1. (a) Note: it is most convenient to think of $\pi\pi'$ as the permutation $k \mapsto \pi'(\pi(k))$ rather than the more conventional $k \mapsto \pi(\pi'(k))$ — the two notions are equivalent by taking inverses; however the second is somewhat more cumbersome notationally for this problem. We start with $m + 1$ levels $\ell_1, \ell_2, \ldots, \ell_{m+1}$ of 5 nodes each. We describe the edges directed from level i to level $i + 1$ based on the i-th instruction (i_j, σ_j, τ_j): connect the outgoing “0” edges from node k to $\sigma(k)$ for $k \in \{1, 2, 3, 4, 5\}$, and the outgoing “1” edges from node k to $\tau(k)$ for $k \in \{1, 2, 3, 4, 5\}$. Suppose on input $x \in \{0, 1\}^n$ the instructions yield $\alpha \in S_5$. Then the path in the branching program starting at node k in level 1 and dictated by x leads to node $\alpha(k)$ in level $m + 1$. Since $\pi \neq e$, we can find some $k \in \{1, 2, 3, 4, 5\}$ for which $\pi(k) \neq k$. We designate node k in the first level as the start node, node $\pi(k)$ in level $m + 1$ as the accept node, and node k in level $m + 1$ as the reject node, and we discard the other nodes in level $m + 1$. The result is a width 5 branching program with m levels. For every $x \in A$, the path dictated by x from the start node leads to the accept node (formerly node $\pi(k)$ in level $m + 1$), and for every $x \notin A$, the path dictated by x from the start node leads to the reject node (formerly node $e(k) = k$ in level $m + 1$), as required.

(b) For every pair of 5-cycles π and π' we can find an element $\alpha \in S_5$ for which $\alpha\pi\alpha^{-1} = \pi'$. We replace each instruction (i_j, σ_j, τ_j) with the instruction $(i_j, \alpha\sigma_j\alpha^{-1}, \alpha\tau_j\alpha^{-1})$.

(c) We replace the last instruction (i_m, σ_m, τ_m) with the instruction $(i_m, \sigma_m\pi^{-1}, \tau_m\pi^{-1})$. The resulting sequence of m instructions yields e on inputs $x \in A$ and π^{-1} on inputs $x \notin A$. Thus the modified sequence of m instructions π^{-1}-accepts the complement of A. Since π is a 5-cycle, π^{-1} is a 5-cycle, and we can apply the previous part to obtain a sequence of m instructions that π-accept the complement of A as required.

(d) We concatenate the following 4 sequences: (1) a sequence of m instructions that σ-accepts A, obtained using part (b); (2) a sequence of m' instructions that τ-accepts B, obtained using part (b); (3) a sequence of m instructions that σ^{-1}-accepts A, obtained using part (b); (2) a sequence of m' instructions that τ^{-1}-accepts B, obtained using part (b). We claim that this sequence $\sigma\sigma^{-1}\tau^{-1}$-accepts $A \cap B$. If $x \in A \cap B$, then clearly this sequence yields $\sigma\sigma^{-1}\tau^{-1}$. However, if $x \in A - B$ the sequence yields $e\sigma\tau^{-1} = e$, and if $x \in B - A$ then it yields $\sigma\sigma^{-1}e = e$; finally if $x \notin (A \cup B)$ then it yields e. So this sequence of $2(m + m')$ instructions $\sigma\sigma^{-1}\tau^{-1}$-accepts $A \cap B$ as required.

(e) Observe that $(A \cup B) = (\overline{A} \cap \overline{B})$. We use part (c) to obtain a sequence of m instructions that π-accepts \overline{A} and a sequence of m' instructions that π'-accepts \overline{B}. Using part (d), we obtain a sequence of $2(m + m')$ instructions that $\sigma\tau\sigma^{-1}\tau^{-1}$-accepts $\overline{A} \cap \overline{B}$. Finally, we use part (c) one more time to convert it into a sequence of the same length that $\sigma\tau\sigma^{-1}\tau^{-1}$-accepts $A \cup B$.

3-1
(f) As suggested we prove this by induction on d. If $d = 0$, then the circuit is just a single literal x_i, and the sequence (i,e,π) clearly π-accepts the language decided by the circuit. Now, for $d > 0$, we have 3 cases. If the last gate is \neg, then by induction we have a sequence of 4^{d-1} instructions that π-accepts \overline{T}, and by part (c) there is a sequence of $4^{d-1} \leq 4^d$ instructions that π-accepts A. If the last gate is \lor, then by induction there is a sequence of 4^{d-1} instructions that π-accepts the language decided by the left sub-formula and a sequence of 4^{d-1} instructions that π-accepts the language decided by the right sub-formula, and by part (e) we can obtain a sequence of $2(4^{d-1} + 4^{d-1}) = 4^d$ instructions that π-accepts A. If the last gate is \land we use part (d) in an identical way. Since $d = O(\log n)$ we have $4^d = \text{poly}(n)$ and we conclude that every language in non-uniform NC$_1$ has polynomial-size width-5 branching programs.

(g) We are given a polynomial-size width-5 branching program. By adding dummy levels, we may assume it has 2d levels, for $d = O(\log n)$ – this at most doubles the size. Once an input x is fixed, for every pair of adjacent levels ℓ_i and $\ell_i + 1$ there is a function f_i from $\{1,2,3,4,5\}$ to $\{1,2,3,4,5\}$ that is “computed” in level i. Specifically, for $k \in \{1,2,3,4,5\}$ we have $f_i(k)$ equal to the destination of the outgoing 0 or 1 edge from node k in ℓ_i, depending on whether the variable labelling node k in ℓ_i is 0 or 1 in the input. If we can compute the composition $f = f_1 \circ f_2 \circ \cdots \circ f_{2^d}$ we can simply examine $f(k)$ (where k is the number of the start node in level 1) and see if it leads to accept or reject.

The set of all functions from $\{1,2,3,4,5\}$ to $\{1,2,3,4,5\}$ is finite, so there is a constant size (and constant depth) “function composition circuit” C that takes as input the description of two functions $g : \{1,2,3,4,5\} \to \{1,2,3,4,5\}$ and $h : \{1,2,3,4,5\} \to \{1,2,3,4,5\}$, and outputs a description of the function $g \circ h$. We can assemble these in a tree to obtain a circuit that computes the composition of more than 2 functions: for example, to produce a circuit that computes the composition of 4 functions, we have a copy of C computing the composition of the first two, a copy of C computing the composition of the last two, and a copy of C whose two sets of inputs are wired to the outputs of the two other copies. In general, this gives us a “function composition” circuit of depth $O(\log n)$ with 2d sets of inputs (each group expecting the description of a function from $\{1,2,3,4,5\}$ to $\{1,2,3,4,5\}$), and a single set of outputs.

Now we add a constant-depth “pre-processing” circuit that supplies the inputs with descriptions of $f_1, f_2, \ldots, f_{2^d}$ which are determined by the input x. We also add a constant-depth “post-processing” circuit that takes the output and determines whether $f(k)$ leads to accept or reject (recall the discussion above). We output 1 or 0 accordingly. The overall circuit depth is $O(\log n)$ and it has polynomial size; thus every language decided by a polynomial-size width-5 branching program is in non-uniform NC$_1$, as required.

2. Assume SAT can be decided in polynomial time by a TM M utilizing $O(\log n)$ bits of advice. Given an instance ϕ, we determine whether $\phi \in \text{SAT}$ as follows. For each possible advice string A (there are polynomially many), we use M with advice A in the standard self-reducibility argument to determine a satisfying assignment if there is one. Upon finding a purported satisfying assignment we check it, and accept if it indeed satisfies ϕ. Otherwise we continue, trying the other possible advice strings. If $\phi \in \text{SAT}$, then when we try the correct advice
string, the run will succeed and we will accept. If \(\phi \notin \text{SAT} \), we will never accept on any advice string (since no matter what assignment we end up with, we will observe that it is not a satisfying assignment). Overall the procedure runs in polynomial time, and thus \(\text{SAT} \in \text{P} \) which implies \(\text{P} = \text{NP} \). One detail: as in a previous homework, we need to ensure that all of our inputs to simulations of \(M \) are of the same length, so that the correct advice string works for all of the needed queries.

3. (a) Let \(n = 2^k \). We prove that \(L(\bigoplus_n) \leq n^2 \) by induction on \(k \). When \(k = 0 \) we have \(n = 1 \), and the formula of size 1 consisting of a single literal computes \(\bigoplus_1 \). Otherwise, let \(C \) be a formula of size \((n/2)^2 \) computing the parity of \(x_1, x_2, \ldots, x_{n/2} \) and let \(C' \) be a formula of size \((n/2)^2 \) computing the parity of \(x_{n/2+1}, x_{n/2+2}, \ldots, x_n \). We can compute \(C \oplus C' \) using \(\land, \lor, \neg \) as: \((C \land \neg C') \lor (\neg C \land C') \). This formula has leaf-size \(4(n/2)^2 = n^2 \) as required.

(b) Let \(C \) be an optimal formula for \(f \). If \(L(f) = 1 \) then clearly \(C \) is a single literal \(x_i \) or \(\neg x_i \), and we have \(1 = FC(x_i) \leq L(f) \) as well as \(1 = FC(x_i) = FC(\neg x_i) \leq L(f) \). If \(L(f) > 1 \), then we have two cases, depending on the last gate of \(C \) (we can push all the negations down to the leaves, so that the only possible last-gates are \(\land \) and \(\lor \)). If the last gate of \(C \) is \(\land \), then \(f = g \land h, \) and the subformulas for \(g \) and \(h \) are optimal (this is a special feature of formulas — if they were not optimal, we could replace them with smaller sub-formulas, contradicting our initial choice of \(C \) to be optimal). Thus we have \(L(g) + L(h) = L(f) \) and by induction we have \(FC(g) \leq L(g) \) and \(FC(h) \leq L(h) \). We conclude \(FC(f) \leq FC(g) + FC(h) \leq L(g) + L(h) = L(f) \) as required. The argument for \(\lor \) is identical, after observing that \(g \lor h = \neg(\neg g \land \neg h) \), and using \(FC(f) = FC(\neg f) \).

(c) We need to verify the three properties of a formal complexity measure. (i) consider \(K(x_i) \). If we let \(B \) be the all-zeros vector, and \(A \) be the \(i \)-th unit vector, we see that \(K(x_i) \geq 1 \); in the other direction, for every vector in \(x_i^{-1}(0) \), there is exactly one vector in \(x_i^{-1}(1) \) that differs in exactly one coordinate, and vice versa, so \(|H(A, B)| \leq |A| \) and \(|H(A, B)| \leq |B| \). We conclude that \(K(x_i) = 1 \).

For part (ii), we see that the definition of \(K(f) \) is symmetric with respect to \(f^{-1}(0) \) and \(f^{-1}(1) \), and so \(K(f) = K(\neg f) \).

For part (iii), take \(A \) and \(B \) to be subsets maximizing the expression that defines \(K(f \lor g) \) as suggested, and partition \(A \) into (disjoint sets) \(A_f \subseteq f^{-1}(1) \) and \(A_g \subseteq f^{-1}(1) \). This partitions \(H(A, B) \) into (disjoint sets) \(H(A_f, B) \) and \(H(A_g, B) \). The particular sets \(A_f \subseteq f^{-1}(1) \), \(B \subseteq f^{-1}(0) \), \(A_g \subseteq g^{-1}(1) \), \(B \subseteq g^{-1}(0) \) imply that

\[
\begin{align*}
\frac{|H(A_f, B)|^2}{|A_f||B|} & \leq K(f) \\
\frac{|H(A_g, B)|^2}{|A_g||B|} & \leq K(g)
\end{align*}
\]

To simplify expressions, we use \(h_f = |H(A_f, B)|, \ h_g = |H(A_g, B)|, \ a_f = |A_f|, \ a_g = |A_g|, \ b = |B| \), and observe that \(|A| = a_f + a_g \), and \(|H(A, B)| = h_f + h_g \). To prove that \(K(f \lor g) \leq K(f) + K(g) \), we will show \((h_f + h_g)^2 / (a_f + a_g) b \leq h_f^2 / (a_f b) + h_g^2 / (a_g b) \). Multiplying both sides by \((a_f + a_g) a_f a_g b\), we see that this inequality is equivalent to

\[
(h_f + h_g)^2 a_f a_g \leq h_f^2 a_g (a_f + a_g) + h_g^2 a_f (a_f + a_g)\
\]
Multiplying out and cancelling terms we get the equivalent inequality

\[2hf_hgafa_g \leq h_f^2a_g^2 + h_g^2a_f^2\]

which can be rewritten as \(0 \leq (h_f a_g - h_g a_f)^2\), which is clearly true. Thus

\[K(f \vee g) = \frac{(h_f + h_g)^2}{(a_f + a_g)b} \leq \frac{h_f^2}{a_f b} + \frac{h_g^2}{a_g b} \leq K(f) + K(g)\]

as required.

(d) Let \(A = \bigoplus_n^{-1}(0)\) and \(B = \bigoplus_n^{-1}(1)\). Then \(H(A, B) = n2^{n-1}\), and so \(K(\bigoplus_n) \geq (n2^{n-1})^2/(2^{n-1})^2 = n^2\). Since \(K\) is a formal complexity measure, we have \(L(\bigoplus_n) \geq n^2\).