as required.

Using the fact that (1− 1/k)k ≤ 1/e for all k ≥ 1, we find that the greedy algorithm covers
at least (1− 1/e) ·OPT elements.

2. Consider a constraint xi + xj + xk = c in the given instance of max-3-lin. If c = 1, this
is satisfied exactly when 1 or 3 of the variables are 1. Our reduction produces the following
majority clauses:

maj(xi, xj , xk)
maj(xi, xj , xk)
maj(xi, xj , xk)
maj(xi, xj , xk)

Note these are symmetric with respect to permutations of the three variables. This is helpful
when determining that exactly 3 clauses are satisfied when 1 or 3 of the variables are 1, and
exactly 1 clauses is satisfied when 0 or 2 of the variables are 1.

If c = 0, then our reduction produces the same set of 4 majority clauses, with all their
variables negated.

1-1

1-2

Now, if a (1− ε) fraction of the linear constraints can be simultaneously satisfied, then that
assignment satisfies a (1− ε)(3/4) fraction of the majority clauses.

On the other hand, suppose more than a 1/2 + δ/2 fraction of the majority clauses can be
simultaneously satisfied. Let p be the fraction of the groups of 4 majority clauses that have
3 clauses satisfied in this assignment (so a (1− p) fraction have 1 clauses satisfied). Then we
have

1/2 + δ/2 <
(1− p) + 3p

4
= 1/4 + p/2

from which we conclude p > 1/2+δ. But this implies that the assignment satisfies more than
1/2 + δ fraction of the linear constraints, violating soundness of max-3-lin.

Thus we have described a reduction with completeness c = (1 − ε)(3/4) and soundness s =
1/2+δ/2, which implies that max-3-maj is NP-hard to approximate to better than s/c,which
can be made arbitrarily close to 2/3 by taking δ, ε sufficiently small.

3. (a) We produce a graph with 2r “clouds” of 2f vertices each. Each cloud is labeled with one
of the 2r possible sequences of coin tosses of the verifier. Each vertex within a cloud is
labeled with one of the 2f distinct answers that would cause the verifier to accept. We
have an edge between vertex (α, β) and vertex (α′, β′) iff α 6= α′ and answers β and β′

are consistent (i.e. any bits in β and β that correspond to the same proof symbol are
equal). Since the PCP system has completeness 1, we know that in the positive case,
there is a clique of size 2r, consisting of the single vertex in each cloud that is consistent
with the proof (because every answer derived from this proof is consistent with every
other one). For the soundness direction, we first note that any clique can contain at
most one vertex from each cloud. Thus if there is a clique of size greater than s2r, then
there is a proof that causes the verifier to accept with probability greater than s (any
proof consistent with the answers forming the clique suffices). Thus in the negative case
there is no clique larger than s2r.

(b) We describe the new verifier. It uses R bits of randomness to select x ∈ [2R]. It then
invokes the original verifier with randomness E(x, y) for each y ∈ [D], and accepts if every
one of these invocations would accept. The new verifier uses the required randomness
R, and has free-bit complexity at most Df since it invokes the old verifier D times.
Any proof causing the original verifier to accept with probability 1 will also cause the
new verifier to accept with probability 1, so the completeness of the new verifier is 1 as
required. For soundness, we fix a proof π and consider the set B ⊆ [2R] of “bad” random
strings; i.e. those for which the new verifier accepts. Since we are in the soundness case,
we know that at most s2r of the random strings for the original verifier cause it to accept.
Since every x ∈ B must have E(x, y) among these strings for all y ∈ [D], it must be that
|B| ≤ K, as otherwise B is a set that violates the definition of a (K, s)-disperser. So the
soundness of the new verifier is at most K/2R since there are most K bad strings from
among 2R total.

(c) We start with the FPCP system of Theorem 1.1, with randomness r, and apply the
previous part, using a (2Rε, 2−`) disperser E : [2R] × [D] → [2r] with D ≤ O(R/`) and
M = 2r (we need to take R = cr for some constant c for Theorem 1.2 to apply). Applying
the first part, we obtain a graph of size 2R+Df`, for which it is NP-hard to distinguish

1-3

between a clique of size at least 2R and a clique of size at most 2Rε. The ratio is 2R(1−ε)

for arbitrarily small ε, so we only need to ensure that the size of the graph is at most
2R(1−δ) for arbitrarily small δ, and we are done (then the ratio is N1−ε′ for arbitrarily
small ε′, where N is the size of the graph). This means we need Df` < δR. But notice
that Df` = O(Rf). So by taking f sufficiently small (as allowed by Theorem 1.1), we
are done.

4. (a) Since A′ ∪ B′ constitutes a cover, by the defining property of (m, `) set systems, we
have that the union must contain Cj and Cj for some j. Since B consists only of un-
complemented sets and A consists only of complemented sets, we must have Cπ(i)=j ∈ A′

and Cj ∈ B′. So, our randomized procedure is as follows: pick i to be a random i from
among the Cπ(i) in A′, pick j to be a random j from among the Cj in B′. We have just
argued that exists a good pair from among A′ and B′, so the probability we hit it is at
least (1/|A′|) ∗ (1/|B′|) ≥ 4/`2.

(b) We first note that the starting instance of label cover can be assumed to be balanced
(i.e., |V1| = |V2|) by first repeating the left node set |V2| times (with each copy inher-
iting the same edges and constraints), and then repeating the left node set |V1| times
(with each copy inheriting the same edges and constraints). It is easy to see that both
transformations preserve perfect completeness, and that after each transformation, any
assignment to the new graph satisfying s fraction of the edges must satisfy an s fraction
of some copy of the original graph, so soundness is exactly preserved.
As suggested, we produce the instance with universe E × U and sets

Su,i =
⋃

v:(u,v)∈E

{(u, v)} × Cπ(u,v)(i)

for each u ∈ V1 and i ∈ [m], and

Sv,i =
⋃

u:(u,v)∈E

{(u, v)} × Ci

for each v ∈ V2 and i ∈ [m].
In the completeness case, if A : (V1 ∪ V2) → [m] is a labeling satisfying all edges, then
we claim that Su,A(u) for u ∈ V1 together with Sv,A(v) for v ∈ V2 consistute a cover.
Indeed, for each edge (u, v) with associated constraint π = πu,v, Su,A(u) contains the
set {(u, v)} × Cπ(A(u)) and Sv,A(v) contains the set {(u, v)} × CA(v). Since this edge is
satisfied by assignment A, we know that π(A(u)) = A(v) and hence the entire subset
{(u, v)} × U is covered. Since this holds for all edges, we have a cover of size |V1 ∪ V2|.
For soundness, define a set of candidate labels for each vertex as follows: for u ∈ V1,
let D(u) be those i for which Su,i is in the cover, and for v ∈ V2, let D(v) be those j
for which Sv,j is in the cover. A natural decoding procedure is to pick a label for each
vertex randomly from the associated set of candidates.
Consider the set of vertices for which there are fewer than `/2 candidates. Call such a
vertex “good”. For an edge (u, v) for which both u and v are good, the analysis reduces
to the situation described in the first part: namely, the subset {(u, v)} × U must be
covered by the Su,i and Sv,j sets in the cover, because no other sets include elements

1-4

with (u, v) as their first component. Thus the sets Cπ(u,v)(i) for i ∈ D(u) and Cj for
j ∈ D(v) must cover U , but there are at most ` of them. So, by the first part, the
randomized decoding procedure satisfies this edge with probability at least 4/`2.
By an averaging argument, at most 1/4 of the graph nodes can have candidate sets larger
than `/2 (since the overall number of sets is at most `/8 times the number of vertices).
Since the graph was assumed to be balanced, at most p1 fraction of left-nodes are not
good, and at most p2 fraction of right-nodes are not good with p1 + p2 ≤ 1/2.
By regularity, picking a random edge is the same as picking a left-node and a random
neighbor, which is the same as picking a random right-node and a random neighbor.
Thus when selecting a random edge the probability of picking the left endpoint in the
non-good set is at most p1 and (separately) the probability of picking a right endpoint
in the non-good set is at most p2, and we just argued that p1 + p2 ≤ 1/2. Altogether
the probability we pick an edge with both endpoints “good” vertices is at least 1/2.
Whenever this happens, our randomized decoding procedure succeeds with probability
at least 4/`2. The total fraction of edges satisfied (in expectation) is thus 2/`2.

(c) Let n be the size of the instance of 3-sat to which we will apply Theorem 1.3. Set
ε = Θ(1/(log3 n)). We obtain an instance of label cover with size N = nO(log log n)

and alphabet size at most m = (log n)O(1).
Set ` = γ log n log log n, where γ is a small enough constant to ensure that ε < 2/`2 (the
inequality holds asymptotically, so such a constant γ exists). This ensures soundness
of the set cover instance via the previous part. The required (m, `) set system can
be constructed in nO(log log n) time, by Theorem 1.4. By the previous part, we have a
soundness/completeness ratio of Ω(`). Since log N = O(log n log log n), we have achieved
a hardness ratio of Ω(log N) as required. Any approximation algorithm achieving better
than this ratio can be used to solve 3-sat (and hence all of NP) in time nO(log log n)

by performing this reduction (which runs in time nO(log log n)) and then running the
approximation algorithm in the resulting set cover instance.

