A strong nondeterministic Turing Machine has, in addition to its q_{accept} and q_{reject} states, a special state q^*. Such a Turing Machine accepts its input if all computation paths lead to q_{accept} and q^* states, and it rejects its input if all computation paths lead to q_{reject} and q^* states. Moreover, on every input, there is at least one computation path leading to q_{accept} or q_{reject}. Show that the class of languages decided by a strong nondeterministic Turing Machine in polynomial time is exactly $\text{NP} \cap \text{coNP}$.

In this problem you will prove Mahaney’s Theorem: a sparse language S cannot be NP-complete unless $\text{P} = \text{NP}$. Throughout this problem, S is a sparse language in NP with a polynomial bound $p(n)$ on the number of strings of length at most n.

(a) Explain briefly where the proof of the special case of Mahaney’s Theorem for unary languages (from class) breaks down for sparse languages.

(b) Show that if SAT reduces to S in polynomial time via reduction R, then a procedure very similar to the one for unary languages from class decides SAT in polynomial time, and hence implies $\text{P} = \text{NP}$.

(c) Define $c(n)$ to be the exact number of strings of length at most n in S (clearly $c(n) \leq p(n)$ for all n). Argue that the following language is in NP:

$$\hat{S} = \{(x, 1^k) : k < c(|x|) \text{ or } (k = c(|x|) \text{ and } x \notin S)\}.$$

Hint: do not try to compute $c(|x|)$; rather, focus on describing an NP algorithm that decides \hat{S} properly under the assumption that $k = c(|x|)$, and then see what your algorithm does when $k \neq c(|x|)$.

(d) Finally we assume S is NP-complete. Thus, everything in NP reduces to S, and we give names to two of these reductions: let T be a polynomial-time reduction from SAT.

1A language is decided (as usual) if every input is either accepted or rejected according to the accept/reject criteria for this type of machine.
to \(S\), and let \(U\) be a polynomial-time reduction from \(\hat{S}\) to \(S\). Using \(T\) and \(U\), describe a family of “candidate reductions from \(\overline{\text{SAT}}\) to \(S\),” \(R_k\), with the following properties:

\[
R_k(\phi) \in S \quad \text{if} \quad k < c(|T(\phi)|)
\]

\[
R_k(\phi) \in S \iff \phi \in \overline{\text{SAT}} \quad \text{if} \quad k = c(|T(\phi)|)
\]

\[
R_k(\phi) \not\in S \quad \text{if} \quad k > c(|T(\phi)|)
\]

(e) Using parts (b) and (d), prove Mahaney’s Theorem. You may need to modify part (b) slightly so that on a given input \(\phi\), the procedure only applies \(R\) to formulae \(\phi'\) for which \(|\phi'| = |\phi|\). This should require at most a syntactic change: we can think of any partial assignment of values to variables in \(\phi\) as having the same length as \(\phi\) if we don’t perform any simplification. To solve a similar technical problem, you may want to prove and make use of the following lemma:

Lemma 2.1 If language \(L \subseteq \Sigma^*\) is \(\text{NP}\)-complete, then language \(L' \in (\Sigma \cup \{\#\})^*\) defined by

\[
L' = \{x\#^i : x \in L, i \geq 0\}
\]

is \(\text{NP}\)-complete. If \(L\) is sparse then \(L'\) is sparse.

(f) Argue that if \(\text{P} = \text{NP}\), then there are sparse \(\text{NP}\)-complete languages (under polynomial-time, many-one reducibility).

3. A directed graph \(G = (V, E)\) is **strongly connected** if for every pair of vertices \((x, y)\) there is a directed path from \(x\) to \(y\) and a directed path from \(y\) to \(x\). Consider STRONGLY CONNECTED, the language of graphs \(G\) that are strongly connected. Either show that this problem is in \(L\), or prove a complexity consequence of such a containment.