Lecture 9
May 2, 2023

Derandomization

* Pseudo-Random Generator (PRG):
6

t bits m bits
— Gis efficiently computable

— “stretches” t bits into m bits

— “fools” smalll circuits: for all circuits C of size
at most s:

[Pr,[C(y) = 1] - Pr[C(G(z)) = 1]| < &

May 2, 2023 CS151 Lecture 9

Blum-Micali-Yao PRG

« Initial goal: for all 1 > & > 0, we will build a
family of PRGs {G} with:
output length m
seed length t = m®
error € < 1/6

fooling size s =m
running time m¢

« implies: BPP C Ngso TIME(2™) & EXP
» Why? simulation runs in time
O(m+me)(2™) = 0(2m*°) = O(27°*%)

Blum-Micali-Yao PRG

* PRGs of this type imply existence of one-way-
functions

— we'll use widely believed cryptographic assumptions

Definition: One Way Function (OWF): function
family f = {f,}, f,:{0,1}» - {0,1}
— f, computable in poly(n) time
— for every family of poly-size circuits {C,}
PrfCa(fi(x)) € fi'(f.(x))] < &(n)
—¢(n) =o(n<) forall c

May 2, 2023 CS151 Lecture 9

— can simplify “Pr[Cn(f.(x)) € f-(f.(x))] < &(n)” to
Pry[Cn(Y) = fn'W(Y)] <¢g n)

May 2, 2023 CS151 Lecture 9

May 2, 2023 CS151 Lecture 9 3
2 3
Blum-Micali-Yao PRG First attempt
* believe one-way functions exist * attempt at PRG from OWP f:
—e.g. integer multiplication, discrete log, RSA —t=md
(w/ minor modifications) —yo {0, 1}t
=i = fi(yi1)
Definition: One Way Permutation: OWF in — G(Yo) = YitVi2Ykes--.Yo
which f, is 1-1 —k=mh

» computable in time at most
ktc < mte-1 = me

May 2, 2023 CS151 Lecture 9

First attempt

* output is “unpredictable”:
— no poly-size circuit C can output y;.1 given
Yi-1Yk-2Yk-3- - .Yi With non-negl. success prob.
—if C could, then given y; can compute
Vi1, Yie2s -+ Yiv2, Yier @nd feed to C
—result is poly-size circuit to compute
Yt = f'(y) fromy;
—note: we're using that f; is 1-1

May 2, 2023 CS151 Lecture 9

First attempt

+ second problem

—we don't know if “unpredictability” given a
prefix is sufficient to meet fooling requirement:

IPry[C(y) = 1] - Pr[C(G(2)) = 1]| < €

May 2, 2023 CS151 Lecture 9 10

First attempt
attempt: f. £ f f. £
DRSO 0 6 58 b 3)
oy = fi(yin) (Yo):
- G-

Yk-1Yk-2Yk-3---Yo
fv fr f{l f{l fr’l

') [ys] [va] [ys] [ve] D] [e]

May 2, 2023 CS151 Lecture 9

First attempt

* one problem:
—hard to compute i from y;

— but might be easy to compute single bit (or
several bits) of y;.1 from y,
— could use to build small circuit C that

distinguishes G’s output from uniform
distribution on {0,1}m

10

May 2, 2023 CS151 Lecture 9
8 9
Hard bits Hard bits
* If {f.} is one-way permutation we know: For some specific functions f we know of
- no poly-size circuit can compute f,-'(y) from y with such a bit position j
non-negligible success probability
PrICi(y) = f ' (y)] < €'(n)
» We want to identify a single bit position j for * More general:
which: function h,:{0,1}" = {0,1}
— no poly-size circuit can compute (f,'(x)); from x with rather than just a bit position J
non-negligible advantage over a coin flip ’
Pr,[Cq(y) = (f(y))] = V2 + &(n)
May 2, 2023 CS151 Lecture 9 1 May 2, 2023 CS151 Lecture 9 12
11

12

Hard bits

Definition: hard bit for g = { g} is family h = {C
{0, Tf" - {0,1} such tha C|rCU|tfam|Iy{ of

size s(n) achieves:
PrdCn(x) = hn(gn(x))] 2 %2 + £(n)

then there is a circuit family {C’,,} of size s’(n)
that achieves:

Pri[C’(x) = gn(X)] 2 €'(n)
with:

— €'(n) = (g(n)/n)o
= s'(n) = (s(n)n/g(n))°”

May 2, 2023 CS151 Lecture 9 13

Goldreich-Levin

» To get a generic hard bit, first need to
modify our one-way permutation

+ Define f',:{0,1}"x {0,1}" = {0,1}*" as:

fa(x,y) = (fa(x), y)

May 2, 2023 CS151 Lecture 9

Goldreich-Levin

« Two observations: Fa(x.y) = (fa(X),)

—f is a permutation if f is

— if circuit C, achieves
Pryy[Ca(xy) = Fal(x,y)] 2 €(n)
then for some y*
PrdCa(x,y)=fnt(x,y)=(fr" (x), y)] 2 €(n)
and so f is a one-way permutation if f is.

May 2, 2023 CS151 Lecture 9 15

13

14

15

Goldreich-Levin

» The Goldreich-Levin function:
GLan: {0,13" x {0,1}" - {0,1}
is defined by:
GLan (X,y) = @iy, =1Xi
— parity of subset of bits of x selected by 1's of y
— inner-product of n-vectors x and y in GF(2)

Theorem (G-L): for every function f, GL is a
hard bit for . (proof: problem set)

May 2, 2023 CS151 Lecture 9 16

Distinguishers and predictors

* Distribution D on {0,1}"
» D g-passes statistical tests of size s if for
all circuits of size s:

[Pryu,[C(y) = 1] = Pry o[C(y) = 1] < &

— circuit violating this is sometimes called an
efficient “distinguisher”

May 2, 2023 CS151 Lecture 9

16

Distinguishers and predictors

» D g-passes prediction tests of size s if for
all circuits of size s:
Pryp[C(y12,.-1)=Vyi] <2+ €
— circuit violating this is sometimes called an
efficient “predictor”
* predictor seems stronger
* Yao showed essentially the same!
—important result and proof (“hybrid argument”)

May 2, 2023 CS151 Lecture 9 18

17

18

Distinguishers and predictors

Theorem (Yao): if a distribution D on {0,1}"
(¢/n)-passes all prediction tests of size s,
then it e-passes all statistical tests of size
s’ =s—0(n).

May 2, 2023 CS151 Lecture 9

19

Distinguishers and predictors

* Proof:
—idea: proof by contradiction
—given a size s’ distinguisher C:
IPry<u,[C(y) = 11— Pry—o[C(y) = 1] > £
—produce size s predictor P:
Pryo[P(y12..i1) =Yl > Y2+ e/n

—work with distributions that are “hybrids” of the
uniform distribution U, and D

May 2, 2023 CS151 Lecture 9 20

Distinguishers and predictors

—given a size s’ distinguisher C:
IPryus[C(y) = 1] = Pry—p[C(y) = 1]| > €

— define n+1 hybrid distributions
— hybrid distribution D;:

« sample b = b;b,...b, from D

* sample r =ryr,...r, from U,

« output:

b1b2...b‘ li+1li+2. ..M

May 2, 2023 CS151 Lecture 9 21

Distinguishers and predictors

* Hybrid distributions:

Do=VU: LT TTTTTTTITTT]

D N TTTT 1]
S EEEEEN

D,=D: I

May 2, 2023 CS151 Lecture 9

22

22

20 21
Distinguishers and predictors Distinguishers and predictors
— Define: p; = Pry-p,[C(y) = 1] — define distribution D;’ to be D; with i-th bit
flipped
—Note: po=Pryy,[C(y)=1]; pn=Pryp[C(y)=1] —pi = Pryep[C(y) = 1]
— by assumption: € < |pn = Pol b
. . . EHEN | | | EEEEEEN
—triangle inequality: |pn — po| < Z1<i<n|pi — pi1] D-'l
—there must be some i for which D‘-’: ﬁ
[pi = pit| > €/n — notice:
—WLOG assume p; — pi1 > €/n Dy = (D + Dy)2 Pt = (pi + pi’)2
« can invert output of C if necessary
May 2, 2023 CS151 Lecture 9 23 May 2, 2023 CS151 Lecture 9 24
23 24

Distinguishers and predictors

- randomized predictor P’ for it" bit:
—input: U= y1ys...Yi4 (which comes from D)
—flip a coin: d €{0,1}
— W= Wi+1Wi+2...Wp <—Un.‘
— evaluate C(udw)
—if 1, output d; if 0, output —d
Claim:

PryeD,d,Weun_i[P’(W...i.1) = yi] > Y+ g/n.

May 2, 2023 CS151 Lecture 9 25

25

May 2, 2023

Distinguishers and predictors
M [[[[] D

m—TTTT
— Observe: D/

Prly, =d | C(u,d,w) = 1]

= Pr[C(u,d,w) = 1|y, =d]Prly;=d] / Pr{C(u,d,w) = 1]
= p/(2pi1)

Prly, = —d | C(u,d,w) = 0]
= Pr{C(u,d,w)=0 | y= =d]Prly;=—d] / Pr[C(u,d,w) = 0]
=(1-p)/2(1-pi1)

CS151 Lecture 9 28

Distinguishers and predictors

* P’ is randomized procedure
+ there must be some fixing of its random
bits d, w that preserves the success prob.

« final predictor P has d"and w" hardwired:

Size is circuit \ may need to
for P: c add - gate
s'+0(n)=s
as promised FTTTTTTTTTTTT I
p d
May 2, 2023 CS151 Lecture 9 w

26

Distinguishers and predictors

Proof of claim:
Pryo.aweunidP'(Y1...i1) = Vil =
Prly; = d | C(u,d,w) = 1]Pr[C(u,d,w) = 1]

+ Prly; = =d | C(u,d,w) = 0]Pr[C(u,d,w) = 0]

= Prly =d | C(u,d,w) = 1](pi1)
+ Prly; = =d | C(u,d,w) = 0](1 - pi.1)

May 2, 2023 CS151 Lecture 9

26

27

Distinguishers and predictors

» Success probability:

Priy=d|C(u,d,w)=1](pi1) + Prly=—d|C(u,d,w)=0](1-p:-1)
* We know:

= Prly; =d| C(u,d,w) = 1] = p/(2p.)

— Prly;= —d | C(u,dw) =0] = (1-p)/2(1-pis)

= pu = (P +p)2
—pi—p.1 > € pi'/2 = pi.1 —pi2
» Conclude:

PrP’(y;.....) =yl = "2+ (pi - p)/2
=Y+ pl2—(pi—pl2) = Va+ pi—piy > V2t e

May 2, 2023 CS151 Lecture 9

28

29

The BMY Generator

* Recall goal: for all 1 > & > 0, family of
PRGs {Gn} with
output length m
seed length t = md
error € < 1/6

fooling size s =m
running time m°®

« If one way permutations exist then WLOG
there is OWP f = {f,} with hard bit h = {hy}

May 2, 2023 CS151 Lecture 9

29

30

The BMY Generator The BMY Generator

Generator G°= {G°}:

Theorem (BMY): for every & > 0, there is a
—t=md constant ¢ s.t. for all d, e, G%is a PRG with
—yo €{0,1}t error € < 1/md
=i = fi(yin) fooling size s = m®
—bi = hy(y:) running time me
— GO(yo) = brm-1bm-2bm-s...bo

* Note: stronger than we needed
— sufficient to have € < 1/6; 8 =m

May 2, 2023

May 2, 2023 CS151 Lecture 9

31

CS151 Lecture 9

32

31

The BMY Generator
Generator 6% = {G%n}:

-t=md yo € {01} yi = filyi1): bi = hi(y:)
~G%n(Yo) = br-1bn-2bn-3.bo

* Proof:
— computable in time at most
mtc < mc+1

—assume G® does not (1/md)-pass statistical
test C = {Cp} of size me:

[Pry—um[C(y) = 1] = Przp[C(2) = 1]| >1/m¢

May 2, 2023

CS151 Lecture 9

32

33

The BMY Generator The BMY Generator
Generator 6° = {G%}:

Generator 6° = {6%}:
-t =m?; Yo € {0,1}*3 Yi= ff(Yi-:)Z b; = ht(yi) -t =m; Yo € (0,1}*5 Yi = f?(Yi-l): b; = h*(Yi)
=GP (Yo) = bn-1bn-2bn-3.-bo ~6%n(Yo) = br-1bm-2bm-3...0o

— transform this distinguisher into a predictor ~ a procedure to compute hy(f"(y))
P of size me + O(m): *setyn =Y, bri=hlym:)
« compute y;, b;for j = m-i+1, m-i+2..., m-1 as above
« evaluate P(by,.1by2...bya)
« f a permutation implies by,.1bp.»...by.; distributed as
(prefix of) output of generator:
Pr[P(b. 2. .bri) = Dia] > Y2+ 1/me

PrIP(Brt. . bni) = Brnit] > ¥4+ 1/me+t

May 2, 2023 CS151 Lecture 9 34

May 2, 2023 CS151 Lecture 9

35

34

The BMY Generator

Generator 6° = {G%n}:

-t=m% yo €{01): yi = filyia): bi = hi(y:)
'Gém(YO) = byy-1bm-2bp-3..bo

Pry[P(Bn. 1D Br.i) = bini] > %2 + 1/met
— What is by..1?

Bt = N(Ym-i1) = h(f " (Ymai)) = D (y)

— We have described a family of polynomial-size
circuits that computes hy(f;*(y)) from y with success
greater than %z + 1/poly(m)

— Contradiction.

May 2, 2023 CS151 Lecture 9

35

36

The BMY Generator

fo f f f fi
6(yo): [ys] [ya] [vs] [vz] [ve] [ye]
;nmﬂmm
fo f f £t £

same
distribution

May 2, 2023 CS151 Lecture 9 37

37

Hardness vs. randomness

+ BMY: for every 5 > 0, G%is a PRG with
seed length t = m?
output length m
error € < 1/md (all d)
fooling size s = me (all e)
running time me

« running time of simulation dominated by 2!

May 2, 2023

CS151 Lecture 9 40

40

Hardness vs. randomness

* We have shown:
If one-way permutations exist then
BPP < Ns>o TIME(2"®) ¢ EXP

« simulation is better than brute force, but
just barely

* stronger assumptions on difficulty of

inverting OWF lead to better simulations...

May 2, 2023 CS151 Lecture 9

38

Hardness vs. randomness

* Next, we will show:

If E requires exponential size circuits then
BPP =P

by building a different generator from
different assumptions.
E = uxDTIME(2")

May 2, 2023 CS151 Lecture 9 39

38 39
Hardness vs. randomness Hardness vs. randomness
» To get BPP = P, would need t = O(log m) * BMY pseudo-random generator:
* BMY building block is one-way- — one generator fooling all poly-size bounds
permutation: — one-way-permutation is hard function
£:{0,1}t — {0,1}t —implies hard function in NP n coNP
* required to fool circuits of size m® (all e) * New idea (Nisap-Wigderson):
» with these settings a circuit has time to ~ for each poly-size bound, one generator
invert f by brute force! —hard function allowed to be in
can’t get BPP = P with this type of PRG E = Ui DTIME(2'")
May 2, 2023 Cs151 Lecture 9 41 May 2, 2023 CS151 Lecture 9 42
41 42

