Reminder: you are encouraged to work in groups of two or three; however you must turn in your own write-up and note with whom you worked. You may consult the course notes and the text (Papadimitriou). The full honor code guidelines can be found in the course syllabus.

Please attempt all problems. To facilitate grading, please turn in each problem on a separate sheet of paper and put your name on each sheet. Do not staple the separate sheets.

1. A strong nondeterministic Turing Machine has, in addition to its \(q_{\text{accept}} \) and \(q_{\text{reject}} \) states, a special state \(q_? \). Such a Turing Machine accepts its input if all computation paths lead to \(q_{\text{accept}} \) and \(q_? \) states, and it rejects its input if all computation paths lead to \(q_{\text{reject}} \) and \(q_? \) states. Moreover, on every input, there is at least one computation path leading to \(q_{\text{accept}} \) or \(q_{\text{reject}} \). Show that the class of languages decided\(^1\) by a strong nondeterministic Turing Machine in polynomial time is exactly \(\text{NP} \cap \text{coNP} \).

2. In this problem you will prove Mahaney’s Theorem: a sparse language \(S \) cannot be \(\text{NP} \)-complete unless \(\text{P} = \text{NP} \). Throughout this problem, \(S \) is a sparse language in \(\text{NP} \) with a polynomial bound \(p(n) \) on the number of strings of length at most \(n \).

 (a) Explain briefly where the proof of the special case of Mahaney’s Theorem for unary languages (from class) breaks down for sparse languages.

 (b) Show that if \(\text{SAT} \) reduces to \(S \) in polynomial time via reduction \(R \), then a procedure very similar to the one for unary languages from class decides \(\text{SAT} \) in polynomial time, and hence implies \(\text{P} = \text{NP} \).

 (c) Define \(c(n) \) to be the exact number of strings of length at most \(n \) in \(S \) (clearly \(c(n) \leq p(n) \) for all \(n \)). Argue that the following language is in \(\text{NP} \):

 \[\hat{S} = \{(x,1^k) : k < c(|x|) \text{ or } (k = c(|x|) \text{ and } x \notin S)\} \]

 Hint: do not try to compute \(c(|x|) \); rather, focus on describing an \(\text{NP} \) algorithm that decides \(\hat{S} \) properly under the assumption that \(k = c(|x|) \), and then see what your algorithm does when \(k \neq c(|x|) \).

 (d) Finally we assume \(S \) is \(\text{NP} \)-complete. Thus, everything in \(\text{NP} \) reduces to \(S \), and we give names to two of these reductions: let \(T \) be a polynomial-time reduction from \(\text{SAT} \)

\(^1\)A language is decided (as usual) if every input is either accepted or rejected according to the accept/reject criteria for this type of machine.
to S, and let U be a polynomial-time reduction from \hat{S} to S. Using T and U, describe a family of “candidate reductions from $\overline{\text{SAT}}$ to S,” R_k, with the following properties:

\[
R_k(\phi) \in S \quad \text{if } k < c(|T(\phi)|)
\]

\[
R_k(\phi) \in S \iff \phi \in \text{SAT} \quad \text{if } k = c(|T(\phi)|)
\]

\[
R_k(\phi) \notin S \quad \text{if } k > c(|T(\phi)|)
\]

(e) Using parts (b) and (d), prove Mahaney’s Theorem. You may need to modify part (b) slightly so that on a given input ϕ, the procedure only applies R to formulae ϕ' for which $|\phi'| = |\phi|$. This should require at most a syntactic change: we can think of any partial assignment of values to variables in ϕ as having the same length as ϕ if we don’t perform any simplification.

(f) Argue that if $P = NP$, then there are sparse NP-complete languages (under polynomial-time, many-one reducibility).

3. A directed graph $G = (V,E)$ is strongly connected if for every pair of vertices (x,y) there is a directed path from x to y and a directed path from y to x. Consider STRONGLY CONNECTED, the language of graphs G that are strongly connected. Either show that this problem is in L, or prove a complexity consequence of such a containment.