
CS 151 Complexity Theory Spring 2023

Problem Set 5

Out: May 11 Due: May 18

Reminder: you are encouraged to work in groups of two or three; however you must turn in your
own write-up and note with whom you worked. You may consult the course notes and the optional
text (Papadimitriou). The full honor code guidelines and collaboration policy can be found in the
course syllabus.

Please attempt all problems. Please turn in your solutions via Gradescope, by 1pm on
the due date.

1. CNFs and DNFs. Recall that a Boolean formula is said to be in 3-CNF form if it is the
conjunction of clauses, with each clause being the disjunction of at most 3 literals. A Boolean
formula is said to be in 3-DNF form if it is the disjunction of terms, with each term being
the conjunction of at most 3 literals.

Describe a polynomial-time computable function that is given as input a fan-in two (∧,∨,¬)-
circuit C(x1, x2, . . . , xn), and produces a 3-CNF Boolean formula φ on variables x1, x2, . . . , xn
and additional variables z1, z2, . . . , zm for which for every setting of the x variables

∃z1, z2, . . . , zm φ(x1, x2, . . . , xn, z1, z2, . . . , zm) = 1⇔ C(x1, x2, . . . , xn) = 1.

Also, describe a polynomial-time computable function that is given as input a fan-in two
(∧,∨,¬)-circuit C(x1, x2, . . . , xn), and produces a 3-DNF Boolean formula φ on variables
x1, x2, . . . , xn and additional variables z1, z2, . . . , zm for which for every setting of the x vari-
ables

∀z1, z2, . . . , zm φ(x1, x2, . . . , xn, z1, z2, . . . , zm) = 1⇔ C(x1, x2, . . . , xn) = 1.

Hint: identify the z variables with the gates of C.

2. Toda’s Theorem (Part I). This problem concerns the class ⊕P, which you will show to be
quite powerful. A uniform way to define the classes NP,BPP and the new class ⊕P is in
terms of polynomial-time nondeterministic Turing Machines that are standardized so that
they make the same number of binary nondeterministic choices on each computation path.
Specifically, a language L is in:

• NP iff there is such a polynomial-time nondeterministic Turing Machine M for which
x ∈ L implies that at least one of the computation paths accepts, and x 6∈ L implies
that no computation paths accept.

• BPP iff there is such a polynomial-time nondeterministic Turing Machine M for which
x ∈ L implies that at least 2/3 of the computation paths accept, and x 6∈ L implies that
at most 1/3 of the computation paths accept.

5-1

5-2

• ⊕P iff there is such a polynomial-time nondeterministic Turing Machine M for which
x ∈ L implies that an odd number of the computation paths accept, and x 6∈ L implies
that an even number of the computation paths accept.

Below we will also be discussing the classes NPA,BPPA and (⊕P)A. These are the classes
obtained by replacing the polynomial-time nondeterministic Turing Machine M in the def-
initions above with a polynomial-time nondeterministic oracle Turing Machine M that is
equipped with language A as its oracle. As usual, if we write C instead of A in the exponent,
for some complexity class C, we mean that any language A ∈ C is permitted as the oracle.
If C has a complete language (as NPA and (⊕P)A do, for any oracle A), then by using that
language as the oracle we can solve any instance of a problem in C with a single call to this
specific oracle.

(a) The following is a more general restatement of the Valiant-Vazirani Theorem from Lec-
ture 8.

Lemma 5.1 There is a randomized procedure that receives as input an integer n, runs
in poly(n) time, and outputs a poly(n)-size circuit C with the following property: for each
subset T ⊆ {0, 1}n, if |T | > 0, then with probability at least 1/(8n) over the randomness
of the procedure,

| {x : x ∈ T and C(x) = 1} | = 1.

Using this lemma, prove that for every oracle A, NPA ⊆ BPP(⊕PA
). It may be helpful

to think about the non-relativized statement first.

(b) Prove that for every oracle A,

NPA ⊆ BPPA ⇒ NP(NP
(NP

(···(NP
A
)···)))

⊆ BPPA

in which the tower of NP classes has height i, for i = 1, 2, 3,

Hint: first, figure out how to use error-reduction to argue that NPBPP ⊆ BPPNP

and BPPBPP ⊆ BPP. If you are stuck, you can take the relativized versions of these
statements as given, for partial credit.

(c) Prove that co-(⊕P) ⊆ ⊕P.

(d) Prove that (⊕P)⊕P ⊆ ⊕P.

Hint: Use the fact that odd × odd = odd. For each language L in (⊕P)⊕P with associ-
ated nondeterministic oracle TM M , you will be designing a nondeterministic TM M ′.
A helpful strategy is for M ′ to begin by nondeterministically guessing a transcript of M
on input x, which contains a sequence of nondeterministic choices made by M , together
with a sequence of queries made to the oracle, and a sequence of yes/no answers. Many
of these transcripts will be inaccurate in the sense that they don’t agree with the func-
tioning of M on the specified computation path, with the actual oracle in ⊕P answering
queries. Nevertheless, some nondeterministic guesses produce “correct” transcripts...

(e) Prove that PH ⊆ BPP⊕P.

5-3

3. Approximate counting and sampling with an NP oracle. For every n, k (positive integers,
with k ≤ n), there is a multiset Hn,k of functions h : {0, 1}n → {0, 1}k, called an “n-wise
independent hash family”. This multiset comes equipped with a probabilistic procedure that
runs in time poly(n) and outputs a uniformly chosen h from Hn,k, in the form of a circuit for
h of size poly(n). These functions behave like random functions from n bits to k bits in the
following sense:

Lemma 5.2 For every set S ⊆ {0, 1}n and every y ∈ {0, 1}k:

Pr
h∈Hn,k

[
|{x : x ∈ S ∧ h(x) = y}| > 2 · |S|

2k

]
≤ 2−2n,

provided that 2k ≤ 4|S|/n4.

Note that for a random function h from n bits to k bits, the expected size of

{x : x ∈ S ∧ h(x) = y}

is |S|/2k; the lemma says that with high probability, the same set with respect to a function
h drawn uniformly from Hn,k does not exceed this expected size by more than a factor of two.

In the problems below, the input is a set S ⊂ {0, 1}n given implicitly by a circuit C : {0, 1}n →
{0, 1} for which C(x) = 1 iff x ∈ S. You can think of C as an instance of circuit sat,
and then the questions below concern the problems of estimating the number of satisfying
assignment, and sampling from them, respectively.

(a) Describe a probabilistic polynomial-time procedure, with access to an NP oracle, that

with probability at least 7/8 outputs an integer k for which 2k < |S|
n4 ≤ 2k+2. Hint: argue

that deciding whether an implicitly given set has size at least s, for polynomially-large
s, is in NP, and then perform an experiment for each k = 1, 2, 3,

(b) Describe a probabilistic polynomial-time procedure, with access to an NP oracle, that
outputs “fail” with probability at most 7/8 and otherwise outputs an exactly uniformly
distributed element of S. Hint: suppose a notebook has L lines on every page, with
an enumeration of the elements of a set S are written on a subset of the lines in the
notebook. Consider selecting a random page and a random line on that page, and
outputting the element written on that line, or “fail” if the line is empty. What is the
probability of outputting a given element of S? What is the probability of outputting
“fail”?

