CS 153 Current topics in theoretical computer science Spring 2010

Problem Set 1
Out: April 22 Due: May 6

Reminder: you are encouraged to work in small groups; however you must turn in your own write-
up and note with whom you worked. The solutions to these problems can be found in various
online course notes and research papers. Please do not search for or refer to these solutions.

1. In the MAX-K-COVER problem, we are given a collection of subsets S1,S59,...,5,, and the
objective is to find the subset of k of them that covers the largest number of elements; i.e.,
the subset I C [m] with |I| = k and | Ujer S;| maximum. Show that the greedy algorithm
achieves an approximation ratio of at least 1 — 1/e.

2. We proved in class that for all constants €¢,6 > 0, [1 —¢,1/2 4 §]-GAP MAX-3-LIN is NP-
hard. Consider the problem MAX-3-MAJ in which each “clause” is the MAJORITY predicate
on 3 literals (variables or their negations), and the objective is to find an assignment that
maximizes the number of simultaneously satisfied clauses. Prove by reduction from MAX-3-
LIN that MAX-3-MAJ is NP-hard to approximate to better than a 2/3 factor. Hint: replace
each linear equation with 4 MAJORITY clauses.

3. Inapproximability of CLIQUE. In this problem you will show that for every constant ¢ > 0,
CLIQUE cannot be approximated to within a n'~¢ factor, unless P = NP. This strong result
was proved by Zuckerman in 2006, although the threshold of n'~¢ had been known for some
time, predicated on slightly weaker complexity assumptions. There are two ingredients in
this proof, described next.

e A refinement of the query complexity parameter q of a PCP system is the free-bit com-
plexity, denoted f. For each sequence of the verifier’s coin tosses r, it computes g queries
into the proof, and a predicate ¢, : {0,1}79 — {accept,reject} that it applies to the
answers to the ¢ queries. The free bit complexity f is the log of the maximum num-
ber of distinct answers that make the verifier accept; i.e., it is the maximum over r of
log, |¢; ! (accept)|. Let us denote by FPCP. 4(r, f) the set of languages with PCP sys-
tems having completeness ¢, soundness error s, randomness complexity r, and free-bit
complexity f. Hastad proved the following theorem®:

Theorem 1.1 For all constants f > 0, there is an £ such that
NP C FPCP, ,«(O(logn), f).

e A function F : [N] x [D] — [M] is called a (K, s) disperser if for all subsets X C [N] of
cardinality at least K, the set E(X,[D]) = {E(z,y)|x € X,y € [D]} has cardinality at
least sM. A disperser F is efficient if the function E can be computed in polynomial
time in the length of its input. Zuckerman gave the following construction of dispersers:

'The quantity f is called the amortized free-bit complexity.
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Theorem 1.2 For any constant € > 0, and any s = s(N) > 0, there is an efficient
family of (N€,s) dispersers E : [N] x [D] — [M] with D < O(log N/log(1/s)) and
M > N,

(a) Prove that if NP C FPCPy 4(r, f) then it is NP-hard to distinguish whether a graph
on 2"+/ vertices (i) has a clique of size at least 2" or (ii) has no clique larger than s2.

(b) Prove that if NP C FPCPy4(r, f), then NP C FPCP, i /or(R, Df), by using a
(K, s) disperser E : [2f] x [D] — [2"]. Hint: repeat the verifier D times, using (non-
independent) random strings dictated by E.

¢) Prove that it is NP-hard to approximate CLIQUE to within n! €, for any constant ¢ > 0.
pp ) y

4. Inapproximability of SET COVER. Recall that the greedy algorithm for SET COVER over a

universe of size n produces a O(logn) approximation. In this problem you will show that SET
COVER cannot be approximated to within a Q(logn) factor, unless NP C DTIME (nC(oglogn)),
There are two ingredients in this proof, described next.

e First, we need a version of LABEL COVER with subconstant soundness error, as in the
following theorem (which uses Raz’s Parallel Repetition Theorem applied to an instance
of LABEL COVER with constant soundness error):

Theorem 1.3 For every e = e(n) > 0 there is a reduction from 3-SAT to [1, €]-GAP LA-
BEL COVER, running in time n®1°8(1/9) that produces an instance of LABEL COVER with
graph size n®18(1/)) and with alphabet size at most (1/€)°N. Moreover the bipartite
graph produced by this reduction is (left-) and (right-) regular.

e Second, we need explicit constructions of the following combinatorial object: a (m,¥)
set system over a universe U is a collection C1,Co,...,C,,, each C; a subset of U, with
the property that if the union of at most £ subsets from among

{017027"' 7Cm7aaﬁ27' 7@}

equals U, then the union must contain both C; and C; for some 4. It is not hard to
construct such set systems:

Theorem 1.4 For all m > { > 2, there exist (m,{) set systems over a universe of size
O(2%m?), and these can be constructed in time 20©mO).

(a) Let {C1,C4,...,Cpn} be a (m,£) set system over universe U. Fix a function 7 : [m| —
[m], and define
A={Crup i€ [m]} B={Cj:jec[m]}.
Given subsets A C A and B’ C B with |A'| < ¢/2 and |B’| < ¢/2 for which A" U B’
constitutes a cover of U, describe a randomized procedure that produces from A’ an
i € [m] and from B’ a j € [m] that satisfy j = 7(i) with probability at least 4/¢2.

(b) Let G = (V4, Vo, E) be an instance of [1,€]-GAP LABEL COVER with alphabet [m]. Fix a
parameter ¢. Using an (m, £) set system over universe U, give a reduction to SET COVER
and prove
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(completeness) if there exists a labeling satisfying all edges simultaneously, then there
is a set cover of size at most |V;| + |V3|, and

(soundness) if there exists a set cover of size at most (¢/8)(|V1|+ |V2|), then there exists
a labeling satisfying more than a 2/¢? fraction of the edges.

Hint: the SET COVER instance will be over the universe F x U, and it will have a set for
each element of V7 x X and a set for each element of V5 x X.

(c) Prove that SET COVER cannot be approximated to within a clog N factor, for some con-
stant ¢ (where N is the size of the SET COVER instance), unless NP C DTIME (n©(loglogn)),
Hint: choose €, ¢ appropriately and apply the previous part.



