
CS 151 Complexity Theory Spring 2023

Problem Set 4

Out: April 27 Due: May 4

Reminder: you are encouraged to work in groups of two or three; however you must turn in your
own write-up and note with whom you worked. You may consult the course notes and the optional
text (Papadimitriou). The full honor code guidelines and collaboration policy can be found in the
course syllabus.

Please attempt all problems. Please turn in your solutions via Gradescope, by 1pm on
the due date.

1. Define Z̃PP to be the class of all languages decided by a probabilistic Turing Machine running

in expected polynomial time. That is, for every language L ∈ Z̃PP there is a probabilistic
Turing Machine M (with two read-only tapes — the first tape containing the input, and the
second tape containing a random bit in every tape square) with the following behavior: on
input x ∈ L, M always accepts, on input x 6∈ L, M always rejects, and for every input x,

E[# steps before M halts] = |x|O(1).

Show that Z̃PP = ZPP.

2. List-decoding of the binary Hadamard code. Throughout this problem F2 is the field with 2
elements (addition and multiplication are performed modulo 2). Given a k-bit message m,
the associated Hadamard codeword C(m) is described by first producing a linear multivariate
polynomial pm(x0, x1, . . . , xk−1) =

∑k−1
i=0 mixi, and then evaluating that polynomial at all

vectors in the space Fk
2: C(m) = (pm(w))w∈Fk

2
. Thus the codeword has n = 2k bits, and the

w-th bit is the inner product mod 2 of the k-bit vectors m and w. The bits of a codeword
C = C(m) are naturally indexed by Fk

2; we write Cw (with w ∈ Fk
2) to mean the w-th

coordinate, which is just pm(w).

Since the distance of the Hadamard code is (1/2)n (by Schwartz-Zippel), unique decoding
is only possible from up to (1/4)n errors. In this problem you will show that efficient list-
decoding is possible from a received word R that has suffered up to (1/2− ε)n errors.

You may need to use Chebyshev’s Inequality: for a random variable X and any k > 0,

Pr[|X − E[X]| ≥ k] ≤ Var[X]

k2
.

(a) Consider the following probabilistic procedure. Pick ` vectors v1, v2, . . . , v` ∈ Fk
2 indepen-

dently and uniformly at random. For a subset S ⊆ {1, 2, 3, . . . , `} define uS =
∑

i∈S vi.
Show that for every non-empty set S and every α ∈ Fk

2, we have Pr[uS = α] = 2−k.
Then show that for every pair of non-empty subsets S and T with S 6= T , and every
α, β ∈ Fk

2, we have:

Pr[uS = α ∧ uT = β] = Pr[uS = α] Pr[uT = β].
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In other words, the set of vectors uS are pairwise independent random variables uniformly
distributed on Fk

2.

(b) Suppose that the received word R agrees with C = C(m) in at least a 1/2 + ε fraction
of its n bits. Verify for yourself that Cw + Cw+ei = mi (here ei is the i-th elementary
vector in Fk

2 – the vector with 1 in the i-th position and zeros elsewhere). Of course, in
our decoding algorithm we do not have access to C to find Cw and Cw+ei . So, we will
replace Cw with a “guess” (for now imagine it is always correct), and Cw+ei with Rw+ei

(which may or may not be correct). Show that for all i:

Pr

[
|{S 6= ∅ : CuS +RuS+ei = mi}| ≤

2` − 1

2

]
≤ 1

4ε2(2` − 1)

Hint: define indicator random variables for the event RuS+ei = CuS+ei . Use the fact
that for pairwise independent random variables, the variance of the sum is the sum of
the variances.

(c) Describe a probabilistic procedure A that has the following behavior:

• it has random access to a word R that agrees with C = C(m) in at least a 1/2 + ε
fraction of its n bits, and

• it runs in time poly(k, ε−1), and

• with probability at least 3/4 it outputs a list of L = O(kε−2) “candidate messages”
m1,m2, . . . ,mL that includes the original message m.

Hint: argue that it takes surprisingly few bits to describe (CuS )S 6=∅.

(d) Prove the Goldreich-Levin Theorem: for every function family fn : {0, 1}n → {0, 1}n,

GL(x, y) =
n∑

i=1

xiyi

is a hard bit for the function family f ′n : {0, 1}n×{0, 1}n → {0, 1}2n defined by f ′(x, y) =
(f(x), y). That is, if there is a circuit family {Cn} of size s(n) ≥ n that achieves:

Pr
x,y

[Cn(x, y) = GL(f ′n(x, y))] ≥ 1/2 + ε(n) (4.1)

then there is a circuit family {C ′n} of size s′(n) that achieves:

Pr
x,y

[C ′n(x, y) = f ′n(x, y)] ≥ ε′(n),

with s′(n) = (s(n)/ε(n))O(1) and ε′(n) = (ε(n)/n)O(1). Hint: It may be useful to observe
that by an averaging argument, (4.1) implies that for at least an ε(n)/2 fraction of the
x’s:

Pr
y

[Cn(x, y) = GL(f ′n(x, y))] ≥ 1/2 + ε(n)/2.
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3. List-decoding of Reed-Solomon codes. Throughout this problem Fq is the field with q ele-
ments. Given a k-bit message m, the associated Reed-Solomon codeword C(m) is described
by first producing a degree k − 1 polynomial pm(x) =

∑k−1
i=0 mix

i, and then evaluating that
polynomial at all of the elements in the field Fq: C(m) = (pm(w))w∈Fq . You should think of
q as being polynomial in k.

Now, we are given a received word R that has suffered e errors. We know that if e > q/2
unique decoding is impossible, since the distance of this code is a priori at most q. In this
problem you will show that efficient list-decoding is possible when e is as large as q −

√
2kq.

If we choose, say, q = k2, then this implies that we can recover from up to a 1− o(1) fraction
of errors!

You may need the following fact about polynomials: (x− α) divides a polynomial p(x) iff α
is a root of p.

(a) We view the received word R as a function R : Fq → Fq. Show that one can efficiently
find a polynomial Q(x, y) 6≡ 0 with x-degree at most

√
q and y-degree at most

√
q for

which Q(w,R(w)) = 0 for all w ∈ Fq. Hint: elementary linear algebra is sufficient here.

(b) Let p : Fq → Fq be a polynomial of degree at most k − 1 for which |{w ∈ Fq : p(w) 6=
R(w)}| ≤ q − t. That is, p is a RS codeword that agrees with the received word R in
at least t locations. Show that if t > k

√
q then (y − p(x)) divides Q(x, y). (Hint: view

Q as a univariate polynomial in y with coefficients in Fq[x].) Conclude that using an
efficient algorithm for factoring multivariate polynomials (which is known), we can find
all codewords which have agreement t > k

√
q with R.

(c) The (1, k − 1)-weighted degree of a polynomial Q(x, y) =
∑

i,j qi,jx
iyj is defined to be

max{i+ (k − 1)j : qi,j 6= 0}. Refine your analysis in parts (a) and (b) to show that one
can find Q(x, y) with the required properties and with (1, k− 1)-weighted degree at most√

2kq, and therefore can tolerate agreement only t >
√

2kq.

4. List decoding of Parvaresh-Vardy codes. The setting is similar to the one in the previous
problem. Throughout this problem Fq is the field with q elements. We have an integer
parameter c ≥ 1, and we fix a polynomial E(x) of degree k, that is irreducible over Fq. Set
h = d(q + 1)1/(c+1)e.
Given a k-bit message m, the associated Parvaresh-Vardy codeword C(m) is described as
follows:

• produce the degree k − 1 polynomial pm(x) =
∑k−1

i=0 mix
i

• define p
(i)
m (x) to be the polynomial

(pm(x))h
i

mod E(x),

for i = 0, 1, 2, . . . , c− 1. Note that p
(0)
m (x) is just pm(x).

• the codeword C(m) is the following sequence of symbols in Fc
q:(

[p(0)m (w), p(1)m (w), . . . , p(c−1)m (w)]
)
w∈Fq

.
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Now, we are given a received word R that has suffered e errors. You will show that list-
decoding is possible for Parvaresh-Vardy codes when e is as large as q − (c+ 1)kh. Note, for
example, that when taking c = log q, we require agreement only ≈ k log q, in contrast to the
≈
√
kq achievable with Reed-Solomon codes (typically, q is a large polynomial in k).

(a) We view the received word R as a function R : Fq → Fc
q. Show that one can efficiently

find a polynomial Q(x, y0, y1, . . . , yc−1) 6≡ 0 with individual variable degrees at most h−1
for which Q(w,R(w)0, . . . R(w)c−1) = 0 for all w ∈ Fq. Hint: elementary linear algebra
is sufficient here.

(b) Let p : Fq → Fq be a polynomial of degree at most k − 1 for which

|{w ∈ Fq : [p(0)(w), p(1)(w), . . . , p(c−1)(w)] 6= R(w)}| ≤ q − t.

That is, p is a Parvaresh-Vardy codeword that agrees with the received word R in at
least t locations. Show that if t > (c+ 1)kh then the polynomial

Q(x, p(0)(x), p(1)(x), . . . , p(c−1)(x))

is the zero polynomial.

(c) Recall that Fq[x]/E(x) – the set of univariate polynomials with coefficients in Fq and
with multiplication and addition performed modulo E(x) – is a field. Define the following
polynomial with coefficients in this field:

Q∗(z) = Q(x, z, zh, zh
2
, . . . , zh

c−1
) mod E(x).

Assuming the existence of an efficient algorithm that outputs all of the roots of a given
univariate polynomial with coefficients in Fq[x]/E(x), and making reference to Q∗, argue
that one can efficiently find all Parvaresh-Vardy codewords which have agreement t >
(c+ 1)kh with R.


