
CS 151 Complexity Theory Spring 2023

Solution Set 3

Posted: April 28 Chris Umans

1. (a) Note: it is most convenient to think of ππ′ as the permutation k 7→ π′(π(k)) rather than
the more conventional k 7→ π(π′(k)) – the two notions are equivalent by taking inverses;
however the second is somewhat more cumbersome notationally for this problem. We
start with m+ 1 levels `1, `2, . . . , `m+1 of 5 nodes each. We describe the edges directed
from level i to level i+ 1 based on the i-th instruction (ij , σj , τj): connect the outgoing
“0” edges from node k to σ(k) for k ∈ {1, 2, 3, 4, 5}, and the outgoing “1” edges from
node k to τ(k) for k ∈ {1, 2, 3, 4, 5}. Suppose on input x ∈ {0, 1}n the instructions
yield α ∈ S5. Then the path in the branching program starting at node k in level 1
and dictated by x leads to node α(k) in level m + 1. Since π 6= e, we can find some
k ∈ {1, 2, 3, 4, 5} for which π(k) 6= k. We designate node k in the first level as the start
node, node π(k) in level m+1 as the accept node, and node k in level m+1 as the reject
node, and we discard the other nodes in level m+ 1. The result is a width 5 branching
program with m levels. For every x ∈ A, the path dictated by x from the start node
leads to the accept node (formerly node π(k) in level m + 1), and for every x 6∈ A, the
path dictated by x from the start node leads to the reject node (formerly node e(k) = k
in level m+ 1), as required.

(b) For every pair of 5-cycles π and π′ we can find an element α ∈ S5 for which απα−1 = π′.
We replace each instruction (ij , σj , τj) with the instruction (ij , ασjα

−1, ατjα
−1).

(c) We replace the last instruction (im, σm, τm) with the instruction (im, σmπ
−1, τmπ

−1).
The resulting sequence of m instructions yields e on inputs x ∈ A and π−1 on inputs
x 6∈ A. Thus the modified sequence of m instructions π−1-accepts the complement of A.
Since π is a 5-cycle, π−1 is a 5-cycle, and we can apply the previous part to obtain a
sequence of m instructions that π-accept the complement of A as required.

(d) We concatenate the following 4 sequences: (1) a sequence of m instructions that σ-
accepts A, obtained using part (b); (2) a sequence of m′ instructions that τ -accepts B,
obtained using part (b); (3) a sequence of m instructions that σ−1-accepts A, obtained
using part (b); (2) a sequence of m′ instructions that τ−1-accepts B, obtained using part
(b). We claim that this sequence στσ−1τ−1-accepts A ∩ B. If x ∈ A ∩ B, then clearly
this sequence yields στσ−1τ−1. However, if x ∈ A− B the sequence yields eτeτ−1 = e,
and if x ∈ B − A then it yields σeσ−1e = e; finally if x 6∈ (A ∪ B) then it yields e. So
this sequence of 2(m+m′) instructions στσ−1τ−1-accepts A ∩B as required.

(e) Observe that (A∪B) = (A ∩B). We use part (c) to obtain a sequence of m instructions
that π-accepts A and a sequence of m′ instructions that π′-accepts B. Using part (d),
we obtain a sequence of 2(m+m′) instructions that στσ−1τ−1-accepts A∩B). Finally,
we use part (c) one more time to convert it into a sequence of the same length that
στσ−1τ−1-accepts A ∪B.

3-1

3-2

(f) As suggested we prove this by induction on d. If d = 0, then the circuit is just a
single literal xi, and the sequence (i, e, π) clearly π-accepts the language decided by the
circuit. Now, for d > 0, we have 3 cases. If the last gate is ¬, then by induction we have
a sequence of 4d−1 instructions that π-accepts A, and by part (c) there is a sequence
of 4d−1 ≤ 4d instructions that π-accepts A. If the last gate is ∨, then by induction
there is a sequence of 4d−1 instructions that π-accepts the language decided by the left
sub-formula and a sequence of 4d−1 instructions that π-accepts the language decided by
the right sub-formula, and by part (e) we can obtain a sequence of 2(4d−1 + 4d−1) = 4d

instructions that π-accepts A. If the last gate is ∧ we use part (d) in an identical
way. Since d = O(log n) we have 4d = poly(n) and we conclude that every language in
non-uniform NC1 has polynomial-size width-5 branching programs.

(g) We are given a polynomial-size width-5 branching program. By adding dummy levels,
we may assume it has 2d levels, for d = O(log n) – this at most doubles the size. Once
an input x is fixed, for every pair of adjacent levels `i and `i + 1 there is a function
fi from {1, 2, 3, 4, 5} to {1, 2, 3, 4, 5} that is “computed” in level i. Specifically, for
k ∈ {1, 2, 3, 4, 5} we have fi(k) equal to the destination of the outgoing 0 or 1 edge from
node k in `i, depending on whether the variable labelling node k in `i is 0 or 1 in the
input. If we can compute the composition f = f1 ◦ f2 ◦ · · · ◦ f2d we can simply examine
f(k) (where k is the number of the start node in level 1) and see if it leads to accept or
reject.

The set of all functions from {1, 2, 3, 4, 5} to {1, 2, 3, 4, 5} is finite, so there is a constant
size (and constant depth) “function composition circuit” C that takes as input the
description of two functions g : {1, 2, 3, 4, 5} → {1, 2, 3, 4, 5} and h : {1, 2, 3, 4, 5} →
{1, 2, 3, 4, 5}, and outputs a description of the function g ◦ h. We can assemble these in
a tree to obtain a circuit that computes the composition of more than 2 functions: for
example, to produce a circuit that computes the composition of 4 functions, we have
a copy of C computing the composition of the first two, a copy of C computing the
composition of the last two, and a copy of C whose two sets of inputs are wired to
the outputs of the two other copies. In general, this gives us a “function composition”
circuit of depth O(log n) with 2d sets of inputs (each group expecting the description of
a function from {1, 2, 3, 4, 5} to {1, 2, 3, 4, 5}), and a single set of outputs.

Now we add a constant-depth “pre-processing” circuit that supplies the inputs with
descriptions of f1, f2, . . . , f2d which are determined by the input x. We also add a
constant-depth “post-processing” circuit that takes the output and determines whether
f(k) leads to accept or reject (recall the discussion above). We output 1 or 0 accordingly.

The overall circuit depth is O(log n) and it has polynomial size; thus every language
decided by a polynomial-size width-5 branching program is in non-uniform NC1, as
required.

2. Assume SAT can be decided in polynomial time by a TM M utilizing O(log n) bits of advice.
Given an instance φ, we determine whether φ ∈ SAT as follows. For each possible advice string
A (there are polynomially many), we use M with advice A in the standard self-reducibility
argument to determine a satisfying assignment if there is one. Upon finding a purported
satisfying assignment we check it, and accept if it indeed satisfies φ. Otherwise we continue,
trying the other possible advice strings. If φ ∈ SAT, then when we try the correct advice

3-3

string, the run will succeed and we will accept. If φ 6∈ SAT, we will never accept on any
advice string (since no matter what assignment we end up with, we will observe that it is not
a satisfying assignment). Overall the procedure runs in polynomial time, and thus SAT ∈ P
which implies P = NP. One detail: as in a previous homework, we need to ensure that all
of our inputs to simulations of M are of the same length, so that the correct advice string
works for all of the needed queries.

3. (a) Let n = 2k. We prove that L(
⊕

n) ≤ n2 by induction on k. When k = 0 we have n = 1,
and the formula of size 1 consisting of a single literal computes

⊕
1. Otherwise, let C be

a formula of size (n/2)2 computing the parity of x1, x2, . . . , xn/2 and let C ′ be a formula
of size (n/2)2 computing the parity of xn/2+1, xn/2+2, . . . , xn. We can compute C ⊕ C ′
using ∧,∨,¬ as: (C ∧ ¬C ′) ∨ (¬C ∧ C ′). This formula has leaf-size 4(n/2)2 = n2 as
required.

(b) Let C be an optimal formula for f . If L(f) = 1 then clearly C is a single literal xi or
¬xi, and we have 1 = FC(xi) ≤ L(f) as well as 1 = FC(xi) = FC(¬xi) ≤ L(f). If
L(f) > 1, then we have two cases, depending on the last gate of C (we can push all the
negations down to the leaves, so that the only possible last-gates are ∧ and ∨). If the
last gate of C is ∧, then f = g ∧ h, and the subformulas for g and h are optimal (this
is a special feature of formulas – if they were not optimal, we could replace them with
smaller sub-formulas, contradicting our initial choice of C to be optimal). Thus we have
L(g) + L(h) = L(f) and by induction we have FC(g) ≤ L(g) and FC(h) ≤ L(h). We
conclude FC(f) ≤ FC(g) + FC(h) ≤ L(g) + L(h) = L(f) as required. The argument
for ∨ is identical, after observing that g ∨h = ¬(¬g ∧¬h), and using FC(f) = FC(¬f).

(c) We need to verify the three properties of a formal complexity measure. (i) consider
K(xi). If we let B be the all-zeros vector, and A be the i-th unit vector, we see that
K(xi) ≥ 1; in the other direction, for every vector in x−1i (0), there is exactly one vector
in x−1i (1) that differs in exactly one coordinate, and vice versa, so |H(A,B)| ≤ |A| and
|H(A,B)| ≤ |B|. We conclude that K(xi) ≤ 1.

For part (ii), we see that the definition of K(f) is symmetric with respect to f−1(0) and
f−1(1), and so K(f) = K(¬f).

For part (iii), take A and B to be subsets maximizing the expression that defines K(f∨g)
as suggested, and partition A into (disjoint sets) Af ⊆ f−1(1) and Ag ⊆ f−1(1). This
partitions H(A,B) into (disjoint sets) H(Af , B) and H(Ag, B). The particular sets
Af ⊆ f−1(1), B ⊆ f−1(0) and Ag ⊆ g−1(1), B ⊆ g−1(0) imply that

|H(Af , B)|2

|Af ||B|
≤ K(f)

|H(Ag, B)|2

|Ag||B|
≤ K(g)

To simplify expressions, we use hf = |H(Af , B)|, hg = |H(Ag, B)|, af = |Af |, ag = |Ag|,
b = |B|, and observe that |A| = af + ag, and |H(A,B)| = hf + hg. To prove that
K(f ∨ g) ≤ K(f) +K(g), we will show (hf + hg)2/((af + ag))b ≤ h2f/(afb) + h2g/(agb).
Multiplying both sides by (af + ag)afagb, we see that this inequality is equivalent to

(hf + hg)2afag ≤ h2fag(af + ag) + h2gaf (af + ag).

3-4

Multiplying out and cancelling terms we get the equivalent inequality

2hfhgafag ≤ h2fa2g + h2ga
2
f

which can be rewritten as 0 ≤ (hfag − hgaf)2, which is clearly true. Thus

K(f ∨ g) =
(hf + hg)2

(af + ag)b
≤

h2f
afb

+
h2g
agb
≤ K(f) +K(g)

as required.

(d) Let A =
⊕−1

n (0) and B =
⊕−1

n (1). Then H(A,B) = n2n−1, and so K(
⊕

n) ≥
(n2n−1)2/(2n−1)2 = n2. Since K is a formal complexity measure, we have L(

⊕
n) ≥ n2.

