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Complexity
Theory

Monotone circuits

* A question:
Do all
poly-time computable monotone functions
have

poly-size monotone circuits?

—recall: true in non-monotone case
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Monotone circuits

A monotone circuit for CLIQUEn k

* Input: graph G = (V,E) as adj. matrix, [V|=n
— variable xij for each possible edge (i,j)

+ ISCLIQUE(S) = monotone circuit that = 1
iff ScVisaclique: A;jesxi;
CLIQUEnk computed by monotone circuit:

Vscv sj=k ISCLIQUE(S)
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Monotone circuits

» Theorem (Razborov 85): monotone
circuits for CLIQUE;, x with k = n"* must
have size at least

20((11/8).

* Proof:
—rest of lecture
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Proof idea

“method of approximation”

suppose C is a monotone circuit for
CLIQUEnk

build another monotone circuit CC that
“approximates” C gate-by-gate

/- \Sandl/\\

April 25, 2023 CS151 Lecture 7

Proof idea
« on test collection of positive/negative
instances of CLIQUE:

—local property: few errors at each gate
— global property: many errors on test collection

» Conclude: C has many gates
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Notation

* input: graph G = (V, E)
» variable x;k for each potential edge (j, k)
* CC(X4, Xz, ... Xm), where X; € V, means:

VilAj kex; Xik) ™

» For example: CC(X1, X2, ... Xm) where the
Xi range over all k-subsets of V

—this is the obvious monotone circuit for
CLIQUEn from a previous slide.
[CC()=0; (Nijepxi)=1]
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Preview

* approximate circuit CC(X4, Xz, ... Xm)
* n=#nodes
» k = n' = size of clique
» h =n"8=max. size of subsets X;
— this is “global property” that ensures lots of
errors

—many graphs G with no k-cliques, but clique
on X; of size h
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Xi

Preview

* approximate circuit CC(X4, Xz, ... Xm)
* p=n"8logn

* M= (p—1)h!

* max # of subsets is M (so m £ M)

— critical for “local property” that ensures few
errors at each gate
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Approximate OR

CC(X1,X2,... Xw) CC(Y1,Y2,...Ym")
» exact OR:
CC(X1,X2,..Xm,Y1,Y2,...Ym")
—setsizes still <h
—may be up to 2M sets; need to reduce to M
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Approximate OR Approximate OR
—throw away sets? bad:many errors * CC(X4,X2,...%Xm) W
— throw away overlapping sets? — better . .
y pping CC(Y1,Y2,...Ym") A@
OO « exact OR:
— throw away special configuration of ) CCX1,Xs,... .Xm*,Y1.,Y2,. ~Ym) )
overlapping sets — best — while morg than M sets, find (h, p)-sunflower;
replace with its core (“pluck”)
=) Q * approximate OR:
CC(pIuck(X1,X2,...Xm~,Y1,Y2,. . .Ym”) )
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Approximate AND

« CC(X1, Xz, Xa) Q)
. CC(Y1,Yar.. Yor) A'A
* (close to) exact AND:
CO({(XiuY):1<sism,1<jsm’})
— some sets may be larger than h; discard them

— may be up to M? sets. While > M sets, find (h, p)-
sunflower; replace with its core (“pluck”)

» approximate AND:
CC( pluck ({(XUY)) : [XUY| <h}))
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“Local” analysis

+ “false positive:
— negative example

— gate is supposed to output 0, but our CC
outputs 1

Lemma: each approximation step
introduces at most M?(k-1)"/2° false
positives.
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Test collection

 Positive instances: all graphs G on n

nodes with a k-clique and no other edges.

B
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Test collection

* Negative instances:
— k-1 colors
— color each node uniformly

at random with one of the colors
—edge (x, y) iff x, y different colors
—no k-clique
—include graphs in their multiplicities
* makes analysis easier

(k-1)-partite graph
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“Local” analysis

W
* Proof:
—case 1: OR AA&
CC(X4,Xz,...Xm) CC(Y1,Y2,..Ym")

CC(pIuck(X1 ,Xz, .. .Xm',Y»] ,Yg,. . Ym))
—given “plucking”: replace Z;... Z, with Z

= O

— bad case: clique on Z, and each petal is
missing at least one edge
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“Local” analysis

—what is the probability of a repeated color in
each Z;but no repeated colors in Z?

PrIR(Z1)AR(Z2)...R(Zy) A =R(Z)]
< Pr[R(Z1)AR(Z2)...R(Zp)|=R(Z)]
(definition of conditional probability)
=[IiPriR(Z) | -R(Z)]
(independent events given no repeats in Z)
< [T Pr[R(Z)]
(obviously larger)
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event R(S)
= repeated
colors in S
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“Local” analysis

— for every pair of vertices in Z;, probability of
same color is 1/(k-1)

—R(Z) = (h choose 2)/(k-1) < %

- [LiPrR(Z)] = (V2

—# negative examples is (k-1)

— # false positives in given plucking step is at
most (V2)p(k-1)"

—at most M plucking steps

— # false positives at OR < M('2)p(k-1)
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“Local” analysis

+ “false negative”:
— positive example;

— gate is supposed to output 1, but our CC
outputs 0

Lemma: each approximation step
introduces at most n—h-1
wleni

) k-h-1
false negatives.
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“Local” analysis

2 AND A
—case Z. A
CC(X1 . Xo,.. Xm)  CC(Y1,Y2,...Ym)

CC(pluck( {(XUY) : [XUY] <h}))

—discarding sets (XiUY)) larger than h can only
make circuit accept fewer examples
* no false positives here

“Local” analysis

—up to M2 pluckings
—each introduces at most
(e (k-1)
false positives (previous slides)

—# false positives at AND < M2(%2)p(k-1)
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“Local” analysis “Local” analysis
* Proof: —discarding set Z = (XjuY)) larger than h may
—Case 1: OR introduce false negatives
— plucking can only make circuit accept more —any clique that includes Z is a problem; there
examples ) are at most
« no false negatives here. A’ n- ‘Z‘ < n-h-1
— Case 2: AND A k-|Z|) \k-h-1
CC(X4,Xz2,...Xm) CC(Y1,Y2,...Ym") » .
CC(pluck( {(XUY) : [XUY] <h})) such positive example.s, since |Z|>h & h<<k
” o . —at most M2 such deletions
« for positive examples: clique on X; and clique on Y; , . ,
= clique on XiUY; (no false negatives until discard XiuY; sets) —we've seen plucking doesn't matter
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“Global” analysis

Lemma: every non-trivial CC outputs 1 on at least
> of the negative examples.
* Proof:

— CC contains some set X of size at most h

— accepts all neg. examples with different colors in X
— probability X has repeated colors is
R(X) < (h choose 2)/(k-1) < %

— probability over negative examples that CC accepts is
at least 2.
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Finishing up

NZba

(k-1 / M2 (k1)

N =

Both quantities are at least 290"8)
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Finishing up
« First possibility: trivial CC, rejects all
positive examples

— every positive example must have been false
negative at some gate

— number of gates must be at least:

_ false negatives
# of positive n / MZ n- h - 1 ‘/‘/ at each gate
examples o k k _ h _ 1
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Finishing up

+ Second possibility: CC accepts at least %2
of negative examples

— every negative example must have been false
positive at some gate

— number of gates must be at least:

1 . "
S/ W2 (k1)
/ ‘\, false positives

/
# of negative ,‘/ at each gate

examples
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« if yes, then we would have just proved P # NP
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Conclusions

» A question (true in non-monotone case):
Do all
poly-time computable monotone functions
have
poly-size monotone circuits?

— why?
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Conclusions

* unfortunately, answer is no

* Razborov later showed similar (super-

polynomial) lower bound for MATCHING,
whichisin P...
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Communication complexity

simple function (equality):
EQ(x,y)=1iffx=y

simple protocol:

— Alice sends x to Bob (n bits)
—Bob sends EQ(x, y) to Alice (1 bit)
—total: n + 1 bits

— (works for any predicate f)
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Randomness

» 3 examples of the power of
randomness

—communication complexity
—polynomial identity testing
—complexity of finding unique solutions

* randomized complexity classes
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1. Communication complexity

two parties: Alice and Bob
function f:{0,1}» x {0,1}» - {0,1}
Alice holds x € {0,1}"; Bob holds y €{0,1}

+ Goal: compute f(x, y) while communicating as
few bits as possible between Alice and Bob

« count number of bits exchanged (computation free)

« at each step: one party sends bits that are a
function of held input and received bits so far
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Communication complexity

» Can we do better?
— deterministic protocol?
— probabilistic protocol?
« at each step: one party sends bits that are

34

Communication complexity

Theorem: no deterministic protocol can
compute EQ(x, y) while exchanging fewer
than n+1 bits.

a function of held input and received bits so « Proof: Y20l
far and the result of some coin tosses o
« required to output f(x, y) with high ~ "input matrix”: X = {01} /D
probability over all coin tosses
fxy) — 1
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Communication complexity

—assume 1 bit sent at a time, alternating (same
proof works in general setting)

— A sends 1 bit depending only on x:
Y ={01}

inputs x causing
A to send 1
X={01}

inputs x causing
A tosend O
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Communication complexity
Y={01}

Matrix for EQ:

X={01p

— any partition into combinatorial rectangles with
constant f(x,y) must have 2" + 1 rectangles

— protocol that exchanges < n bits can only create 2"
rectangles, so must exchange at least n+1 bits.
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Communication complexity

— B sends 1 bit depending only on y and
received bit:

Y ={01}

inputs y causing
B to send 1

X={01}

inputs y causing
B tosend 0
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Communication complexity

— at end of protocol involving k bits of
communication, matrix is partitioned into at
most 2k combinatorial rectangles

— bits sent in protocol are the same for every
input (X, y) in given rectangle

— conclude: f(x,y) must be constant on each
rectangle
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Communication complexity

« protocol for EQ employing randomness?

— Alice picks random prime p in {1...4n2}, sends:
°p
* (x mod p)

—Bob sends:
* (y mod p)

— players output 1 if and only if:

(x mod p) = (y mod p)
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Communication complexity

— O(log n) bits exchanged
—if x =y, always correct
—if x #y, incorrect if and only if:
p divides |x —y|
—# primes in range is = 2n
—# primes dividing [x—y|is<n
— probability incorrect < 1/2
Randomness gives an exponential advantage!!
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2. Polynomial identity testing

+ Given: polynomial p(x1, X2, ..., Xn) @s
arithmetic formula (fan-out 1):

« multiplication (fan-in2) "
+ addition (fan-in 2) /_ PN

*
* negation (fan-in 1 b R
9 ( ) N
Xy Xo X3 oo Xn
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Polynomial identity testing

Lemma (Schwartz-Zippel): Let
p(X1, X2, ..., Xn)
be a total degree d polynomial over a field
F and let S be any subset of F. Then if p is
not identically O,
Pr’«'z ,,,,, resl P(T1, T2, ..., 1) = 0] < d/[S.
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Polynomial identity testing

* Question: Is p identically zero?
—i.e.,isp(x)=0 forall x € Fn
— (assume |F| larger than degree...)

“polynomial identity testing” because
given two polynomials p, g, we can check
the identity p = q by checking if (p —q) =0

Polynomial identity testing

* try all |F|"inputs?
—may be exponentially many

» multiply out symbolically, check that all
coefficients are zero?

—may be exponentially many coefficients

 can randomness help?
—i.e., flip coins, allow small probability of wrong

answer
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Polynomial identity testing Polynomial identity testing
* Proof: —write p(X1, X2, ..., X)) @s
—induction on number of variables n P(X1, X2, -y Xn) = Zi (X1) Pi(X2, -5 Xn)
—base case: n = 1, p is univariate polynomial of —k =max. i for which pi(x,, ..., X,) not id. zero
degree at most d — by induction hypothesis:
—at most d roots, so Pr{ pi(rz, ..., r,) = 0] < (d-k)/|S|
Prip(r)) = 0] < d/|S| —whenever pg(r2, ..., ) #0, p(xq, Iz, ..., In) is a
univariate polynomial of degree k
Prlp(ri,r2,...,0)=0 | p(r2.....1a) # 0] <K/|S|
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Polynomial identity testing

Pri pu(rz, ..., ra) = 0] < (d-k)/|S|
Pr{p(ri,r2,...,)=0 | px(r2,...,ta) # 0] <k/|S|
—conclude:
Pr[ p(r4, ..., rn) = 0] < (d-k)/|S| + k/|S| = d/|S]|

— Note: can add these probabilities because
Pr[E1] = Pr[E4|E]Pr[E;] + Pr[E4|-E2]Pr[-E;]
< Pr{E,] + Pr{E4|-E;]
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