CS 151 Complexity Theory

Spring 2023

Solution Set 3

Posted: April 28 Chris Umans

- 1. (a) Note: it is most convenient to think of $\pi\pi'$ as the permutation $k \mapsto \pi'(\pi(k))$ rather than the more conventional $k \mapsto \pi(\pi'(k))$ – the two notions are equivalent by taking inverses; however the second is somewhat more cumbersome notationally for this problem. We start with m+1 levels $\ell_1,\ell_2,\ldots,\ell_{m+1}$ of 5 nodes each. We describe the edges directed from level i to level i+1 based on the i-th instruction (i_j, σ_j, τ_j) : connect the outgoing "0" edges from node k to $\sigma(k)$ for $k \in \{1, 2, 3, 4, 5\}$, and the outgoing "1" edges from node k to $\tau(k)$ for $k \in \{1,2,3,4,5\}$. Suppose on input $x \in \{0,1\}^n$ the instructions yield $\alpha \in S_5$. Then the path in the branching program starting at node k in level 1 and dictated by x leads to node $\alpha(k)$ in level m+1. Since $\pi \neq e$, we can find some $k \in \{1, 2, 3, 4, 5\}$ for which $\pi(k) \neq k$. We designate node k in the first level as the start node, node $\pi(k)$ in level m+1 as the accept node, and node k in level m+1 as the reject node, and we discard the other nodes in level m+1. The result is a width 5 branching program with m levels. For every $x \in A$, the path dictated by x from the start node leads to the accept node (formerly node $\pi(k)$ in level m+1), and for every $x \notin A$, the path dictated by x from the start node leads to the reject node (formerly node e(k) = kin level m+1), as required.
 - (b) For every pair of 5-cycles π and π' we can find an element $\alpha \in S_5$ for which $\alpha \pi \alpha^{-1} = \pi'$. We replace each instruction (i_j, σ_j, τ_j) with the instruction $(i_j, \alpha \sigma_j \alpha^{-1}, \alpha \tau_j \alpha^{-1})$.
 - (c) We replace the last instruction (i_m, σ_m, τ_m) with the instruction $(i_m, \sigma_m \pi^{-1}, \tau_m \pi^{-1})$. The resulting sequence of m instructions yields e on inputs $x \in A$ and π^{-1} on inputs $x \notin A$. Thus the modified sequence of m instructions π^{-1} -accepts the complement of A. Since π is a 5-cycle, π^{-1} is a 5-cycle, and we can apply the previous part to obtain a sequence of m instructions that π -accept the complement of A as required.
 - (d) We concatenate the following 4 sequences: (1) a sequence of m instructions that σ -accepts A, obtained using part (b); (2) a sequence of m' instructions that σ^{-1} -accepts A, obtained using part (b); (2) a sequence of m' instructions that σ^{-1} -accepts A, obtained using part (b). We claim that this sequence $\sigma \tau \sigma^{-1} \tau^{-1}$ -accepts $A \cap B$. If $x \in A \cap B$, then clearly this sequence yields $\sigma \tau \sigma^{-1} \tau^{-1}$. However, if $x \in A B$ the sequence yields $e\tau e\tau^{-1} = e$, and if $x \in B A$ then it yields $\sigma e\sigma^{-1} e = e$; finally if $x \notin (A \cup B)$ then it yields e. So this sequence of e0 instructions e1 instructions e2 in e3 as required.
 - (e) Observe that $(A \cup B) = \overline{(A \cap B)}$. We use part (c) to obtain a sequence of m instructions that π -accepts \overline{A} and a sequence of m' instructions that π' -accepts \overline{B} . Using part (d), we obtain a sequence of 2(m+m') instructions that $\sigma\tau\sigma^{-1}\tau^{-1}$ -accepts $\overline{A} \cap \overline{B}$). Finally, we use part (c) one more time to convert it into a sequence of the same length that $\sigma\tau\sigma^{-1}\tau^{-1}$ -accepts $A \cup B$.

- (f) As suggested we prove this by induction on d. If d = 0, then the circuit is just a single literal x_i , and the sequence (i, e, π) clearly π -accepts the language decided by the circuit. Now, for d > 0, we have 3 cases. If the last gate is \neg , then by induction we have a sequence of 4^{d-1} instructions that π -accepts \overline{A} , and by part (c) there is a sequence of $4^{d-1} \le 4^d$ instructions that π -accepts A. If the last gate is \vee , then by induction there is a sequence of 4^{d-1} instructions that π -accepts the language decided by the left sub-formula and a sequence of 4^{d-1} instructions that π -accepts the language decided by the right sub-formula, and by part (e) we can obtain a sequence of $2(4^{d-1} + 4^{d-1}) = 4^d$ instructions that π -accepts A. If the last gate is \wedge we use part (d) in an identical way. Since $d = O(\log n)$ we have $4^d = \text{poly}(n)$ and we conclude that every language in non-uniform \mathbf{NC}_1 has polynomial-size width-5 branching programs.
- (g) We are given a polynomial-size width-5 branching program. By adding dummy levels, we may assume it has 2^d levels, for $d = O(\log n)$ this at most doubles the size. Once an input x is fixed, for every pair of adjacent levels ℓ_i and $\ell_i + 1$ there is a function f_i from $\{1, 2, 3, 4, 5\}$ to $\{1, 2, 3, 4, 5\}$ that is "computed" in level i. Specifically, for $k \in \{1, 2, 3, 4, 5\}$ we have $f_i(k)$ equal to the destination of the outgoing 0 or 1 edge from node k in ℓ_i , depending on whether the variable labelling node k in ℓ_i is 0 or 1 in the input. If we can compute the composition $f = f_1 \circ f_2 \circ \cdots \circ f_{2^d}$ we can simply examine f(k) (where k is the number of the start node in level 1) and see if it leads to accept or reject.

The set of all functions from $\{1,2,3,4,5\}$ to $\{1,2,3,4,5\}$ is finite, so there is a constant size (and constant depth) "function composition circuit" C that takes as input the description of two functions $g:\{1,2,3,4,5\} \to \{1,2,3,4,5\}$ and $h:\{1,2,3,4,5\} \to \{1,2,3,4,5\}$, and outputs a description of the function $g \circ h$. We can assemble these in a tree to obtain a circuit that computes the composition of more than 2 functions: for example, to produce a circuit that computes the composition of 4 functions, we have a copy of C computing the composition of the first two, a copy of C computing the composition of the last two, and a copy of C whose two sets of inputs are wired to the outputs of the two other copies. In general, this gives us a "function composition" circuit of depth $O(\log n)$ with 2^d sets of inputs (each group expecting the description of a function from $\{1,2,3,4,5\}$ to $\{1,2,3,4,5\}$), and a single set of outputs.

Now we add a constant-depth "pre-processing" circuit that supplies the inputs with descriptions of $f_1, f_2, \ldots, f_{2^d}$ which are determined by the input x. We also add a constant-depth "post-processing" circuit that takes the output and determines whether f(k) leads to accept or reject (recall the discussion above). We output 1 or 0 accordingly. The overall circuit depth is $O(\log n)$ and it has polynomial size; thus every language decided by a polynomial-size width-5 branching program is in non-uniform \mathbf{NC}_1 , as required.

2. Assume SAT can be decided in polynomial time by a TM M utilizing $O(\log n)$ bits of advice. Given an instance ϕ , we determine whether $\phi \in \text{SAT}$ as follows. For each possible advice string A (there are polynomially many), we use M with advice A in the standard self-reducibility argument to determine a satisfying assignment if there is one. Upon finding a purported satisfying assignment we check it, and accept if it indeed satisfies ϕ . Otherwise we continue, trying the other possible advice strings. If $\phi \in \text{SAT}$, then when we try the correct advice

string, the run will succeed and we will accept. If $\phi \notin SAT$, we will never accept on any advice string (since no matter what assignment we end up with, we will observe that it is not a satisfying assignment). Overall the procedure runs in polynomial time, and thus $SAT \in \mathbf{P}$ which implies $\mathbf{P} = \mathbf{NP}$. One detail: as in a previous homework, we need to ensure that all of our inputs to simulations of M are of the same length, so that the correct advice string works for all of the needed queries.

- 3. (a) Let $n=2^k$. We prove that $L(\bigoplus_n) \leq n^2$ by induction on k. When k=0 we have n=1, and the formula of size 1 consisting of a single literal computes \bigoplus_1 . Otherwise, let C be a formula of size $(n/2)^2$ computing the parity of $x_1, x_2, \ldots, x_{n/2}$ and let C' be a formula of size $(n/2)^2$ computing the parity of $x_{n/2+1}, x_{n/2+2}, \ldots, x_n$. We can compute $C \oplus C'$ using \wedge, \vee, \neg as: $(C \wedge \neg C') \vee (\neg C \wedge C')$. This formula has leaf-size $4(n/2)^2 = n^2$ as required.
 - (b) Let C be an optimal formula for f. If L(f)=1 then clearly C is a single literal x_i or $\neg x_i$, and we have $1=FC(x_i)\leq L(f)$ as well as $1=FC(x_i)=FC(\neg x_i)\leq L(f)$. If L(f)>1, then we have two cases, depending on the last gate of C (we can push all the negations down to the leaves, so that the only possible last-gates are \land and \lor). If the last gate of C is \land , then $f=g\land h$, and the subformulas for g and h are optimal (this is a special feature of formulas if they were not optimal, we could replace them with smaller sub-formulas, contradicting our initial choice of C to be optimal). Thus we have L(g)+L(h)=L(f) and by induction we have $FC(g)\leq L(g)$ and $FC(h)\leq L(h)$. We conclude $FC(f)\leq FC(g)+FC(h)\leq L(g)+L(h)=L(f)$ as required. The argument for \lor is identical, after observing that $g\lor h=\neg(\neg g\land \neg h)$, and using $FC(f)=FC(\neg f)$.
 - (c) We need to verify the three properties of a formal complexity measure. (i) consider $K(x_i)$. If we let B be the all-zeros vector, and A be the i-th unit vector, we see that $K(x_i) \geq 1$; in the other direction, for every vector in $x_i^{-1}(0)$, there is exactly one vector in $x_i^{-1}(1)$ that differs in exactly one coordinate, and vice versa, so $|H(A, B)| \leq |A|$ and $|H(A, B)| \leq |B|$. We conclude that $K(x_i) \leq 1$.

For part (ii), we see that the definition of K(f) is symmetric with respect to $f^{-1}(0)$ and $f^{-1}(1)$, and so $K(f) = K(\neg f)$.

For part (iii), take A and B to be subsets maximizing the expression that defines $K(f \vee g)$ as suggested, and partition A into (disjoint sets) $A_f \subseteq f^{-1}(1)$ and $A_g \subseteq f^{-1}(1)$. This partitions H(A,B) into (disjoint sets) $H(A_f,B)$ and $H(A_g,B)$. The particular sets $A_f \subseteq f^{-1}(1), B \subseteq f^{-1}(0)$ and $A_g \subseteq g^{-1}(1), B \subseteq g^{-1}(0)$ imply that

$$\frac{|H(A_f, B)|^2}{|A_f||B|} \le K(f)$$

$$\frac{|H(A_g, B)|^2}{|A_g||B|} \le K(g)$$

To simplify expressions, we use $h_f = |H(A_f, B)|$, $h_g = |H(A_g, B)|$, $a_f = |A_f|$, $a_g = |A_g|$, b = |B|, and observe that $|A| = a_f + a_g$, and $|H(A, B)| = h_f + h_g$. To prove that $K(f \vee g) \leq K(f) + K(g)$, we will show $(h_f + h_g)^2/((a_f + a_g))b \leq h_f^2/(a_f b) + h_g^2/(a_g b)$. Multiplying both sides by $(a_f + a_g)a_f a_g b$, we see that this inequality is equivalent to

$$(h_f + h_g)^2 a_f a_g \le h_f^2 a_g (a_f + a_g) + h_g^2 a_f (a_f + a_g).$$

Multiplying out and cancelling terms we get the equivalent inequality

$$2h_f h_g a_f a_g \le h_f^2 a_g^2 + h_g^2 a_f^2$$

which can be rewritten as $0 \le (h_f a_g - h_g a_f)^2$, which is clearly true. Thus

$$K(f \vee g) = \frac{(h_f + h_g)^2}{(a_f + a_g)b} \le \frac{h_f^2}{a_f b} + \frac{h_g^2}{a_g b} \le K(f) + K(g)$$

as required.

(d) Let $A=\bigoplus_n^{-1}(0)$ and $B=\bigoplus_n^{-1}(1)$. Then $H(A,B)=n2^{n-1}$, and so $K(\bigoplus_n)\geq (n2^{n-1})^2/(2^{n-1})^2=n^2$. Since K is a formal complexity measure, we have $L(\bigoplus_n)\geq n^2$.