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2. Polynomial identity testing

* Given: polynomial p(x1, X2, ..., Xn) @S
arithmetic formula (fan-out 1):

*

Polynomial identity testing

* Question: Is p identically zero?
—i.e.,isp(x)=0forall x € F
— (assume |F| larger than degree...)

“polynomial identity testing” because

» multiplication (fan-in 2) PN
) add|t|?n (fan-|r.1 2) o N given two polynomials p, g, we can check
*negation (fan-in 1)~  ~ | the identity p = q by checking if (p —q) =0
Xi Xo X3 X
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Polynomial identity testing

* try all |F|"inputs?
—may be exponentially many
multiply out symbolically, check that all

coefficients are zero?
— may be exponentially many coefficients

can randomness help?
—i.e., flip coins, allow small probability of wrong

answer
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Polynomial identity testing

Lemma (Schwartz-Zippel): Let
p(x1, X2, ..., Xn)
be a total degree d polynomial over a field
F and let S be any subset of F. Then if p is

not identically O,
Prr1,r ..... rngs[ p(ry, ra, ..., 1) = 0] < d/|S].

2
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Polynomial identity testing

* Proof:
—induction on number of variables n
—base case: n = 1, p is univariate polynomial of

degree at most d

—at most d roots, so
Pr[ p(r1) = 0] < d/|S|
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Polynomial identity testing

— write p(X1, Xz, ..., Xn) @S
P(X1, X2, .. Xn) = Zi (X1) PilX2, .-y Xn)
—k =max. i for which pi(xy, ..., X,) not id. zero
— by induction hypothesis:
Pri p(rz, ..., ra) = 0] < (d-k)/|S|
—whenever pg(rz, ..., ) #0, p(xq, Iz, ..., Iy is a
univariate polynomial of degree k

Prip(r1,r2,...,r)=0 | pi(rz,....In) # 0] <k/|S|
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Polynomial identity testing

+ randomized algorithm: field F, pick a
subset S € F of size 2d
—pick rq, Iy, ..., ryfrom S uniformly at random
—if p(r4, r2, ..., ra) = 0, answer “yes”
—ifp(r4, ra, ..., 1n) # 0, answer “no”

if p identically zero, never wrong

« if not, Schwartz-Zippel ensures probability
of error at most 2
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Polynomial identity testing

Prip(rz, ..., ) = 0] < (d-k)/|S|
Prip(ri,r2,....,rn)=0 | pi(r2,....ra) # 0] <k/|S|
—conclude:
Prip(rs, ..., ra) = 0] < (d-k)/|S| + k/|S| = d/|S]

— Note: can add these probabilities because
PF[E1] = PI'[E1|E2]PI'[E2] + Pr[E1|—|E2]Pr[—|E2]
< Pr[Eg] + Pr[E1|—|E2]
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Polynomial identity testing

* Given: polynomial p(x1, X2, ..., Xn)

*

SN

*/_/\

* Is p identically zero?

P 2 N
X; Xz X3 .. Xg

* Note: degree d is at most the size of input
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Polynomial identity testing 3. Unique solutions
* Given: polynomial p(x1, X2, ..., Xn) * a positive instance of SAT may have many
satisfying assignments
* Is p identically zero? "
What if polynomial is given /\ + maybe the difficulty comes from not
as arithmetic circuit? PN knowing which to “work on”
- max degree? e ;\ N
- does the same strategy | X % X « if we knew # satisfying assignments was 1
work? or 0, could we zoom in on the 1 efficiently?
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Unique solutions

Question: given polynomial-time algorithm
that works on SAT instances with at most
1 satisfying assignment, can we solve
general SAT instances efficiently?

* Answer: yes
—but (currently) only if “efficiently” allows
randomness
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Unique solutions

Theorem (Valiant-Vazirani): there is a
randomized poly-time procedure that given
a 3-CNF formula
O(X1, X2, -+, Xn)
outputs a 3-CNF formula ¢’ such that
—if @ is not satisfiable then @’ is not satisfiable

—if @ is satisfiable then with probability at least
1/(8n) @’ has exactly one satisfying

Unique solutions

* Proof:

—given subset S € {1, 2, ..., n}, there exists a
3-CNF formula 6s on x4, Xy, ..., Xn and
additional variables such that:

* s is satisfiable iff an even number of
variables in {x}is are true

« for each such setting of the x; variables, this
satisfying assignment is unique

* 18s| = O(n)
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Unique solutions

—set@o=¢
—fori=1,2,...,n

* pick random subset S;

* set @i = @iq A Bg;
— output random one of the @

— T = set of satisfying assignments for ¢
— Claim: if |T| > 0, then
Prieo.12,...n[26 < |T| £ 26411 2 1/n
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i t
assignmen * not difficult; details omitted
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Unique solutions Unique solutions
Claim: if 2k < |T| < 2k, then the probability (.2 — Prlt agrees with some t' on Sy,..., S
has exactly one satisfying assignment is = 1/8 < (T2 < s
“fxtteT += 0101001010111 - Er[t sat,iSﬁeS 81.‘ ?2.’ Skf 1= Wz)kj
S %?rggls?t?oivsein# + = 1010111000101 — Pr{t unique satis y;n(gya)isalgnment of Q2]
where t; # ~— Si §
— Prit “agrees with” t on §] = %2 — sum over at least 2« different t € T (disjoint
—Prlt agrees with t' on Sy, S, ..., Sks2] = (V2)k*2 events); claim follows.
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Randomized complexity classes

model: probabilistic Turing Machine
— deterministic TM with additional read-only
tape containing “coin flips”
BPP (Bounded-error Probabilistic Poly-time)
—L eBPPifthereisap.p.t. TM M:
x € L = Pr,[M(x,y) accepts] = 2/3
x & L = Pr,[M(x,y) rejects] = 2/3
— “p.p.t" = probabilistic polynomial time
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Randomized complexity classes

These classes may capture “efficiently
computable” better than P.

* “1/2” in ZPP, RP, coRP definition unimportant
— can replace by 1/poly(n)
» “2/3” in BPP definition unimportant
— can replace by % + 1/poly(n)
* Why? error reduction
— we will see simple error reduction by repetition
— more sophisticated error reduction later
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Randomized complexity classes

* RP (Random Polynomial-time)
—L e RPif there is a p.p.t. TM M:
x € L = Pr,[M(x,y) accepts] = /%
x & L = Pr,[M(x,y) rejects] = 1
* coRP (complement of Random Polynomial-time)
—L ecoRP ifthereisap.p.t. TM M:
x € L = Pr,[M(x,y) accepts] = 1
x & L = Pr,[M(x,y) rejects] = 2
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Randomized complexity classes

One more important class:

» ZPP (Zero-error Probabilistic Poly-time)
—ZPP =RP n coRP
— Pry[M(x,y) outputs “fail"] < %2
— otherwise outputs correct answer
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Error reduction for RP

» given Land p.p.t TM M:
x € L = Pry[M(x,y) accepts] = €
x & L = Pr,[M(x,y) rejects] = 1
* new p.p.t TM M":
— simulate M k/e times, each time with
independent coin flips

—accept if any simulation accepts
— otherwise reject
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Error reduction

x € L = Pr,[M(x,y) accepts] = €
x & L = Pr,[M(x,y) rejects] = 1
« ifxelL:
— probability a given simulation “bad” < (1 —¢)
— probability all simulations “bad” < (1—¢)e) < e
Pry[M'(x, y') accepts] =2 1 — ek
o ifxe¢lL:
Pry[M'(x,y’) rejects] = 1
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Error reduction for BPP

* given L, and p.p.t. TM M:
x € L = Pr,[M(x,y) accepts] = 72 + €
x € L = Pry[M(x,y) rejects] 2 %2 + €
* new p.p.t. TM M’:
—simulate M k/e2 times, each time with
independent coin flips
— accept if majority of simulations accept
— otherwise reject
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Error reduction for BPP

— X random variable indicating “correct”
outcome in i-th simulation (out of m = k/e2 )
s PriXi=1]2%+¢
cPriX;=0]<%-¢
—E[X] 2 Yate
—-X= ZiXi
-u=EX]2(%+¢em

— Chernoff: PriX < m/2] < 242 1)
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Error reduction for BPP

x € L = Pry[M(x,y) accepts] 2 %2 + €
X & L = Pr,[M(x,y) rejects] = /2 + €

—ifxeL
Pr,[M'(x, y') accepts] 2 1 — (v5)K)
—ifxegL
Pr,[M'(x,y') rejects] = 1 — (v5)xK)
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Randomized complexity classes

* We have shown:
— polynomial identity testing is in coRP

— a poly-time algorithm for detecting unique
solutions to SAT implies

NP =RP
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Relationship to other classes Relationship to other classes
» ZPP, RP, coRP, BPP, contain P
— they can simply ignore the tape with coin flips PSPACE
« all are in PSPACE / \ \
— can exhaustively try all strings y Bep
— count accepts/rejects; compute probability TP / \C"‘NP
* RP = NP (and coRP < coNP) RP CcoRP
— multitude of accepting computations ™~ p/
— NP requires only one
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BPP

* How powerful is BPP?
» We have seen an example of a problem in
BPP
that we only know how to solve in EXP.

Is randomness a panacea
for intractability?
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BPP

* It is not known if BPP = EXP (or even
NEXP!)
— but there are strong hints that it does not

* Is there a deterministic simulation of BPP
that does better than brute-force search?
—yes, if allow non-uniformity

Theorem (Adleman): BPP < P/poly
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BPP and Boolean circuits

* Proof:
—language L € BPP
— error reduction gives TM M such that
«if x € L of length n
Pry[M(x, y) accepts] = 1 — (1/2)nz
«if x ¢ L of length n
Pry[M(x, y) rejects] 2 1 — (‘/z)I12
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BPP and Boolean circuits

—say “y is bad for x” if M(x,y) gives incorrect
answer

— for fixed x: Pry[y is bad for x] < (1/2)nz

—Pr,ly is bad for some x] < 2(V4)’< 1

— Conclude: there exists some y on which
M(x, y) is always correct
— build circuit for M, hardwire this y
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BPP and Boolean circuits BPP
» Does BPP = EXP ? * Next:
* Adleman’s Theorem shows: further explore the relationship between
BPP = EXP implies EXP < P/poly randomness
and

If you believe that randomness is
all-powerful, you must also believe
that non-uniformity gives an
exponential advantage.
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nonuniformity

* Main tool: pseudo-random generators
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Derandomization

» Goal: try to simulate BPP in
subexponential time (or better)

+ use Pseudo-Random Generator (PRG):

[seed}— & [ —{ output string |

t bits m bits

« often: PRG “good” if it passes (ad-hoc)
statistical tests

April 27,2023 CS151 Lecture 8

37

Simulating BPP using PRGs

* Use a PRG G with

— output length m

—seed length t «m

—error €< 1/6

—fooling size s =m

Compute Pr,[Cy(G(z)) = 1] exactly
—evaluate C,(G(z)) on every seed z € {0,1}t

running time (O(m)+(time for G))2t
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Derandomization

» ad-hoc tests not good enough to prove
BPP has non-trivial simulations

» Our requirements:
— Gis efficiently computable
— “stretches” t bits into m bits
— “fools” small circuits: for all circuits C of size
at most s:
IPr,[C(y) = 1] - Pr,IC(G(@)) = 1]| s €
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Simulating BPP using PRGs

* Recall: L € BPP implies exists p.p.t. TM M
x € L = Pry[M(x,y) accepts] = 2/3
x & L = Pr,[M(x,y) rejects] = 2/3
* given an input x:
— convert M into circuit C(x, y)
— simplification: pad y so that |C| = |y| =m
* hardwire input x to get circuit Cx
Pry[Cx(y)=1]122/3 (“yes”)
Pry[Cx(y) =11£1/3  (“no”)
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Simulating BPP using PRGs

» knowing Pr,[C«(G(z)) = 1], can distinguish
between two cases:

£
| | | | |
“yes": | | [ |
Yt 0 3 12 23 1

£

| (_Aj\ | |
ot 13 12 23
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Blum-Micali-Yao PRG

* Initial goal: for all 1 > & > 0, we will build a
family of PRGs {G,} with:
output length m fooling size s =m
seed length t = md running time m¢
error € < 1/6

* implies: BPP < Nsso TIME(2“5) ¢ EXP
* Why? simulation runs in time
O(m+me)(2m°) = O(2m*°) = 027
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