
CS 151 Complexity Theory Spring 2021

Midterm Solutions

Posted: May 6 Chris Umans

If you have not yet turned in the Midterm
you should not consult these solutions.

0-1

0-2

1. Consider a language L ∈ coNEXP. On an input of length n, the advice will be an exact
count of the number of inputs of length n not in the language. This is a number between 0
and 2n, which can be represented using n+ 1 bits. Our NEXP machine receives this count
c(n) and an input x. It will then guess c(n) distinct strings x(i) together with a witness w(i)

of length 2n
k

for each. It will then verify that each of the x(i) are in L using the guessed
witnesses. If not, then it will reject. Otherwise, it will accept if and only if x is not equal to
x(i) for any i.

Now, if x ∈ L, then on some computation path, the NEXP machine will correctly guess all
of the strings in L, together with correct witnesses for them, and none of these will be equal
to x so it will accept. If x 6∈ L, then the only way the machine can guess c(n) distinct strings
in L is if x is among these strings, so it will always reject.

2. (a) Let A be an minimum-depth circuit computing f , with depth d. We can assume that
A is a formula (because we only care about depth) and we can further assume that all
of the ¬ gates have been pushed down to the leaves. This is not necessary to solve the
problem but makes the exposition shorter.

We prove by induction on d that there is a protocol for f that exchanges at most d bits.
If d = 1, then f is just a single variable xi or its negation, and Alice and Bob can simply
announce i without any communication. Thus for d = 1 we have C(f) = 0 ≤ 1, so the
base case holds.

Now assume that the last gate of A is an ∨ gate, so f = g ∨ h, where D(g) ≤ d − 1
and D(h) ≤ d − 1. Alice holds an input x for which f(x) = 0, so we know that
g(x) = h(x) = 0. Bob holds an input y for which f(y) = 1, so it must be that either
g(y) = 1 or h(y) = 1. In the first round of communication, Bob will send a single bit
b = g(y). If b = 1, then both parties can continue with the protocol for g (since g(x) = 0
and g(y) = 1) which by induction entails at most d− 1 bits of communication. If b = 0,
then we know that h(y) = 1, since as noted either g(y) = 1 or h(y) = 1. In this case
both parties can continue with the protocol for h (since h(x) = 0 and h(y) = 1) which
by induction entails at most d− 1 bits of communication.

If the last gate of A is an ∧ gate, then f = g ∧ h, where D(g) ≤ d− 1 and D(h) ≤ d− 1.
Alice holds an input x for which f(x) = 0, so we know that g(x) = 0 or h(x) = 0,
and Bob holds an input y for which f(y) = 1, so g(y) = h(y) = 1. In the first round
of communication, Alice sends a single bit a = g(x). If a = 0, then both parties can
continue with the protocol for g (since g(x) = 0 and g(y) = 1) which by induction entails
at most d − 1 bits of communication. If a = 0, then we know that h(x) = 0, since as
noted either g(x) = 0 or h(x) = 0. In this case both parties can continue with the
protocol for h (since h(x) = 0 and h(y) = 1) which by induction entails at most d − 1
bits of communication.

The total communication required in either case is at most d bits, as required.

(b) Given a protocol for f on X,Y , we prove by induction on the protocol length ` that
there is a circuit of depth `+ 1 that outputs 0 on x ∈ X and 1 on y ∈ Y . If ` = 0, then
no information is exchanged between Alice and Bob, so the only way they can correctly
agree on an index i is if the function f is a single variable xi or its negation. In this case
there is clearly a circuit of depth 1 computing f correctly on all inputs, so the base case
holds.

0-3

Now suppose we have an optimal protocol for f on X,Y , that entails ` bits of communi-
cation. Suppose that Alice sends the first bit. As we saw in class, we can partition the
set X into two sets X0 and X1, which are the sets of strings that cause Alice to send 0
and 1, respectively. By induction there is a depth `− 1 circuit C0 for which C0 outputs
0 on x ∈ X0 and 1 on y ∈ Y ; similarly there is a depth ` − 1 circuit C1 for which C1

outputs 0 on x ∈ X1 and 1 on y ∈ Y . We define circuit C to be C0 ∧ C1. This circuit
has depth `, and it outputs 0 on x ∈ (X0 ∪X1) = X, and 1 on y ∈ Y , as required.

If Bob sends the first bit, then we can partition the set Y into two sets Y0 and Y1, which
are the sets of strings that cause Bob to send 0 and 1, respectively. By induction there
is a depth `− 1 circuit C0 for which C0 outputs 0 on x ∈ X and 1 on y ∈ Y0; similarly
there is a depth `− 1 circuit C1 for which C1 outputs 0 on x ∈ X and 1 on y ∈ Y1. We
define circuit C to be C0 ∨C1. This circuit has depth `, and it outputs 0 on x ∈ X, and
1 on y ∈ (Y0 ∪ Y1) = Y , as required.

We conclude that there is a circuit of depth ` computing f correctly on inputs from X
and Y , and by taking X = f−1(0) and Y = f−1(1), we obtain the desired result.

3. Let L be a language in L/poly, and let M be a Turing Machine that decides L in c log n space

with advice A(n), where A : N → {0, 1}N=(nk). For simplicity we assume that M receives
the input x and the advice string A(|x|) on a single read-only input tape, and that it has a
single work tape. And, we assume that when M is going to accept or reject, it clears its work
tape, resets both read-heads to the first tape square, and enters the state qaccept or qreject
accordingly. We also assume that the input and the advice string are given over the binary
alphabet Σ = {0, 1}. Let p(n) be a polynomial bound on the running time of M .

Our branching program for inputs of length n will have nodes for every element of Σc logn ×
Q × {1 . . . p(n)} × {1 . . . c log n}. Note that such a quadruple describes a configuration of
M : it contains the contents of the work tape, the current state, and the head position on
the input tape, as well as the head position on the work tape. The node corresponding to
the start configuration is designated start, and the two nodes corresponding to the (unique)
accept and reject configurations are designated accept and reject. We label with i each node
(other than accept and reject) corresponding to a configuration of M in which it is reading
the i-th symbol from the read-only input tape. We connect the “0” outgoing edge to the node
corresponding to the configuration M moves into if the i-th symbol is a zero, and we connect
the “1” outgoing edge to the node corresponding to the configuration M moves into if the
i-th symbol is a one.

It is clear that on an input (x,A(|x|)), the just-described branching program for inputs of
length n = |x| steps through exactly the sequence of configurations that M would on input
x with advice A(n), ending at accept if and only if M accepts x with advice A(n). We can
“hard-wire” the advice string A(n) by short-circuiting any node labeled with a bit from A(n)
along the 0 or 1 edge, depending on the value of the bit in A(n); this gives us our final
polynomial-size branching program for inputs of length n.

In the other direction, it is clear that given a description of a polynomial-size branching
program P as advice, we can simulate P on input x in log-space, as we need only keep track
of our current location within the branching program and figure out the “0” or “1” neighbor
based on reading a given bit from the read-only input tape. All of this requires only O(log |P |)

0-4

bits of work space (we need to remember our current location in P ; we need a counter of log n
bits to scan the input for the i-th bit; and we need a counter for scanning the description of
P to find the next node).

4. Suppose that SAT ∈ BPP. We saw in class (using error reduction) that we can assume that
there is a machine M with the following behavior:

x ∈ SAT ⇒ Pr
y

[M(x, y)accepts] ≥ 1− 1/(4|x|)

x 6∈ SAT ⇒ Pr
y

[M(x, y)rejects] ≥ 1− 1/(4|x|)

We then run the BPP algorithm at most 2n times, filling in one bit of a satisfying assignment
(if there is one) at each step. If at any step the algorithm gives inconsistent answers, we reject.
Otherwise, if we get a purported satisfying assignment we accept if and only if it actually
satisfies the formula. It is clear that we never incorrectly accept, as required. We simply need
to show that we accept with probability at least 1/2 when x ∈SAT. In this case we accept if
the algorithm never makes an error during the ≤ 2n calls to it. The probability that it makes
an error on any one call is at most 1/4n, so the probability that it makes an error on any one
of the 2n calls is at most 1/(4n) · 2n = 1/2. Thus with probability at least 1/2 it is correct
on all calls, and we accept. Thus NP ⊆ RP, and we already know NP ⊇ RP, so we obtain
NP = RP as required.

5. (a) Define L = {x : b(f−1(x)) = 1}. This language is in NP because it is equal to {x :
∃y b(y) = 1 and f(y) = x}. Notice that

L = {x : b(f−1(x)) = 0} = {x : ∃y b(y) = 0 and f(y) = x},

so L ∈ coNP as well. For both of these containments, we critically use the fact that
f is a permutation – otherwise, e.g., we may have x 6∈ L and yet for some y 6= f−1(x),
b(y) = 1 and f(y) = x. Now, suppose that L ∈ BPP. We know that BPP ⊆ P/poly,
so there is a polynomial size circuit that computes b(f−1(x)) given x, which contradicts
our initial assumptions on f and b, so it must be that L 6∈ BPP.

(b) As suggested, define g′ = {g′n} to be the function family obtained by truncating the
output of each gn to t+ 1 bits. In other words, there is some constant c for which each
g′n maps from t = c log2 n to t+ 1 bits. Define the language

L =
⋃
t

{x : ∃z g′2t(z) = x}.

We first claim that L ∈ E. Given x of length t+ 1, we only need to evaluate g2t(z) at all
z and check to see if the length t + 1 prefix of any of these outputs equals x. Since g2t
is computable in poly(n) = 2O(t) time, and we need to evaluate it 2t times, the overall
running time to decide L is 2O(t), as claimed.

Now, we argue that L does not have small circuits. Suppose there is a circuit family
C = {Ci} deciding L. Notice that the number of strings of length i in L is at most 2i−1,
since there are only that many inputs of length i− 1 to g2i−1 . Thus

Pr
y∈{0,1}i

[Ci(y) = 1] ≤ 1/2.

0-5

On the other hand, since C decides L,

Pr
z∈{0,1}i−1

[Ci(g
′
2i−1(z)) = 1] = 1.

We can also think of Ci as a circuit on more than i variables that only looks at its first
i variables. Thus we conclude that∣∣∣∣∣ Pr

y∈{0,1}2δ(i−1)
[Ci(y) = 1]− Pr

z∈{0,1}c(i−1)
[Ci(g2i−1(z)) = 1]

∣∣∣∣∣ ≥ 1/2,

which violates the second property of g, if the size of Ci is at most 2δ(i−1). We conclude
that the circuit family C = {Ci} does not have circuits of size 2εi, for, say, ε = δ/2 and
sufficiently large i.

