1. Let \(A \) be a language that is downward self-reducible. Given an input \(x \), we simulate the polynomial-time computation that (with queries) decides \(A \), and *recursively compute* the answer to the each query as it is made. Since the recursive calls are all on strings shorter than \(|x| \), we will eventually reach the base case in which we query strings of length 1. The program we are describing will simply have the answers to these (constant number of) length-1 queries hard-coded. The depth of the recursion is at most \(|x| \), and at each level of recursion, we need to remember the state which requires space at most \(\text{poly}(|x|) \). This last point holds because the basic computation runs in polynomial time, and hence polynomial space. Thus the overall procedure runs in \(\text{PSPACE} \).

2. Assume both inequalities fail to hold. Then we have \(L = P \) and \(P = \text{PSPACE} \) which together imply \(L = \text{PSPACE} \). But we know these two classes are different, by the Space Hierarchy Theorem. Thus one of the inequalities must hold.

3. Let \(f(x) \) and \(g(x) \) be logspace reductions. On input \(x \) we want to compute \(f(g(x)) \) in logspace. We cannot compute \(g(x) \) and then evaluate \(f \) on it, because we don’t have enough storage space to write-down the intermediate result \(g(x) \), which may be polynomially long in the input length \(|x| \). Let \(M_f \) and \(M_g \) be Turing Machines that compute \(f \) and \(g \) in logspace, respectively. We build a new Turing Machine that simulates \(M_f \), and whenever \(M_f \) would have read the \(i \)-th bit of its input, we pause (remembering \(M_f \)'s state in \(O(\log |x|) \) bits), and simulate \(M_g \) on input \(x \) (ignoring what it would have written on its output tape) until it outputs the \(i \)-th bit of \(g(x) \). At this point have the necessary bit to continue simulating \(M_f \). At every point in this simulation we need only remember the state of one of the two machines (requiring space \(O(\log |x|) \)), while running the other, so the total space is \(O(\log |x|) \) as desired.

If a \(P \)-complete language \(A \) is in \(L \), then to compute any language \(B \in P \), we can compose the reduction \(f \) from \(B \) to \(A \) with a logspace computation deciding \(A \) in the same manner as described above to obtain a logspace computation deciding \(B \). Thus \(P \subseteq L \), and we already know that \(L \subseteq P \), so \(P = L \).

4. We need to show that under the assumption \(L = P \), we have \(\text{EXP} \subseteq \text{PSPACE} \). Given a language \(A \in \text{EXP} \) decidable by a Turing Machine \(M \) running in time \(2^{|x|^k} \), define the language

\[
\text{PAD}_A = \{ x \#^N : x \in A, N = 2^{|x|^k} \}
\]

We produce a machine \(M' \) that decides \(\text{PAD}_A \) as follows: we read the input up to the first \(\# \) remembering \(x \), check that there are exactly \(N = 2^{|x|^k} \) \#'s following \(x \), and then simulate \(M \) on input \(x \). Machine \(M' \) runs in time \(2^{O(|x|^k)} \) which is polynomial in its input length of
$|x| + N$. Thus M' runs in polynomial time, and \(\text{PAD}_A \) is in \(\text{P} \). Since \(\text{L} = \text{P} \), there is a Turing Machine \(M'' \) that decides \(\text{PAD}_A \) in log space.

Now, we describe how to decide \(A \) in polynomial space. Define \(f(x) = x\#^N \), where \(N = 2^{|x|^k} \).

It is clear that \(f \) is computable in polynomial space, because we just need a counter that can count up to \(N \). Now, given input \(x \), we can decide if \(x \in A \) in polynomial space by composing \(f \) with the Turing Machine \(M'' \) that runs in \(O(\log N) = \text{poly}(|x|) \) space, using the space-efficient composition from the previous problem.

5. For any language \(A \), define a padded version \(\text{PAD}_A = \{ x\#^{|x|^2-|x|} : x \in A \} \).

Note that if \(A \in \text{SPACE}(n^2) \), then \(\text{PAD}_A \in \text{SPACE}(O(n)) \). This is because we can decide \(\text{PAD}_A \) by first scanning the the tape until we encounter the first \#. Say this happens at position \(n \). Then we check that the rest of the input is exactly \(n^2 - n \) additional \# symbols. All of this requires only \(O(n) \) space. Now we return to the beginning of the string, and simulate the machine that decides \(A \) in space \(n^2 \), treating \# symbols as blanks. Measured as a function of the input length \(n^2 \), the running time of this simulation is linear.

On the other hand, if \(\text{PAD}_A \in \text{P} \), then \(A \in \text{P} \). To decide if an input \(x \) is in \(A \), we simply produce the string \(x\#^{|x|^2-|x|} \) (in polynomial time in \(|x| \)), and then simulate the polynomial-time machine deciding \(\text{PAD}_A \).

Now, select \(A \) to be a language in \(\text{SPACE}(n^2) \) but not in \(\text{SPACE}(O(n)) \). Such a language exists by the Space Hierarchy Theorem. Suppose for the purpose of contradiction that \(\text{SPACE}(O(n)) = \text{P} \). As argued above, \(A \in \text{SPACE}(n^2) \) implies \(\text{PAD}_A \in \text{SPACE}(O(n)) \). By assumption \(\text{SPACE}(O(n)) \subseteq \text{P} \). Then as argued above \(\text{PAD}_A \in \text{P} \) implies \(A \in \text{P} \). Finally by assumption, \(\text{P} \subseteq \text{SPACE}(O(n)) \), and so we conclude \(A \in \text{SPACE}(O(n)) \), a contradiction.