CS 151 Complexity Theory Spring 2023

Posted: April 18 Chris Umans

Solution Set 1

1. Let A be a language that is downward self-reducible. Given an input z, we simulate the

polynomial-time computation that (with queries) decides A, and recursively compute the
answer to the each query as it is made. Since the recursive calls are all on strings shorter
than |z|, we will eventually reach the base case in which we query strings of length 1. The
program we are describing will simply have the answers to these (constant number of) length-
1 queries hard-coded. The depth of the recursion is at most |x|, and at each level of recursion,
we need to remember the state which requires space at most poly(|z|). This last point holds
because the basic computation runs in polynomial time, and hence polynomial space. Thus
the overall procedure runs in PSPACE.

. Assume both inequalities fail to hold. Then we have L = P and P = PSPACE which
together imply L = PSPACE. But we know these two classes are different, by the Space
Hierarchy Theorem. Thus one of the inequalities must hold.

. Let f(z) and g(x) be logspace reductions. On input « we want to compute f(g(z)) in logspace.
We cannot compute g(x) and then evaluate f on it, because we don’t have enough storage
space to write-down the intermediate result g(z), which may be polynomially long in the
input length |z|. Let My and M, be Turing Machines that compute f and g in logspace,
respectively. We build a new Turing Machine that simulates My, and whenever M; would
have read the i-th bit of its input, we pause (remembering M;’s state in O(log |z|) bits),
and simulate M, on input z (ignoring what it would have writtenon its output tape) until
it outputs the i-th bit of g(x). At this point have the necessary bit to continue simulating
M;y. At every point in this simulation we need only remember the state of one of the two
machines (requiring space O(log|z|)), while running the other, so the total space is O(log|z|)
as desired.

If a P-complete language A is in L, then to compute any language B € P, we can compose
the reduction f from B to A with a logspace computation deciding A in the same manner as
described above to obtain a logspace computation deciding B. Thus P C L, and we already
know that L C P, so P = L.

. We need to show that under the assumption L = P, we have EXP C PSPACE. Given
a language A € EXP decidable by a Turing Machine M running in time 2|I|k, define the
language

PAD4 = {z#" : 2 € A, N = 21"}

We produce a machine M’ that decides PAD 4 as follows: we read the input up to the first
remembering x, check that there are exactly N = olal* #s following x, and then simulate
M on input . Machine M’ runs in time 20(21°) which is polynomial in its input length of

1-1

1-2

|z|+ N. Thus M’ runs in polynomial time, and PAD 4 is in P. Since L = P, there is a Turing
Machine M" that decides PAD 4 in log space.

Now, we describe how to decide A in polynomial space. Define f(x) = z#%, where N = olel”
It is clear that f is computable in polynomial space, because we just need a counter that can
count up to N. Now, given input x, we can decide if x € A in polynomial space by composing
f with the Turing Machine M” that runs in O(log N) = poly(|z|) space, using the space-
efficient composition from the previous problem.

. For any language A, define a padded version PAD 4 = {x#‘f”'Q_'I‘ cx € A}

Note that if A € SPACE(n?), then PAD4 € SPACE(O(n)). This is because we can decide
PAD4 by first scanning the the tape until we encounter the first #. Say this happens at
position n. Then we check that the rest of the input is exactly n? — n additional # symbols.
All of this requires only O(n) space. Now we return to the beginning of the string, and
simulate the machine that decides A in space n?, treating # symbols as blanks. Measured as
a function of the input length n?, the running time of this simulation is linear.

On the other hand, if PAD4 € P, then A € P. To decide if an input x is in A, we simply
produce the string 9:#‘“7|2_‘$| (in polynomial time in |z|), and then simulate the polynomial-
time machine deciding PAD 4.

Now, select A to be a language in SPACE(n?) but not in SPACE(O(n)). Such a lan-
guage exists by the Space Hierarchy Theorem. Suppose for the purpose of contradiction that
SPACE(O(n)) = P. As argued above, A € SPACE(n?) implies PAD4 € SPACE(O(n)).
By assumption SPACE(O(n)) € P. Then as argued above PAD4 € P implies A € P.
Finally by assumption, P C SPACE(O(n)), and so we conclude A € SPACE(O(n)), a
contradiction.

