CS 151 Complexity Theory

Spring 2023

Solution Set 1

Posted: April 13 Chris Umans

- 1. Let A be a language that is downward self-reducible. Given an input x, we simulate the polynomial-time computation that (with queries) decides A, and recursively compute the answer to the each query as it is made. Since the recursive calls are all on strings shorter than |x|, we will eventually reach the base case in which we query strings of length 1. The program we are describing will simply have the answers to these (constant number of) length-1 queries hard-coded. The depth of the recursion is at most |x|, and at each level of recursion, we need to remember the state which requires space at most $\operatorname{poly}(|x|)$. This last point holds because the basic computation runs in $\operatorname{polynomial}$ time, and hence $\operatorname{polynomial}$ space. Thus the overall procedure runs in PSPACE .
- 2. Assume both inequalities fail to hold. Then we have $\mathbf{L} = \mathbf{P}$ and $\mathbf{P} = \mathbf{PSPACE}$ which together imply $\mathbf{L} = \mathbf{PSPACE}$. But we know these two classes are different, by the Space Hierarchy Theorem. Thus one of the inequalities must hold.
- 3. Let f(x) and g(x) be logspace reductions. On input x we want to compute f(g(x)) in logspace. We cannot compute g(x) and then evaluate f on it, because we don't have enough storage space to write-down the intermediate result g(x), which may be polynomially long in the input length |x|. Let M_f and M_g be Turing Machines that compute f and g in logspace, respectively. We build a new Turing Machine that simulates M_f , and whenever M_f would have read the i-th bit of its input, we pause (remembering M_f 's state in $O(\log |x|)$ bits), and simulate M_g on input x (ignoring what it would have writtenon its output tape) until it outputs the i-th bit of g(x). At this point have the necessary bit to continue simulating M_f . At every point in this simulation we need only remember the state of one of the two machines (requiring space $O(\log |x|)$), while running the other, so the total space is $O(\log |x|)$ as desired.

If a **P**-complete language A is in **L**, then to compute any language $B \in \mathbf{P}$, we can compose the reduction f from B to A with a logspace computation deciding A in the same manner as described above to obtain a logspace computation deciding B. Thus $\mathbf{P} \subseteq \mathbf{L}$, and we already know that $\mathbf{L} \subseteq \mathbf{P}$, so $\mathbf{P} = \mathbf{L}$.

4. We need to show that under the assumption $\mathbf{L} = \mathbf{P}$, we have $\mathbf{EXP} \subseteq \mathbf{PSPACE}$. Given a language $A \in \mathbf{EXP}$ decidable by a Turing Machine M running in time $2^{|x|^k}$, define the language

$$PAD_A = \{x \#^N : x \in A, N = 2^{|x|^k}\}$$

We produce a machine M' that decides PAD_A as follows: we read the input up to the first # remembering x, check that there are exactly $N=2^{|x|^k}$ #s following x, and then simulate M on input x. Machine M' runs in time $2^{O(|x|^k)}$ which is polynomial in its input length of

|x|+N. Thus M' runs in polynomial time, and PAD_A is in **P**. Since $\mathbf{L}=\mathbf{P}$, there is a Turing Machine M'' that decides PAD_A in log space.

Now, we describe how to decide A in polynomial space. Define $f(x) = x \#^N$, where $N = 2^{|x|^k}$. It is clear that f is computable in polynomial space, because we just need a counter that can count up to N. Now, given input x, we can decide if $x \in A$ in polynomial space by composing f with the Turing Machine M'' that runs in $O(\log N) = \text{poly}(|x|)$ space, using the space-efficient composition from the previous problem.

5. For any language A, define a padded version $PAD_A = \{x\#^{|x|^2-|x|} : x \in A\}$.

Note that if $A \in \mathbf{SPACE}(n^2)$, then $\mathrm{PAD}_A \in \mathbf{SPACE}(O(n))$. This is because we can decide PAD_A by first scanning the the tape until we encounter the first #. Say this happens at position n. Then we check that the rest of the input is exactly $n^2 - n$ additional # symbols. All of this requires only O(n) space. Now we return to the beginning of the string, and simulate the machine that decides A in space n^2 , treating # symbols as blanks. Measured as a function of the input length n^2 , the running time of this simulation is linear.

On the other hand, if $PAD_A \in \mathbf{P}$, then $A \in \mathbf{P}$. To decide if an input x is in A, we simply produce the string $x \#^{|x|^2 - |x|}$ (in polynomial time in |x|), and then simulate the polynomial-time machine deciding PAD_A .

Now, select A to be a language in $\mathbf{SPACE}(n^2)$ but not in $\mathbf{SPACE}(O(n))$. Such a language exists by the Space Hierarchy Theorem. Suppose for the purpose of contradiction that $\mathbf{SPACE}(O(n)) = \mathbf{P}$. As argued above, $A \in \mathbf{SPACE}(n^2)$ implies $\mathrm{PAD}_A \in \mathbf{SPACE}(O(n))$. By assumption $\mathbf{SPACE}(O(n)) \subseteq \mathbf{P}$. Then as argued above $\mathrm{PAD}_A \in \mathbf{P}$ implies $A \in \mathbf{P}$. Finally by assumption, $\mathbf{P} \subseteq \mathbf{SPACE}(O(n))$, and so we conclude $A \in \mathbf{SPACE}(O(n))$, a contradiction.