CS151
Complexity Theory
Lecture 9
April 27, 2015

NW PRG

• NW: for fixed constant \(\delta \), \(G = \{ G_n \} \) with
 - seed length \(t = O(\log n) \)
 - running time \(m^c \)
 - output length \(m = n^\delta \)
 - error \(\varepsilon < 1/m \)
 - fooling size \(s = m \)

• Using this PRG we obtain \(BPP = P \)
 - to fool size \(n^k \) use \(G_{n^k} \)
 - running time \(O(n^k + n^{ck/\delta})2^l = poly(n) \)

One bit

• Suppose \(f = \{f_n\} \) is \(s(n) \)-unapproximable, for \(s(n) = 2^{\Omega(n)} \), and in \(\mathbf{E} \)
 - a “1-bit” generator family \(G = \{ G_n \} \):
 \[G_n(y) = y \circ f_{\log n}(y) \]

 Idea: if not a PRG then exists a predictor that computes \(f_{\log n} \) with better than \(1/2 + 1/s(\log n) \) agreement; contradiction.

Many bits

• Try outputting many evaluations of \(f \):
 \[G(y) = f(b_1(y)) \circ f(b_2(y)) \cdots \circ f(b_m(y)) \]

 Seems that a predictor must evaluate \(f(b_i(y)) \) to predict \(i \)-th bit

 Does this work?
Many bits

- Try outputting many evaluations of f:
 $$G(y) = f(b_1(y)) \circ f(b_2(y)) \circ \ldots \circ f(b_m(y))$$

- predictor might notice correlations without having to compute f

- but, more subtle argument works for a specific choice of $b_1 \ldots b_m$

Nearly-Disjoint Subsets

Definition: $S_1, S_2, \ldots, S_m \subseteq \{1 \ldots t\}$ is an (h, a) design if
- for all i, $|S_i| = h$
- for all $i \neq j$, $|S_i \cap S_j| \leq a$

Lemma: for every $\epsilon > 0$ and $m < n$ can in $\text{poly}(n)$ time construct an

 $(h = \log n$, $a = \epsilon \log n)$ design

 $S_1, S_2, \ldots, S_m \subseteq \{1 \ldots t\}$ with $t = O(\log n)$.

The NW generator

- $f \in E_{s(n)}$-unapproximable, for $s(n) = 2^\delta n$
- $S_1, \ldots, S_m \subseteq \{1 \ldots t\}$ ($\log n$, $a = \delta \log n/3$)
 design with $t = O(\log n)$

 $$G_n(y) = f_{\log n}(y_{|S_1}) \circ f_{\log n}(y_{|S_2}) \circ \ldots \circ f_{\log n}(y_{|S_m})$$

 $f_{\log n} = \begin{bmatrix} 0 & 1 & 0 & 0 & 1 & 0 & 1 & 1 & 1 & 1 & 1 & 0 & 1 & 0 & 1 & 0 \end{bmatrix}$

 seed y

Theorem (Nisan-Wigderson): $G = \{G_n\}$ is a pseudo-random generator with:
- seed length $t = O(\log n)$
- output length $m = n^{\delta/3}$
- running time n^c
- fooling size $s = m$
- error $\epsilon = 1/m$
The NW generator

Proof:
- assume does not \(\varepsilon \)-pass statistical test \(C = (C_m) \) of size \(s \):
 \[|Pr_x[C(x) = 1] - Pr_y[C(G_n(y)) = 1]| > \varepsilon \]
- can transform this distinguisher into a predictor \(P \) of size \(s' = s + O(m) \):
 \[Pr_y[P(G_n(y_1, \ldots, y_{i-1}) = G_n(y_i)] > \frac{1}{2} + \frac{\varepsilon}{m} \]

Proof (continued):
- \(G_n(y) \) is exactly \(f_{\log n}(\cdot) \)
- for \(j \neq i \), as vary \(y' \). \(G_n(\alpha y') \) varies over \(2^a \) values!
- hardwire up to \((m-1)\) tables of \(2^a \) values to provide \(G_n(\alpha y')_{1, \ldots, i} \)

Worst-case vs. Average-case

Theorem (NW): if \(E \) contains \(2^{\Omega(n)} \)-unapproximable functions then \(BPP = P \).

- How reasonable is unapproximability assumption?
- Hope: obtain \(BPP = P \) from worst-case complexity assumption
 - try to fit into existing framework without new notion of "unapproximability"
Error-correcting codes

- Error Correcting Code (ECC): \[C: \Sigma^k \to \Sigma^n \]
- message \(m \in \Sigma^k \)
- received word \(R \)
 - \(C(m) \) with some positions corrupted
- if not too many errors, can decode: \(D(R) = m \)
- parameters of interest:
 - rate: \(k/n \)
 - distance: \(d = \min \Delta(C(m), C(m')) \)

Distance and error correction

- \(C \) is an ECC with distance \(d \)
- can uniquely decode from up to \(\lfloor d/2 \rfloor \) errors

Distance and error correction

- can find short list of messages (one correct) after closer to \(d \) errors!

Theorem (Johnson): a binary code with distance \((1/2 - \delta^2)n\) has at most \(O(1/\delta^2) \) codewords in any ball of radius \((1/2 - \delta)n\).

Example: Reed-Solomon

- alphabet \(\Sigma = F_q \): field with \(q \) elements
- message \(m \in \Sigma^k \)
- polynomial of degree at most \(k-1 \)
 \[p_m(x) = \sum_{i=0}^{k-1} m_i x^i \]
- codeword \(C(m) = (p_m(x))_{x \in F_q} \)
- rate = \(k/q \)

Example: Reed-Solomon

- Claim: distance \(d = q - k + 1 \)
 - suppose \(\Delta(C(m), C(m')) < q - k + 1 \)
 - then there exist polynomials \(p_m(x) \) and \(p_{m'}(x) \) that agree on more than \(k-1 \) points in \(F_q \)
 - polynomial \(p(x) = p_m(x) - p_{m'}(x) \) has more than \(k-1 \) zeros
 - but degree at most \(k-1 \)
 - contradiction.

Example: Reed-Muller

- Parameters: \(t \) (dimension), \(h \) (degree)
- alphabet \(\Sigma = F_q \): field with \(q \) elements
- message \(m \in \Sigma^k \)
- multivariate polynomial of total degree at most \(h \):
 \[p_m(x) = \sum_{i=0}^{k-1} m_i M_i \]
 \(\{ M_i \} \) are all monomials of degree \(\leq h \)
Example: Reed-Muller

- M_i is monomial of total degree h
 - e.g. $x_1^2x_2x_3^3$
 - need $\#$ monomials $(h+t\choose t) > k$
- codeword $C(m) = (p_m(x))_{x \in \mathbb{F}_q^h}$
- rate $= k/q$
- Claim: distance $d = (1 - h/q)q^t$
 - proof: Schwartz-Zippel: polynomial of degree h can have at most h/q fraction of zeros

Codes and hardness

- Reed-Solomon (RS) and Reed-Muller (RM) codes are efficiently encodable
- efficient unique decoding?
 - yes (classic result)
- efficient list-decoding?
 - yes (RS on problem set)

Codes and Hardness

- Use for worst-case to average case:
 - truth table of $f: \{0,1\}^{\log k} \rightarrow \{0,1\}$
 - (worst-case hard)
 - m: 01100010
 - truth table of $f': \{0,1\}^{\log n} \rightarrow \{0,1\}$
 - (average-case hard)
 - Enc(m): 01100010000010

- if $n = \text{poly}(k)$ then $f \in \mathbb{E}$ implies $f' \in \mathbb{E}$
- Want to be able to prove:
 - if f' is s'-approximable,
 - then f is computable by a size $s = \text{poly}(s')$ circuit

Codes and Hardness

- Key: circuit C that approximates f' implicitly gives received word R
 - R: 0110010000100010
 - Enc(m): 01100010000010
- Decoding procedure D “computes” f exactly
 - Requires special notion of efficient decoding
- small circuit C approximating f'
- small circuit that computes f exactly $f(i)$

April 27, 2015
Encoding

- use a (variant of) Reed-Muller code concatenated with the Hadamard code
 - \(q \) (field size), \(t \) (dimension), \(h \) (degree)
- encoding procedure:
 - message \(m \in \{0,1\}^k \)
 - subset \(S \subseteq F_q \) of size \(h \)
 - efficient 1-1 function \(\text{Emb}: [k] \to S' \)
 - find coeffs of degree \(h \) polynomial \(p_m : F_q^t \to F_q \)
 for which \(p_m(\text{Emb}(i)) = m \) for all \(i \)
 (linear algebra)

Decoding

- Decoding step 1 (continued):
 - produce circuit \(C' \) from \(C \)
 - for at least \(\delta/2 \) of blocks, agreement in block is at least \(\delta/2 \)
 - Johnson Bound: when this happens, list size is \(S = \Omega(1/\delta^2) \), so probability \(C' \) correct is \(1/\delta^2 \)
 - altogether:
 - \(\Pr_x[C'(x) = p_m(x)] \geq \Omega(\delta^3) \)
 - \(C' \) makes \(q \) queries to \(C \)
 - \(C' \) runs in time \(\text{poly}(q) \)

Decoding

- Decoding step 2 (continued):
 - produce circuit \(C'' \) from \(C' \)
 - given \(x \in F_q^t \) outputs “guess” for \(p_m(x) \)
 - \(C'' \) computes \(\{ z : \text{Had}(z) \text{ has agreement } \delta + \delta/2 \text{ with } x \text{-th block} \} \), outputs random \(z \) in this set

Decoding

- small circuit \(C \) computing \(R \), agreement \(1/2 + \delta \)
- Decoding step 1
 - produce circuit \(C' \) from \(C \)
 - given \(x \in F_q^t \) outputs “guess” for \(p_m(x) \)
 - \(C' \) computes \(\{ z : \text{Had}(z) \text{ has agreement } 1/2 + \delta/2 \text{ with } x \text{-th block} \} \), outputs random \(z \) in this set

Decoding

- small circuit \(C' \) computing \(R' \), agreement \(\delta^3 = \Omega(\delta^3) \)
- Decoding step 2
 - produce circuit \(C'' \) from \(C' \)
 - given \(x \in \text{emb}(1,2,...,k) \) outputs \(p_m(x) \)
 - idea: restrict \(p_m \) to a random curve; apply efficient R-S list-decoding; fix “good” random choices
Restricting to a curve

- points \(x = \alpha_1, \alpha_2, \alpha_3, \ldots, \alpha_r \in \mathbb{F}_q \) specify a degree \(r \) curve \(L : \mathbb{F}_q \rightarrow \mathbb{F}_q \)
- \(w_1, w_2, \ldots, w_r \) are distinct elements of \(\mathbb{F}_q \)
- for each \(i \), \(L_i : \mathbb{F}_q \rightarrow \mathbb{F}_q \) is the degree \(r \) poly for which \(L_i(w_j) = (j)_i \) for all \(j \)
- Write \(p_m(L(z)) \) to mean \(p_m(L_1(z), L_2(z), \ldots, L_t(z)) \)
- \(p_m(L(w_1)) = p_m(x) \)

Example:
- \(p_m(x_1, x_2) = x_1^2 x_2^2 + x_2 \)
- \(w_1 = 1, w_2 = 0 \)
- \(\alpha_1 = (2, 1) \)
- \(\alpha_2 = (1, 0) \)
- \(L_1(z) = 2z + 1(1 - z) = z + 1 \)
- \(L_2(z) = 1z + 0(1 - z) = z \)
- \(p_m(L(z)) = (z+1)^2 z^2 + z = z^4 + 2z^3 + z^2 + z \)

Decoding

- small circuit \(C' \) computing \(R' \), agreement \(\delta' = \Omega(\delta^3) \)
- Decoding step 2 (continued):
 - pick random \(w_1, w_2, \ldots, w_r; \alpha_2, \alpha_3, \ldots, \alpha_r \) to determine curve \(L \)
 - points on \(L \) are \((r-1)\)-wise independent
 - random variable: \(\text{Agr} = |\{z : C'(L(z)) = p_m(L(z))\}| \)
 - \(E[\text{Agr}] = \delta' q \) and \(\text{Pr}[\text{Agr} < (\delta' q)/2] < O(1/(\delta' q)^{r-1/2}) \)

Decoding

- Decoding step 2 (continued):
 - assuming \((\delta' q)/2 > (2r \cdot t \cdot q)^{1/2} \)
 - Reed-Solomon list-decoding step:
 - running time = \(\text{poly}(q) \)
 - list size \(S \leq 4/\delta' \)
 - probability list fails to contain \(p_m(L(\cdot)) \) is \(O(1/(\delta' q))^{r-1/2} \)