CS 151 Complexity Theory Spring 2023

Posted: April 28 Chris Umans

Solution Set 3

1.

(a)

Note: it is most convenient to think of 77’ as the permutation k +— 7’(7(k)) rather than
the more conventional k — m(7/(k)) — the two notions are equivalent by taking inverses;
however the second is somewhat more cumbersome notationally for this problem. We
start with m + 1 levels ¢1, /s, ..., pn+1 of 5 nodes each. We describe the edges directed
from level i to level ¢ + 1 based on the i-th instruction (i;,0;,7;): connect the outgoing
“0” edges from node k to o(k) for k € {1,2,3,4,5}, and the outgoing “1” edges from
node k to 7(k) for k € {1,2,3,4,5}. Suppose on input x € {0,1}" the instructions
yield @ € S5. Then the path in the branching program starting at node k in level 1
and dictated by x leads to node «(k) in level m + 1. Since m # e, we can find some
ke {1,2,3,4,5} for which w(k) # k. We designate node k in the first level as the start
node, node 7(k) in level m+1 as the accept node, and node k in level m+1 as the reject
node, and we discard the other nodes in level m + 1. The result is a width 5 branching
program with m levels. For every x € A, the path dictated by x from the start node
leads to the accept node (formerly node 7 (k) in level m + 1), and for every = ¢ A, the
path dictated by x from the start node leads to the reject node (formerly node e(k) = k
in level m + 1), as required.

For every pair of 5-cycles 7 and ' we can find an element « € S5 for which ara~! = 7/,
We replace each instruction (ij, 0, 7;) with the instruction (i, ao;a™t arja™?).
We replace the last instruction (i, om, 7m) with the instruction (i, o7t rm).

The resulting sequence of m instructions yields e on inputs € A and 7! on inputs
x ¢ A. Thus the modified sequence of m instructions 7~ !'-accepts the complement of A.
Since 7 is a 5-cycle, 77! is a 5-cycle, and we can apply the previous part to obtain a
sequence of m instructions that m-accept the complement of A as required.

We concatenate the following 4 sequences: (1) a sequence of m instructions that o-
accepts A, obtained using part (b); (2) a sequence of m’ instructions that 7-accepts B,
obtained using part (b); (3) a sequence of m instructions that o~ !-accepts A, obtained
using part (b); (2) a sequence of m’ instructions that 7~ !-accepts B, obtained using part
(b). We claim that this sequence o7o~ 17 1-accepts AN B. If x € AN B, then clearly
this sequence yields oro~'7~!. However, if x € A — B the sequence yields erer ™! = ¢,
and if x € B — A then it yields oeo~le = e; finally if x ¢ (AU B) then it yields e. So

this sequence of 2(m + m/) instructions oro =17 1-accepts A N B as required.

Observe that (AUB) = (AN B). We use part (c) to obtain a sequence of m instructions
that m-accepts A and a sequence of m/ instructions that 7'-accepts B. Using part (d),
we obtain a sequence of 2(m + m’) instructions that oo ~!7 " !-accepts AN B). Finally,
we use part (¢) one more time to convert it into a sequence of the same length that

oro 't~ accepts AU B.

3-1

3-2

(f)

As suggested we prove this by induction on d. If d = 0, then the circuit is just a
single literal x;, and the sequence (i, e,) clearly m-accepts the language decided by the
circuit. Now, for d > 0, we have 3 cases. If the last gate is —, then by induction we have
a sequence of 4771 instructions that 7-accepts A, and by part (c) there is a sequence
of 4971 < 49 instructions that m-accepts A. If the last gate is V, then by induction
there is a sequence of 4%~ instructions that m-accepts the language decided by the left
sub-formula and a sequence of 4471 instructions that 7-accepts the language decided by
the right sub-formula, and by part (e) we can obtain a sequence of 2(44~1 + 49-1) = 44
instructions that m-accepts A. If the last gate is A we use part (d) in an identical
way. Since d = O(logn) we have 4% = poly(n) and we conclude that every language in
non-uniform NC; has polynomial-size width-5 branching programs.

We are given a polynomial-size width-5 branching program. By adding dummy levels,
we may assume it has 27 levels, for d = O(logn) — this at most doubles the size. Once
an input x is fixed, for every pair of adjacent levels ¢; and ¢; 4+ 1 there is a function
fi from {1,2,3,4,5} to {1,2,3,4,5} that is “computed” in level i. Specifically, for
ke {1,2,3,4,5} we have f;(k) equal to the destination of the outgoing 0 or 1 edge from
node k in ¢;, depending on whether the variable labelling node k£ in ¢; is 0 or 1 in the
input. If we can compute the composition f = fj o foo---0 foa we can simply examine
f(k) (where k is the number of the start node in level 1) and see if it leads to accept or
reject.

The set of all functions from {1,2,3,4,5} to {1,2,3,4,5} is finite, so there is a constant
size (and constant depth) “function composition circuit” C' that takes as input the
description of two functions ¢ : {1,2,3,4,5} — {1,2,3,4,5} and h : {1,2,3,4,5} —
{1,2,3,4,5}, and outputs a description of the function g o h. We can assemble these in
a tree to obtain a circuit that computes the composition of more than 2 functions: for
example, to produce a circuit that computes the composition of 4 functions, we have
a copy of C' computing the composition of the first two, a copy of C' computing the
composition of the last two, and a copy of C whose two sets of inputs are wired to
the outputs of the two other copies. In general, this gives us a “function composition”
circuit of depth O(logn) with 2% sets of inputs (each group expecting the description of
a function from {1,2,3,4,5} to {1,2,3,4,5}), and a single set of outputs.

Now we add a constant-depth “pre-processing” circuit that supplies the inputs with
descriptions of fi, fa,..., foa which are determined by the input z. We also add a
constant-depth “post-processing” circuit that takes the output and determines whether
f(k) leads to accept or reject (recall the discussion above). We output 1 or 0 accordingly.
The overall circuit depth is O(logn) and it has polynomial size; thus every language
decided by a polynomial-size width-5 branching program is in non-uniform NCj, as
required.

2. Assume SAT can be decided in polynomial time by a TM M utilizing O(logn) bits of advice.

Given an instance ¢, we determine whether ¢ € SAT as follows. For each possible advice string
A (there are polynomially many), we use M with advice A in the standard self-reducibility
argument to determine a satisfying assignment if there is one. Upon finding a purported
satisfying assignment we check it, and accept if it indeed satisfies ¢. Otherwise we continue,
trying the other possible advice strings. If ¢ € SAT, then when we try the correct advice

3.

3-3

string, the run will succeed and we will accept. If ¢ € SAT, we will never accept on any
advice string (since no matter what assignment we end up with, we will observe that it is not
a satisfying assignment). Overall the procedure runs in polynomial time, and thus SAT € P
which implies P = NP. One detail: as in a previous homework, we need to ensure that all
of our inputs to simulations of M are of the same length, so that the correct advice string
works for all of the needed queries.

(a)

()

Let n = 2. We prove that L(@,,) < n? by induction on k. When k = 0 we have n = 1,
and the formula of size 1 consisting of a single literal computes @,. Otherwise, let C be
a formula of size (n/2)? computing the parity of x1,z2,. .. y T2 and let C' be a formula
of size (n/2)? computing the parity of Ty /241, Trj242, - - - Tn. We can compute C' @ C’
using A,V,— as: (C'A-=C')V (=C A C"). This formula has leaf-size 4(n/2)? = n? as
required.

Let C be an optimal formula for f. If L(f) = 1 then clearly C is a single literal x; or
—z;, and we have 1 = FC(z;) < L(f) as well as 1 = FC(x;) = FC(—x;) < L(f). If
L(f) > 1, then we have two cases, depending on the last gate of C' (we can push all the
negations down to the leaves, so that the only possible last-gates are A and V). If the
last gate of C'is A, then f = g A h, and the subformulas for g and h are optimal (this
is a special feature of formulas — if they were not optimal, we could replace them with
smaller sub-formulas, contradicting our initial choice of C' to be optimal). Thus we have
L(g) + L(h) = L(f) and by induction we have F'C(g) < L(g) and FC(h) < L(h). We
conclude FC(f) < FC(g) + FC(h) < L(g) + L(h) = L(f) as required. The argument
for Vv is identical, after observing that g vV h = =(—=g A —=h), and using F'C(f) = FC(=f).

We need to verify the three properties of a formal complexity measure. (i) consider
K (z;). If we let B be the all-zeros vector, and A be the i-th unit vector, we see that
K(x;) > 1; in the other direction, for every vector in x; '(0), there is exactly one vector
in ;1(1) that differs in exactly one coordinate, and vice versa, so |H (A, B)| < |A| and
|H(A, B)| < |B|. We conclude that K(z;) < 1.

For part (ii), we see that the definition of K (f) is symmetric with respect to f~1(0) and
771(1), and so K(f) = K(~f).

For part (iii), take A and B to be subsets maximizing the expression that defines K (fVg)
as suggested, and partition A into (disjoint sets) Ay C f~1(1) and A, C f~1(1). This
partitions H(A, B) into (disjoint sets) H(Ay, B) and H(Agy, B). The particular sets
Ar C f71(1),B C f740) and Ay C g7 (1), B C g~ 1(0) imply that

H(Ay, B)?

4]|])
H(A,, B)P

AE - = KW

To simplify expressions, we use hy = |H(Ay, B)|, hy = |H(Ag, B)|, a5 = |A¢|, ag = |4y],
b = |B|, and observe that |A| = ay + a4, and |H(A,B)| = hy 4+ hy. To prove that
K(fV g) < K(f) + K(g). we will show (hy + hy)/((ay +a,))b < h2/(agb) + h2/(agh)
Multiplying both sides by (af + ag)aragb, we see that this inequality is equivalent to

(hf+ hg)Qafag < hfcag(af +ag) + hzaf(af +ag).

3-4

Multiplying out and cancelling terms we get the equivalent inequality
2 92 2 2
thhgafag < hfag + hgaf
which can be rewritten as 0 < (hfay — hgar)?, which is clearly true. Thus

_(hf+hg)2 h? hg
K(fVQ)—W§@+$SK(f)+K(Q)

as required.
(d) Let A = @,'(0) and B = @,,'(1). Then H(A,B) = n2""!, and so K(®,) >
2

n
(n2"~1)2/(27"1)2 = n%. Since K is a formal complexity measure, we have L(,,) > n?.

