
CS 151 Complexity Theory Spring 2017

Solution Set 5

Posted: May 17 Chris Umans

1. We are given a Boolean circuit C on n variables x1, x2, . . . , xn with m ∧,∨ and ¬ gates. Our
3-CNF formula will have m auxiliary variables z1, z2, . . . , zm in addition to the x variables,
and we associate each z variable with one of the m gates. We want to enforce constraints so
that any satisfying assignment to all of the variables will have the z variables taking on the
value that the associated gates would output given the assignment to the x variables. We do
this as follows:

• for a ¬ gate associated with zi, and with input w (which may be a z variable or an x
variable), we enforce ¬w ⇔ zi by including the clauses (w ∨ zi) and (¬w ∨ ¬zi).
• for an ∧ gate associated with zi, and with inputs w and y (each of which may be a z

variable or an x variable), we enforce (w∧y)⇔ zi by including the clauses (¬w∨¬y∨zi),
(¬zi ∨ w) and (¬zi ∨ y).

• for an ∨ gate associated with zi, and with inputs w and y (each of which may be a y
variable or an x variable), we enforce (w ∨ y) ⇔ zi by including the clauses (¬w ∨ zi),
(¬y ∨ zi) and (¬zi ∨ w ∨ y).

Assume that zm is the variable associated with the output gate. By construction our 3-CNF
so far has the property that any assignment that satisfies the above clauses must assign to zm
the value that C(x1, x2, . . . , xn) takes given the assignment to the x variables. We add a final
clause (zm). Now an assignment satisfies the formula if and only if the assignment sets the x
variables in such a way that C(x1, x2, . . . xn) = 1. It is also easy to see that any assignment
to the x variables for which C(x1, x2, . . . , xn) = 1 can be extended to an assignment to the x
and z variables that satisfies all of the above clauses, by simply setting each zi to the value the
i-th gate is outputting in circuit C. Thus C is satisfiable if and only if the just-constructed
3-CNF formula is. If we call the 3-CNF formula φ, then we have, as desired:

∃z1, z2, . . . , zm φ(x1, x2, . . . , xn, z1, z2, . . . , zm) = 1⇔ C(x1, x2, . . . , xn) = 1.

For the second part, we first take C and add a ¬ gate to its output; call this circuit C ′. Now
applying the above transformation to C ′ gives a 3-CNF formula φ′ with the property that:

∃z1, z2, . . . , zm φ′(x1, x2, . . . , xn, z1, z2, . . . , zm) = 1⇔ C ′(x1, x2, . . . , xn) = 1.

Equivalently,

∀z1, z2, . . . , zm φ′(x1, x2, . . . , xn, z1, z2, . . . , zm) = 0⇔ C ′(x1, x2, . . . , xn) = 0.

Let us define φ to be ¬φ′, and note that (if we distribute the ¬) φ is a 3-DNF formula. We
have:

∀z1, z2, . . . , zm φ(x1, x2, . . . , xn, z1, z2, . . . , zm) = 1⇔ C ′(x1, x2, . . . , xn) = 0.

5-1

5-2

Finally, by the definition of C ′ we have:

∀z1, z2, . . . , zm φ(x1, x2, . . . , xn, z1, z2, . . . , zm) = 1⇔ C(x1, x2, . . . , xn) = 1

as desired.

2. (a) Let M be the nondeterministic polynomial-time oracle TM deciding a language L ∈
NPA. Given an input x, we will describe how to determine whether or not it is in L,
in BPP (⊕P)A . Define Tx to be the (possibly empty) set of accepting computation paths
of M on input x (since M is fixed, each of these is described completely by a sequence
of m = poly(n) nondeterministic choices). Our BPP machine uses its randomness to
produce, via the Lemma, a sequence of circuits C1, C2, . . . , Ck (each from an indepen-
dent invocation of the procedure in the lemma with fresh random bits). Notice that
determining whether

Si = {y : y ∈ Tx and Ci(y) = 1}

has odd size is a problem in (⊕P)A, because we can construct a nondeterministic oracle
TM Mi that uses its nondeterminism to guess y and then enters state qaccept iff y ∈ Tx
and Ci(y) = 1 (and checking whether y ∈ Tx can be done in polynomial time with access
to oracle A). Our BPP machine thus makes k oracle calls and accepts iff |Si| is odd for
some i.

If x 6∈ L, then regardless of the random bits of the BPP machine, |Si| = 0 for all i, and
so the BPP machine will always reject. If x ∈ L, then each Si has at least a 1/(8m)
chance of having size 1 (which is odd), and thus the probability we reject is at most
(1−1/(8m))k ≤ e−k/(8m). Picking k = 16m = poly(n) is sufficient to make this quantity
less than 1/3 as required by the definition of BPP.

(b) We prove the statement by induction on i. When i = 1 that implication is trivial. For
general i, we have that the NPA ⊆ BPPA implies that the “tower of height i” class is
contained in NPBPPA

, since by induction the oracle on the bottom “NP” (which is the
“tower of height i− 1”) is contained in BPPA.

We now argue that NPBPPA ⊆ BPPNPA
. Given a language L ∈ NPBPPA

and an
instance x of length n, let nc be an upper bound on the running time of the NPBPPA

machine. By error-reduction (just repetition is sufficient here), we can assume that the
machine associated with the BPPA oracle has error less than 1/(2n

c
3nc). Our BPP

oracle machine for deciding L does the following: it uses its randomness to choose a single
string of length that exceeds the maximum randomness used by any of the invocations
of the BPPA oracle. Since there are at most nc queries, each of length at most nc,
and the oracle uses only a polynomial in its input length number of random bits, this
is poly(n). Now we will simulate the NPBPPA

machine on input x using this string as
the randomness for every oracle query. Because we made sure the error was less than
1/(2n

c
3nc), we have, by a union bound (over the at-most 2n

c
computation paths of the

NP machine and the at most nc queries on each path), that the probability of any of
these simulations being an error is less than 1/3. After the randomness is fixed like this,

each oracle query can be simulated in PA and it is trivial that NPPA ⊆ NPA. The
overall simulation places L in BPPNPA

, because as we noted, the error of the entire
procedure is less than 1/3.

5-3

So far, we have the ‘tower of height i” class in BPPNPA
. One further application of

the hypothesis places it in BPPBPPA
. Consider a language L in this class. We can use

the same idea as in the previous paragraph: first reduce the error of the “base” BPP
machine to less than (say) 1/6, and then reduce the error of the machine associated with
the oracle to less than 1/(6nc) where nc is an upper bound on the number of oracle
queries made by the base BPP machine. Then even after taking a union bound over
all the oracle queries, we get a probability of less than 1/6 of error, which together with
the error of 1/6 of the base BPP machine, is less than the required 1/3. The overall
simulation place L in BPPA, which yields the desired final result.

(c) Let L be a language in co-⊕P , and let M be the associated nondeterministic TM, that
makes m nondeterministic choices on each computation path. Define a new nondeter-
ministic TM M ′ that makes m+ 1 nondeterministic choices on each computation path:
the first nondeterministic choice determines whether to (a) simulate M or (b) simply
make m nondeterministic 0/1 choices and enter qaccept iff they are all 0. Machine M ′

has exactly one more accepting computation path than M does (the one associated with
choice (b) above when the m further nondeterministic choices are all 0). The existence
of M ′ places L in ⊕P .

(d) Let L be a language in (⊕P)⊕P , and let M be the nondeterministic oracle TM deciding
L with access to an ⊕P oracle. Let R be the TM associated with the ⊕P language A
that is the actual oracle attached to M , and let R′ be the TM associated with the ⊕P
language co-A (using part (c)).

Define a nondeterministic TM M ′ as follows: on input x, M ′ uses its nondeterminism to
guess a “transcript” of the operation of M on input x, on a single computation path. The
transcript contains a sequence of nondeterministic choices made by M , together with a
sequence of queries made to the oracle, and a sequence of yes/no answers. (Many of these
transcripts will be inaccurate in the sense that they don’t agree with the functioning of
M on the specified computation path, with the actual oracle A answering queries, but
some nondeterministic guesses produce “correct” transcripts). Let Y be the set of oracle
queries that the transcript says are answered positively, and let N be the set of oracle
queries that the transcript says are answered negatively. In “phase 2” M ′ guesses the
nondeterministic choices ofR on each of the queries in Y and the nondeterministic choices
of R′ on each of the queries in N . Machine M ′ enters qaccept if for every query in Y , these
choices describe an accepting computation path in R, and for every query in N , these
choices describe an accepting computation path in R′, and if the transcript is valid (in the
sense that M actually makes that sequence of queries on the specified computation path,
when receiving the answers specified in the transcript) and it represents an accepting
computation path of M (i.e., it leads to qaccept). Note that the decision to enter qaccept
or not can be made in polynomial time given all the nondeterministic guesses made up
to this point, and hence M ′ is a polynomial-time nondeterministic TM.

We claim that M ′ has an odd number of accepting computation paths on input x iff
x ∈ L. The transcripts guessed by M ′ fall into two categories – those that are valid and
lead to qaccept and whose “answers” contain the answers that oracle A actually provides
on the specified queries, and all others. Each transcript in the first category gives rise
to an odd number of accepting computation paths in “phase 2” of the operation of M ′,

5-4

because for each of the queries in Y , there are an odd number of accepting computations
of R on that query, and for each of the queries in N , there are an odd number of
accepting computation of R′ on that query. These odd numbers multiply to give a
total odd contribution from each transcript in the first category. Every other transcript
either contributes 0 because it is not valid, or doesn’t lead to qaccept, or it contributes
an even number of accepting computations because at least one of the answers in the
transcript disagrees with the A oracle answer, and so the associated query will have
an even number of accepting computations of R (if it was in Y) or an even number of
accepting computations of R′ (if it was in N). And, all it takes is a single such query to
multiply the total number of accepting computation paths associated with this transcript
by an even number. All in all, the transcripts in the first category give rise to an odd
number of accepting computation paths, and the transcripts in the second category give
rise to an even number of accepting computation paths.

Finally, the transcripts in the first category are in one-to-one correspondence to the
accepting computation paths of M on input x, so there are an odd number of them
iff x ∈ L. Thus, the total number of accepting computation paths of M ′ on input
x, if x ∈ L, is the sum of an odd number of odd numbers plus some even numbers.
Considering this sum modulo 2, it is easy to see that this is an odd number. On the
other hand, the number of accepting computation paths of M ′ on input x, if x 6∈ L, is
the sum of an even number of odd numbers plus some even numbers, and this is clearly
0 modulo 2. We conclude that L ∈ ⊕P as required.

(e) Recall that PH = ∪iΣP
i , so it suffices to prove ΣP

i ⊆ BPP⊕P for all i. By part (a)

with A being a language in ⊕P , we have that NPA ⊆ BPP (⊕P)A . By part (d) the
oracle in (⊕P)A can be replaced with a language B in ⊕P , yielding NPA ⊆ BPPB.
Since both A and B are languages in ⊕P , which is a class that has complete languages,
we can replace both with a single ⊕P -complete language C, yielding NPC ⊆ BPPC .
Now, part (b) gives us that the “tower of height i” class, which trivially contains ΣP

i , is
contained in BPPC , for each i. Language C is in ⊕P , so this is what was to be shown.

3. (a) For each k = 1, 2, 3, . . . , n− 2 we perform the following procedure:

• Pick a random h ∈ Hn,k, and ask the NP oracle query: is there some y ∈ {0, 1}k
for which |{x : x ∈ S, h(x) = y}| > n4?

Now, when k is such that |S|/2k > n4, we know by the pigeonhole principle that the
answer to this query will be “yes.” Now consider the last k for which this holds; i.e., the
integer k for which

2k <
|S|
n4
≤ 2k+1.

We claim that when we ask the query for k + 2, with very high probability the answer
will be “no.” Since 2k+2 < 4|S|/n4, the Lemma applies, and tells us that for every
y ∈ {0, 1}k+2,

Pr
h∈Hn,k+2

[
|{x : x ∈ S ∧ h(x) = y}| > 2 · |S|

2k+2

]
≤ 2−2n.

5-5

Since n4 ≥ |S|/2k+1 = 2|S|/2k+2, this implies:

Pr
h∈Hn,k+2

[
|{x : x ∈ S ∧ h(x) = y}| > n4

]
≤ 2−2n.

By a union bound,

Pr
h∈Hn,k+2

[
∃y ∈ {0, 1}k+2 for which |{x : x ∈ S ∧ h(x) = y}| > n4

]
≤ 2n · 2−2n = 2−n.

So, if we set k∗ to be the first value for which we receive a “no” answer from the oracle,
we know with very high probability that k∗ will be either k + 1 or k + 2 (because by
the time we get to k + 2, we have shown that with high probability the answer will be
“no”). Therefore we can satisfy the problem demands by outputting k∗ − 2.

(b) Using the procedure from the first part, and k∗ as defined above, we obtain a function
h : {0, 1}n → {0, 1}k∗ for which:

• ∀y ∈ {0, 1}k∗ , the set {x : x ∈ S ∧ h(x) = y} has size at most n4 (because the
NP-oracle query answer was “no” for k∗).

• with probability at least 7/8, 2k
∗−2 < |S|/n4, as required by (a).

We perform the following procedure: pick a random y ∈ {0, 1}k∗ and use the NP-oracle
to enumerate the set Ty = {x : x ∈ S ∧ h(x) = y}. Choose a random number i between
1 and n4 and output the i-th element of Ty, or “fail” if there is no i-th element. To
connect this with the hint: we are thinking of each y as specifying a page of a notebook
which has n4 lines per page, and the elements Ty written on the first |Ty| lines of page
y.

The probability we output any given x ∈ S is exactly 2−k
∗ · (1/n4) – so conditioned on

not failing, the output is exactly uniformly distributed on S. The probability that we
output “fail” is exactly 1 − |S|/(2k∗n4). With probability at most 1/8 the second item
above fails to hold (and then we have no handle on the failure probability). Otherwise,
we know that |S| > 2k

∗−2n4, so the failure probability is at most

1− |S|
2k∗n4

< 1− 2k
∗−2n4

2k∗n4
=

3

4
.

Thus the overall failure probability is at most 3/4 + 1/8 = 7/8, as required.

