
CS 151 Complexity Theory Spring 2023

Solution Set 1

Posted: April 13 Chris Umans

1. Let A be a language that is downward self-reducible. Given an input x, we simulate the
polynomial-time computation that (with queries) decides A, and recursively compute the
answer to the each query as it is made. Since the recursive calls are all on strings shorter
than |x|, we will eventually reach the base case in which we query strings of length 1. The
program we are describing will simply have the answers to these (constant number of) length-
1 queries hard-coded. The depth of the recursion is at most |x|, and at each level of recursion,
we need to remember the state which requires space at most poly(|x|). This last point holds
because the basic computation runs in polynomial time, and hence polynomial space. Thus
the overall procedure runs in PSPACE.

2. Assume both inequalities fail to hold. Then we have L = P and P = PSPACE which
together imply L = PSPACE. But we know these two classes are different, by the Space
Hierarchy Theorem. Thus one of the inequalities must hold.

3. Let f(x) and g(x) be logspace reductions. On input x we want to compute f(g(x)) in logspace.
We cannot compute g(x) and then evaluate f on it, because we don’t have enough storage
space to write-down the intermediate result g(x), which may be polynomially long in the
input length |x|. Let Mf and Mg be Turing Machines that compute f and g in logspace,
respectively. We build a new Turing Machine that simulates Mf , and whenever Mf would
have read the i-th bit of its input, we pause (remembering Mf ’s state in O(log |x|) bits),
and simulate Mg on input x (ignoring what it would have writtenon its output tape) until
it outputs the i-th bit of g(x). At this point have the necessary bit to continue simulating
Mf . At every point in this simulation we need only remember the state of one of the two
machines (requiring space O(log |x|)), while running the other, so the total space is O(log |x|)
as desired.

If a P-complete language A is in L, then to compute any language B ∈ P, we can compose
the reduction f from B to A with a logspace computation deciding A in the same manner as
described above to obtain a logspace computation deciding B. Thus P ⊆ L, and we already
know that L ⊆ P, so P = L.

4. We need to show that under the assumption L = P, we have EXP ⊆ PSPACE. Given
a language A ∈ EXP decidable by a Turing Machine M running in time 2|x|

k
, define the

language

PADA = {x#N : x ∈ A,N = 2|x|
k}

We produce a machine M ′ that decides PADA as follows: we read the input up to the first
remembering x, check that there are exactly N = 2|x|

k
#s following x, and then simulate

M on input x. Machine M ′ runs in time 2O(|x|k) which is polynomial in its input length of

1-1

1-2

|x|+N . Thus M ′ runs in polynomial time, and PADA is in P. Since L = P, there is a Turing
Machine M ′′ that decides PADA in log space.

Now, we describe how to decide A in polynomial space. Define f(x) = x#N , where N = 2|x|
k
.

It is clear that f is computable in polynomial space, because we just need a counter that can
count up to N . Now, given input x, we can decide if x ∈ A in polynomial space by composing
f with the Turing Machine M ′′ that runs in O(logN) = poly(|x|) space, using the space-
efficient composition from the previous problem.

5. For any language A, define a padded version PADA = {x#|x|
2−|x| : x ∈ A}.

Note that if A ∈ SPACE(n2), then PADA ∈ SPACE(O(n)). This is because we can decide
PADA by first scanning the the tape until we encounter the first #. Say this happens at
position n. Then we check that the rest of the input is exactly n2 − n additional # symbols.
All of this requires only O(n) space. Now we return to the beginning of the string, and
simulate the machine that decides A in space n2, treating # symbols as blanks. Measured as
a function of the input length n2, the running time of this simulation is linear.

On the other hand, if PADA ∈ P, then A ∈ P. To decide if an input x is in A, we simply
produce the string x#|x|

2−|x| (in polynomial time in |x|), and then simulate the polynomial-
time machine deciding PADA.

Now, select A to be a language in SPACE(n2) but not in SPACE(O(n)). Such a lan-
guage exists by the Space Hierarchy Theorem. Suppose for the purpose of contradiction that
SPACE(O(n)) = P. As argued above, A ∈ SPACE(n2) implies PADA ∈ SPACE(O(n)).
By assumption SPACE(O(n)) ⊆ P. Then as argued above PADA ∈ P implies A ∈ P.
Finally by assumption, P ⊆ SPACE(O(n)), and so we conclude A ∈ SPACE(O(n)), a
contradiction.

