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Relation to other classes

* NL € NC,: S-T-CONN € NC,

—given G = (V, E), vertices s, t

— A = adjacency matrix (with self-loops)

— (A?); j = 1 iff path of length < 2 from node i to
node j

— (A");,j= 1iff path of length < n from node i to
node j

— compute with depth log n tree of Boolean
matrix multiplications, output entry s, t

—log? n depth total
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Relation to other classes

* Clearly NCc P
—recall P = uniform poly-size circuits

- NC,cL

—on input X, compose logspace algorithms for:
* generating Cyy
« converting to formula
* FVAL
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NC vs. P

+ can every uniform, poly-size Boolean
circuit family be converted into a uniform,
poly-size Boolean formula family?

?

NC,=P
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NCvs. P
« can every efficient algorithm be efficiently
parallelized? ,
NC=P
» P-complete problems least-likely to be
parallelizable
—if P-complete problem is in NC, then P = NC
— Why?
we use logspace reductions to show problem
P-complete; L in NC
4

NC Hierarchy Collapse

NC; € NC, €NC; €NC, € ... € NC

Exercise
if NC; = NC;;4, then NC = NC;

(prove for non-uniform versions of classes)
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Lower bounds

* Recall: “NP does not have polynomial-size
circuits” (NP & P/poly) implies P # NP
major goal: prove lower bounds on (non-
uniform) circuit size for problems in NP

— believe exponential

— super-polynomial enough for P # NP

— best bound known: (5-0(1))-n

—don’t even have super-polynomial bounds for
problems in NEXP

April 20, 2023 CS151 Lecture 6

7

Shannon’s counting argument

« frustrating fact: almost all functions require
huge circuits

Theorem (Shannon): With probability at
least 1 — o(1), a random function
f:{0,13n - {0,1}
requires a circuit of size Q(2"/n).
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Shannon’s counting argument
[ C(n, s) < (n+3)s?)° |

—C(n, c2"/n) < ((2n)0222n/n2)(c2”/n)
< 0(1)222"
< 0(1)22" (if ¢ < 14)

—probability a random function has a
circuit of size s = (72)2"/n is at most
C(n, s)/B(n) < o(1)
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Lower bounds

* |lots of work on lower bounds for restricted
classes of circuits

—we'll see two such lower bounds:
« formulas

* monotone circuits

April 20, 2023 CS151 Lecture 6

Shannon’s counting argument

* Proof (counting):
—B(n) = 22" = # functions f:{0,1}" - {0,1}
— # circuits with n inputs + size s, is at most
s gates
C(n, s) s ((n+3)s?)s —

n+3 gate types 2 inputs per gate
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Shannon’s counting argument

« frustrating fact: almost all functions require
huge formulas

Theorem (Shannon): With probability at
least 1 — o(1), a random function
f:{0,1}" - {0,1}
requires a formula of size Q(2"/log n).
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Shannon’s counting argument

* Proof (counting):
—B(n) = 22" = # functions f:{0,1}" - {0,1}
— # formulas with n inputs + size s, is at most

2n choices
per leaf

F(n, s) s.4°25(2n)°

4s binary trees with s

internal nodes 2 gate choices per

internal node
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Shannon’s counting argument
| F(n, s)<45252n)s |

—F(n, c2"/log n) < (16n)(2"iog n)
< 16(c2"og n)2(c2") = 1+ 0(1))2(02n)
<o(1)2?" (ifc < %)

—probability a random function has a
formula of size s = (/2)2"/log n is at
most F(n, s)/B(n) < o(1)
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Andreev function

* best formula lower bound for language in
NP:

Theorem (Andreev, Hastad ‘93): the
Andreev function requires (A,v,=)-
formulas of size at least

Q(n3o(M),
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Andreev function

w log n copies;
n/log n bits each

the Andreev function A(x.y)
A:{0,1)2n - {0,1}
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Random restrictions

* key idea: given function
f{0,1}" - {0,1}
restrict by p to get fp
— p sets some variables to 0/1, others remain
free
* R(n, en) = set of restrictions that leave en
variables free
* Definition: L(f) = smallest (A,v,—) formula
computing f (measured as leaf-size)
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Random restrictions

* observation:
EpR(n, en)[L(fp)] < €L(f)
— each leaf survives with probability €
* may shrink more...
— propogate constants
Lemma (Hastad 93): for all f
Eprn, en)[L(fp)] < O(e*(L(f))
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Hastad's shrinkage result

* Proof of theorem:
— Recall: there exists a function
h:{0,1}°%9" - {0,1}
for which L(h) > n/2loglog n.
— hardwire truth table of that function into y to
get A’(x)
— apply random restriction from
R(n, m = 2(log n)(In log n))
to A'(x).
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The lower bound

— (1): probability even one of XORs is killed by
restriction is at most:

log n(1/log?n) = 1/log n < %.
—(2): by Markov:
PrIL(A’p) > 2 Eperpn, m[L(A)] ] < V.
— Conclude: for some restriction p

« all XORs survive, and
o L(A'%) £2 Epern, m) [L(A')]
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Clique

CLIQUE = { (G, k) | G is a graph with a
clique of size 2k }

(clique = set of vertices every pair of which are
connected by an edge)

* CLIQUE is NP-complete.
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The lower bound

* Proof of theorem (continued):

— probability given XOR is killed by restriction is
probability that we “miss it” m times:

(1 = (n/log n)/n)™ < (1 — 1/log n)™
< (1/e)?nlegn< 1/log?n
— probability even one of XORs is killed by
restriction is at most:

log n(1/log?n) = 1/log n < %.
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The lower bound

* Proof of theorem (continued):

—if all XORs survive, can restrict formula further
to compute hard function h

* may need to add —'s
L(h) = n/2loglogn < L(A")
< 2Eprn, m[L(A'p)] < O((m/n)>°(IL(A’))
< O( ((log n)(In log nyn)2o(N L(A"))
—implies Q(n%°M) < L(A") < L(A).
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Circuit lower bounds

» We think that NP requires exponential-size
circuits.

* Where should we look for a problem to
attempt to prove this?

* Intuition: “hardest problems” —i.e., NP-
complete problems
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Circuit lower bounds

* Formally:
— if any problem in NP requires super-
polynomial size circuits

—then every NP-complete problem requires
super-polynomial size circuits

— Proof idea: poly-time reductions can be
performed by poly-size circuits using a variant
of CVAL construction
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Monotone problems

» some NP-complete languages are
monotone

—e.g. CLIQUE (given as adjacency matrix):

—others: HAMILTON CYCLE, SET COVER...
—but not SAT, KNAPSACK...
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Monotone circuits

* A question:
Do all
poly-time computable monotone functions
have
poly-size monotone circuits?

—recall: true in non-monotone case
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Monotone problems

+ Definition: monotone language = language
Lc{0,1}
such that x € L implies x’ € L for all x < x'.

— flipping a bit of the input from 0 to 1 can only
change the output from “no” to “yes”
(or not at all)
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Monotone circuits

A restricted class of circuits:

¢ Definition: monotone circuit = circuit

whose gates are ANDs (A), ORs (Vv), but
no NOTs

« can compute exactly the monotone fns.
— monotone functions closed under AND, OR
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Monotone circuits

A monotone circuit for CLIQUEnx

* Input: graph G = (V,E) as adj. matrix, [V|=n
— variable xi; for each possible edge (i,j)

* ISCLIQUE(S) = monotone circuit that = 1
iffS<cVisaclique: A;jcsxi;
CLIQUEnkcomputed by monotone circuit:

Vscv s|=k ISCLIQUE(S)
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Monotone circuits

« Size of this monotone circuit for

CLIQUE, m@

« when k = n'", size is approximately:
1/4 2
( n jn n'/* ~ ngz(n”“)
n1/4 2
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Proof idea

* “method of approximation”

» suppose C is a monotone circuit for
CLIQUEnk

* build another monotone circuit CC that
“approximates” C gate-by-gate

—)
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Monotone circuits

* Theorem (Razborov 85): monotone
circuits for CLIQUE,, , with k = n"4 must
have size at least

20(n1/8).

¢ Proof:
—rest of lecture
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Proof idea

« on test collection of positive/negative
instances of CLIQUE,,
— local property: few errors at each gate
— global property: many errors on test collection

» Conclude: C has many gates
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Notation

* input: graph G = (V, E)
« variable xjkfor each potential edge (j, k)
CC(Xy, Xy, ... X)), where X; € V, means:

VilAj kex; %) *

For example: CC(Xy, Xy, ... X,,) where the
X; range over all k-subsets of V

—this is the obvious monotone circuit for
CLIQUEnk from a previous slide.

TCCO) =0; (Nijepxi)=11 4
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Preview

 approximate circuit CC(X4, X, ... X;)

* n =#nodes G
» k =n" = size of clique
+ h =n'"8=max. size of subsets X; X
— this is “global property” that ensures lots of
errors

—many graphs G with no k-cliques, but clique
on X; of size h
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Preview

+ approximate circuit CC(X4, Xo, ... Xm)
- p=n"logn

* M= (p-1)h!

» max # of subsets is M (so m < M)

— critical for “local property” that ensures few
errors at each gate
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Building CC

— CC for circuit C of form:

o

— “approximate AND” of CC for C’, CC for C”

— “approximate OR” and “approximate AND”
steps introduce errors
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Approximate OR

—throw away sets? bad:many errors
— throw away overlapping sets? — better

— throw away special configuration of
overlapping sets — best

= O
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Building CC

* CC (“crude circuit”) for circuit C defined
inductively as follows:

— CC for single variable xjk is just CC({ j, k })
* no errors yet!

— CC for circuit C of form: W)

— “approximate OR” of CC for C’, CC for C”
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Approximate OR

CC(X4,Xs,... X)) CC(Y1,Yy,...Y )
» exact OR:
CC(X4,X0,.. . X, Y1,Yo,. .Y )
—setsizes still<h
—may be up to 2M sets; need to reduce to M
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Sunflowers

* Definition: (h, p)-sunflower is a family of p
sets, each of size at most h, such that
intersection of every pair is a subset S (the
“core”).

8@
O
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Sunflowers

Lemma (Erdés-Rado): Every family of more
than M = (p-1)h! sets, each of size at
most h, contains an (h, p)-sunflower.

* Proof:
—not hard
—in Papadimitriou, elsewhere
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Approximate AND

« CC(X1,Xz,... Xem) Q)
. CC(Y1.Ya,.. Yur) A’A
* (close to) exact AND:
CC({XivY):1<sism,1<j<m"})
— some sets may be larger than h; discard them

— may be up to M? sets. While > M sets, find (h, p)-
sunflower; replace with its core (“pluck”)

» approximate AND:
CC( pluck ( {(XiUY)) : XuYj|<h}))
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Approximate OR
CC(X4, Xz, X
CC(Y1, Y.y

W
exact OR:

CC(X4, X0, . . X, Y4, Y2, .. Y )
— while more than M sets, find (h, p)-sunflower;
replace with its core (“pluck”)

» approximate OR:
CC(pIUCk(X1,X2, .. .Xm’,Y1 ,Y2,. . Ym) )
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