
CS 151 Complexity Theory Spring 2021

Solution Set 7

Posted: May 28 Chris Umans

Obviously, if you have not yet turned in Problem Set 7, you shouldn’t consult these solutions.

1. (a) Let pi = Pry[f(x+ y)− f(y) = i]. The probability two random voters disagree is 2p0p1.
If p0 ≥ 1/2 (so the majority is 0), then the probability a random voter disagrees with the
majority is p1 ≤ 2p0p1; similarly if p1 ≥ 1/2 (so the majority is 1), then the probability
a random voter disagrees with the majority is p0 ≤ 2p0p1. So we have

Pr
y

[f(x+ y)− f(y) 6= f̃(x)] ≤ 2 Pr
y,z

[f(x+ y)− f(y) 6= f(x+ z)− f(z)].

Now, if both (1) f(x+ y) + f(z) = f(x+ y + z) and (2) f(x+ z) + f(y) = f(x+ y + z)
hold, then f(x+ y)− f(y) = f(x+ z)− f(z). So at least one of (1) and (2) must fail to
hold for the event on the right-hand-side to hold. Thus by a union bound

Pr
y,z

[f(x+ y)− f(y) 6= f(x+ z)− f(z)] ≤ Pr
y,z

[f(x+ y) + f(z) = f(x+ y + z)]

+ Pr
y,z

[f(x+ z) + f(y) = f(x+ y + z)]

and then by Eq. (7.1), the right-hand-side is bounded by 2δ. It follows that

Pr
y

[f(x+ y)− f(y) = f̃(x)] ≥ 1− 4δ.

(b) We know that Prx,y[f(x+ y)− f(y) = f(x)] ≥ 1− δ by Eq. (7.1). Now for those x such
that f(x) 6= f̃(x), we have

Pr
y

[f(x+ y)− f(y) = f(x)] = Pr
y

[f(x+ y)− f(y) 6= f̃(x)] ≤ 1/2,

by the definition of f̃ . Thus if p = Pr[f(x) 6= f̃(x)]

Pr
x,y

[f(x+ y)− f(y) = f(x)] ≤ p/2 + (1− p) = 1− p/2,

from which we conclude 1− δ ≤ 1− p/2, and thus p ≤ 2δ.

(c) Fix x, y. Following the hint, we have

Pr
w,z

[f(w) + f(z) = f(w + z)] ≥ 1− δ

Pr
w,z

[f(x+ w) + f(y + z) = f(x+ y + w + z)] ≥ 1− δ

Pr
w,z

[f(x+ w)− f(w) = f̃(x)] ≥ 1− 4δ

Pr
w,z

[f(y + z)− f(z) = f̃(y)] ≥ 1− 4δ

Pr
w,z

[f(x+ y + w + z)− f(w + z) = f̃(x+ y)] ≥ 1− 4δ.

7-1

7-2

So with all but 14δ probability, all of the equations in the above probabilities hold, in
which case

f̃(x+y) = f(x+y+w+z)−f(w+z) = f(x+w)+f(y+z)−f(w)−f(z) = f̃(x)+ f̃(y).

Thus
Pr
w,z

[f̃(x) + f̃(y) = f̃(x+ y)] ≥ 1− 14δ > 0

(using the assumption that δ > 1/14). But the event in the probability does not depend
on w, z so it must hold (and the probability must be 1). This is true for all x, y.

(d) Completeness is obvious. If f passes the test with probability 1− δ, then by definition

Pr
x,y

[f(x) + f(y) = f(x+ y)] ≥ 1− δ.

We can then say that there exists a linear function f̃ satisfying Prx[f(x) = f̃(x)] ≥
1− 14δ, because if δ ≥ 1/14, this is trivially true, and otherwise by part (b) we get that
the function f̃ defined using the majority function agrees with f on all but a 2δ < 14δ
fraction of the x, and by part (c) we get that f̃ is linear.

2. (a) The probability that A satisfies a given φi is at most

(1− ε)log2 n ≤ e−ε log2 n = n−ε log2 n/ lnn = n−ε log2 e ≤ n−ε/2.

Define the indicator random variable Xi to be 1 if A satisfies φi and zero otherwise.
Notice that E[Xi] ≤ n−ε/2. Define X =

∑
iXi, and notice that E[X] ≤ n3−ε/2 by

linearity of expectations. Applying the Chernoff bound, we find that

Pr[X > n3−ε] < e−n
3−ε/6 ≤ e−n2

as desired.

(b) It is clear that if φ is a YES instance, then every one of the φi is simultaneously satisfied
by some assignment – namely, the one that satisfies all of the clauses of φ.

If φ is a NO instance, then taking the union bound over all 2n possible assignments A,
we find that

Pr[∃A that satisfies more than n3−ε of the φi] ≤ 2ne−n
2
< 1/2,

as desired.

(c) We produce a graph with n3 sets of nodes. Each node in set i corresponds to one of the
possible satisfying assignments to φi. Since φi consists of log2 n clauses with at most
3 variables each, there are at most n3 nodes in each set, for a total of n6 nodes in the
graph. Now, we connect a node in set i to a node in set j (for i 6= j) iff the assignments
they represent are consistent.

Now, in the positive case, it is clear that G has a clique of size n3, consisting of the
nodes representing assignment A to each of the φi.

In the negative case, we observe that a clique in G can have at most 1 node from each
set (since there are no edges within the sets), so a clique of size greater than n3−ε must
imply an assignment that is simultaneously consistent with more than n3−ε of the φi, a
contradiction.

7-3

(d) Note that N = nc for some constant c. Set δ = ε/(c + 1). Given any language L ∈
NP and an input x we obtain φ using the PCP theorem, and then use randomness to
construct G from φ as described above. We then run the N δ-approximation algorithm
on the instance (G, k = n3). If it returns a clique of size at least k/N δ > n3−ε, then we
accept; otherwise we reject.

Now, if x ∈ L, then our construction will always produce a graph G with a clique of
size n3, and our approximation algorithm is guaranteed to return a clique of size at least
k/N δ, and we will accept.

If x 6∈ L, then our construction will produce a graph with no clique larger than n3−ε

with probability 1/2 and in this case we will reject (because no clique returned by the
approximation algorithm will be large enough).

Thus we have a randomized algorithm that always accepts if x ∈ L, and rejects with
probability at least 1/2 if x 6∈ L. We conclude that L ∈ coRP, and therefore NP ⊆
coRP. Now, we know from the midterm that NP ⊆ coRP ⊆ BPP implies that
NP ⊆ RP. We conclude that NP ⊆ (RP ∩ coRP) = ZPP as required.

Alternatively, we could argue directly that NP ⊆ coRP implies coNP ⊆ RP, and
therefore

NP ⊆ coRP ⊆ coNP ⊆ RP ⊆ NP

and so NP = coRP = RP = ZPP.

3. (a) We describe a recursive divide and conquer algorithm. As the base case, if n = 1
then it is easy to evaluate f(0) and f(1) with O(1) operations. If n > 1, then write
f(x1, . . . , xn) = g(x2, . . . , xn) + x1h(x2, . . . , xn), and recursively compute g and h at
all of {0, 1}n−1. Note that f(0, x2, . . . , xn) = g(x2, . . . , xn) while f(1, x2, . . . , xn) =
g(x2, . . . , xn) + h(x2, . . . , xn). So we can obtain all of the required evaluations from the
values returned by the recursive calls.

Preparing g and h for the recursive calls requires O(2n) operations (since we just need
to go through the coefficients one by one), and computing the evaluations of f from the
returned lists takes O(2n) operations (we need to copy one list of size 2n−1 and then
output the element-wise sum of two lists of size 2n−1).

Let T (n) denote the number of operations when there are n variables. Then we have

T (n) ≤ 2T (n− 1) +O(2n),

from which we conclude T (n) = O(n2n). We know that f(x) ≤ quasipoly(|C|), and
we are always summing positive numbers, so the maximum magnitude of any integer
in these operations is quasipoly(|C|), and arithmetic operations on such integers take
time O(poly(log |C|)). The overall running time is O(quasipoly(|C|) + 2n · poly(n) to
obtain the representation in the theorem, plus O(2npoly(n, log |C|)) for evaluating f(x)
at all of {0, 1}n plus the time to perform 2n evaluations of T , each of which takes time
poly(log `)) = poly(log |C|)).

(b) Plug in each of the 2n
′

possible values, resulting in a new circuit, and let C ′ be the OR
of these 2n

′
circuits, which remains an ACC-type circuit, of size poly(n) · 2n′ . Clearly

C ′ is satisfiable iff C is. Applying the procedure in the previous part to C ′ takes time

7-4

O(2n−n
′
poly(n) + quasipoly(poly(n) ·2n′)). By choosing n′ = nε for ε a sufficiently small

constant we can make quasipoly(poly(n)2n
′
) < O(2

√
n) (say), and the overall running

time is thus O(2n−n
δ
) for a constant δ < ε.

(c) Consider the language consisting of pairs (C, i) where C is a succinct 3-sat instances,
and the i-th bit of the lexicographically first satisfying assignment to the 3-SAT for-

mula encoded by C is one. We claim this language is in ENP. Indeed, in time at
most 2|C|poly(|C|), we can extract the 3-SAT formula encoded by C. Then using the
NP oracle, we can perform a binary search to find the lexicographically first satisfying
assignment, if there is one. Then it is easy to accept or reject based on the i-th bit of

this assignment. Since we are assuming ENP ⊂ ACC, there exists an ACC circuit Wx

as described in the problem by hardwiring Cx as part of the input to the ACC circuit
decided this language (for inputs of the appropriate length).

(d) To begin, we perform the succinct 3-sat reduction from language L, with input x, to
obtain Cx. Set n = |x|. So far this takes polynomial time.

Now, we need to argue that D,G, V exist. For this we note that the following are
functions in P:

• given a circuit C and an input x, output C(x)

• given a circuit C and an input i, output the gate information for gate i of circuit C

• given a circuit C, an input i, and an input x, output the value of gate i when
evaluating C on input x.

Since we are assuming ENP ⊆ ACC, we certainly have P ⊆ ACC. Thus there are
polynomial-size families of ACC circuits computing each of these functions. Hardwiring
Cx as the circuit C in the ACC circuit of the appropriate size yield the ACC circuits
D, G, and V , respectively. As usual, it is more challenging to actually get our hands
on these circuits, and for this we use the ability to guess and verify as suggested in the
hint.

We now nondeterministically guess D,G, V,Wx. Given guessed ACC circuits D,G, V ,
we note the following:

• in polynomial time, we can verify that G is correct, by running through all of its
inputs (there are at most polynomially many) and consulting Cx,

• V is correct iff the following holds for all x and all i: evaluate G(i) to determine the
gate type of gate i, and its at most 2 input gates j, k; check that V (x, i), V (x, j)
and V (x, k) are consistent (e.g., if the gate type of gate i is OR, and the two input
gates are gate j and gate k, then we check that V (x, i) = V (x, j) ∨ V (x, k)), and

• D is correct iff for all x: D(x) = V (x, i∗) where i∗ is the index of the output gate
(we can standardize our gate numbering so this is always gate 0, for example).

Observe that after the universal quantification of x, i, the checks in the last two bullets
can be expressed as an ACC circuit with ` = |(x, i)| = n + O(log n) inputs, because
in both cases we are performing a constant number of evaluations of ACC circuits and
using those values on a computation involving at most O(log n) bits (which we could
even afford to write out as a CNF). Therefore, we can use part (b) to perform these

checks in O(2`−`
δ
) time.

7-5

If D,G, V pass these checks, then we are left checking whether Wx encodes a satisfying
assignment to φx (the 3-SAT instance succinctly encoded by Cx – and now D as well).
Recall that Cx (and D) have at most m = n+ 5 log n inputs. Thus there are at most 2m

clauses in φx, and φx involves at most 2m variables. Thus, given a clause number i, it
takes poly(m) = poly(n) many evaluations of D to extract a description of clause i. This
consists of the names of the three variables j1, j2, j3 appearing in the clause, and whether
or not they are negated. We can then check whether Wx(j1),Wx(j2),Wx(j3) satisfy the
clause. Again, after the universal quantification of the clause number i, this check can
be expressed as an ACC circuit with m inputs, as we are just plugging a sequence of
evaluations of D into Wx, three times, and possibly negating the results before taking
their OR. Therefore, we can use part (b) to perform these checks in O(2m−m

δ
) time.

Altogether, on input x (an instance of L, an arbitrary language in NTIME(2n)), we
guess poly(n) bits (to describe D,G, V,Wx), and perform poly(n) deterministic compu-
tation (to produce Cx, to check the correctness of G, and to set up the ACC circuits

to be used in the two invocations of part (b)), followed by O(2`−`
δ
) + O(2m−m

δ
) steps

to invoke part (b) twice. Since `,m ≤ n + O(log n), this last quantity plus the various

poly(n) quantities is at most O(2n−n
δ′

) for some constant δ′ > 0. We accept iff D,G, V
pass their checks, and Wx indeed encodes a satisfying for φx, which happens iff x ∈ L.

