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Relation to other classes

• Clearly NC ⊆ P
– recall P ≡ uniform poly-size circuits

• NC1 ⊆ L
– on input x, compose logspace algorithms for:

• generating C|x|

• converting to formula
• FVAL
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Relation to other classes
• NL ⊆ NC2: S-T-CONN ∈ NC2

– given G = (V, E), vertices s, t
– A = adjacency matrix (with self-loops)
– (A2)i, j = 1 iff path of length ≤ 2 from node i to 

node j
– (An)i, j = 1 iff path of length ≤ n from node i to 

node j
– compute with depth log n tree of Boolean 

matrix multiplications, output entry s, t 
– log2 n depth total
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NC vs. P
• can every efficient algorithm be efficiently 

parallelized?
NC = P

• P-complete problems least-likely to be 
parallelizable
– if P-complete problem is in NC, then P = NC 
– Why? 

we use logspace reductions to show problem 
P-complete; L in NC

?
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NC vs. P
• can every uniform, poly-size Boolean 

circuit family be converted into a uniform, 
poly-size Boolean formula family?

NC1= P
?
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NC Hierarchy Collapse

NC1 ⊆ NC2 ⊆ NC3 ⊆ NC4 ⊆ … ⊆ NC

Exercise
if NCi = NCi+1, then NC = NCi

(prove for non-uniform versions of classes)
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Lower bounds

• Recall: “NP does not have polynomial-size 
circuits” (NP ⊆ P/poly) implies P ≠ NP

• major goal: prove lower bounds on (non-
uniform) circuit size for problems in NP
– believe exponential 
– super-polynomial enough for P ≠ NP
– best bound known: (5-o(1))⋅n
– don’t even have super-polynomial bounds for 

problems in NEXP
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Lower bounds

• lots of work on lower bounds for restricted 
classes of circuits 

– we’ll see two such lower bounds: 
• formulas 
• monotone circuits 
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Shannon’s counting argument

• frustrating fact: almost all functions require 
huge circuits

Theorem (Shannon): With probability at 
least 1 – o(1), a random function 

f:{0,1}n → {0,1} 
requires a circuit of size Ω(2n/n).
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Shannon’s counting argument

• Proof (counting):
– B(n) = 22n = # functions f:{0,1}n → {0,1} 
– # circuits with n inputs + size s, is at most

C(n, s) ≤ ((n+3)s2)s 
s gates

n+3 gate types 2 inputs per gate
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Shannon’s counting argument

– C(n, c2n/n) < ((2n)c222n/n2)(c2n/n)

< o(1)22c2n 

< o(1)22n (if c ≤ ½)

– probability a random function has a 
circuit of size s = (½)2n/n is at most

C(n, s)/B(n) < o(1)

C(n, s) ≤ ((n+3)s2)s 
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Shannon’s counting argument

• frustrating fact: almost all functions require 
huge formulas

Theorem (Shannon): With probability at 
least 1 – o(1), a random function 

f:{0,1}n → {0,1} 
requires a formula of size Ω(2n/log n).
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Shannon’s counting argument

• Proof (counting):
– B(n) = 22n = # functions f:{0,1}n → {0,1} 
– # formulas with n inputs + size s, is at most

F(n, s) ≤ 4s2s(2n)s 

4s binary trees with s 
internal nodes 2 gate choices per 

internal node

2n choices 
per leaf
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Shannon’s counting argument

– F(n, c2n/log n) < (16n)(c2n/log n)

< 16(c2n/log n)2(c2n) = (1 + o(1))2(c2n)

< o(1)22n (if c ≤ ½)

– probability a random function has a 
formula of size s = (½)2n/log n is at 
most F(n, s)/B(n) < o(1)

F(n, s) ≤ 4s2s(2n)s 
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Andreev function

• best formula lower bound for language in 
NP:

Theorem (Andreev, Hastad ‘93): the 
Andreev function requires (∧,∨,¬)-
formulas of size at least 

Ω(n3-o(1)).
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Andreev function

selector

yi

n-bit string y
XOR XOR

. . .

log n copies;    
n/log n bits each

the Andreev function A(x,y)                
A:{0,1}2n → {0,1}
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Random restrictions
• key idea: given function 

f:{0,1}n → {0,1}
restrict by ρ to get fρ
– ρ sets some variables to 0/1, others remain 

free
• R(n, єn) = set of restrictions that leave єn

variables free
• Definition: L(f) = smallest (∧,∨,¬) formula 

computing f (measured as leaf-size) 
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Random restrictions

• observation:
Eρ←R(n, єn)[L(fρ)] ≤ єL(f)

– each leaf survives with probability є
• may shrink more…

– propogate constants
Lemma (Hastad 93): for all f

Eρ←R(n, єn)[L(fρ)] ≤ O(є2-o(1)L(f))
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Hastad’s shrinkage result
• Proof of theorem:

– Recall: there exists a function 
h:{0,1}log n → {0,1} 

for which L(h) > n/2loglog n.
– hardwire truth table of that function into y to 

get A*(x)
– apply random restriction from 

R(n, m = 2(log n)(ln log n)) 
to A*(x). 
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The lower bound

• Proof of theorem (continued):
– probability given XOR is killed by restriction is 

probability that we “miss it” m times:
(1 – (n/log n)/n)m ≤ (1 – 1/log n)m

≤ (1/e)2ln log n ≤ 1/log2n
– probability even one of XORs is killed by 

restriction is at most: 
log n(1/log2n) = 1/log n < ½.
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The lower bound
– (1): probability even one of XORs is killed by 

restriction is at most: 
log n(1/log2n) = 1/log n < ½.

– (2): by Markov:
Pr[ L(A*ρ) > 2 Eρ←R(n, m)[L(A*ρ)] ] < ½.

– Conclude: for some restriction ρ
• all XORs survive, and
• L(A*ρ) ≤ 2 Eρ←R(n, m) [L(A*ρ)]
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The lower bound
• Proof of theorem (continued):

– if all XORs survive, can restrict formula further 
to compute hard function h 
• may need to add ¬’s

L(h) = n/2loglogn ≤ L(A*ρ) 

≤ 2Eρ←R(n, m)[L(A*ρ)] ≤ O((m/n)2-o(1)L(A*))

≤ O( ((log n)(ln log n)/n)2-o(1) L(A*) )

– implies Ω(n3-o(1)) ≤ L(A*) ≤ L(A).
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Clique

CLIQUE = { (G, k) | G is a graph with a 
clique of size ≥ k }

(clique = set of vertices every pair of which are 
connected by an edge)

• CLIQUE is NP-complete.
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Circuit lower bounds

• We think that NP requires exponential-size 
circuits.

• Where should we look for a problem to 
attempt to prove this?

• Intuition: “hardest problems” – i.e., NP-
complete problems
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Circuit lower bounds

• Formally: 
– if any problem in NP requires super-

polynomial size circuits
– then every NP-complete problem requires 

super-polynomial size circuits

– Proof idea: poly-time reductions can be 
performed by poly-size circuits using a variant 
of CVAL construction
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Monotone problems

• Definition: monotone language = language 
L ⊆ {0,1}*

such that x ∈ L implies x’ ∈ L for all x ≼ x’.

– flipping a bit of the input from 0 to 1 can only 
change the output from “no” to “yes”
(or not at all)
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Monotone problems

• some NP-complete languages are 
monotone
– e.g. CLIQUE (given as adjacency matrix):

– others: HAMILTON CYCLE, SET COVER…
– but not SAT, KNAPSACK…
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Monotone circuits

A restricted class of circuits:

• Definition: monotone circuit = circuit 
whose gates are ANDs (∧), ORs (∨), but 
no NOTs

• can compute exactly the monotone fns.
– monotone functions closed under AND, OR
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Monotone circuits

• A question: 
Do all 

poly-time computable monotone functions
have 

poly-size monotone circuits?

– recall: true in non-monotone case
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Monotone circuits

A monotone circuit for CLIQUEn,k

• Input: graph G = (V,E) as adj. matrix, |V|=n
– variable xi,j for each possible edge (i,j)

• ISCLIQUE(S) = monotone circuit that = 1 
iff S ⊆ V is a clique: ⋀",$ ∈ & 𝑥",$
CLIQUEn,k computed by monotone circuit:

⋁" ⊆ $, " &' ISCLIQUE(S)
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Monotone circuits

• Size of this monotone circuit for 
CLIQUEn,k:

• when k = n1/4, size is approximately:
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Monotone circuits

• Theorem (Razborov 85): monotone 
circuits for CLIQUEn,k with k = n1/4 must 
have size at least

2Ω(n1/8).

• Proof: 
– rest of lecture
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Proof idea

• “method of approximation”
• suppose C is a monotone circuit for 

CLIQUEn,k

• build another monotone circuit CC that 
“approximates” C gate-by-gate

∨
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Proof idea

• on test collection of positive/negative 
instances of CLIQUEn,k:
– local property: few errors at each gate
– global property: many errors on test collection

• Conclude: C has many gates
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Notation
• input: graph G = (V, E)
• variable xj,k for each potential edge (j, k)
• CC(X1, X2, … Xm), where Xi ⊆ V, means:

⋁$(⋀%,'∈)) 𝑥%,') *
• For example: CC(X1, X2, … Xm) where the 

Xi range over all k-subsets of V
– this is the obvious monotone circuit for 

CLIQUEn,k from a previous slide.
*[CC( ) = 0; (⋀",$ ∈∅𝑥",$)= 1] 35
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Preview

• approximate circuit CC(X1, X2, … Xm)
• n = # nodes
• k = n1/4 = size of clique
• h = n1/8 = max. size of subsets Xi

– this is “global property” that ensures lots of 
errors

– many graphs G with no k-cliques, but clique 
on Xi of size h

G

Xi
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Preview

• approximate circuit CC(X1, X2, … Xm)
• p = n1/8log n
• M = (p – 1)hh! 
• max # of subsets is M (so m ≤ M)

– critical for “local property” that ensures few 
errors at each gate
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Building CC

• CC (“crude circuit”) for circuit C defined 
inductively as follows:
– CC for single variable xj,k is just CC({ j, k })

• no errors yet!
– CC for circuit C of form:

– “approximate OR” of CC for C’, CC for C’’

∨

C’ C’’
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Building CC
– CC for circuit C of form:

– “approximate AND” of CC for C’, CC for C’’

– “approximate OR” and “approximate AND”
steps introduce errors 

∧

C’ C’’
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Approximate OR

CC(X1,X2,…Xm’)        CC(Y1,Y2,…Ym’’)
• exact OR:

CC(X1,X2,…Xm’,Y1,Y2,…Ym’’)
– set sizes still ≤ h
– may be up to 2M sets; need to reduce to M 

∨
C’ C’’
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Approximate OR
– throw away sets?   bad:many errors
– throw away overlapping sets? – better

– throw away special configuration of 
overlapping sets – best
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Sunflowers

• Definition: (h, p)-sunflower is a family of p
sets, each of size at most h, such that  
intersection of every pair is a subset S (the 
“core”).
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Sunflowers

Lemma (Erdös-Rado): Every family of more 
than M = (p-1)hh! sets, each of size at 
most h, contains an (h, p)-sunflower.

• Proof: 
– not hard
– in Papadimitriou, elsewhere
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Approximate OR

• CC(X1,X2,…Xm’) 
• CC(Y1,Y2,…Ym’’)
• exact OR:

CC(X1,X2,…Xm’,Y1,Y2,…Ym’’)
– while more than M sets, find (h, p)-sunflower; 

replace with its core (“pluck”)
• approximate OR:

CC(pluck(X1,X2,…Xm’,Y1,Y2,…Ym’’) )

∨
C’ C’’
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Approximate AND
• CC(X1,X2,…Xm’) 
• CC(Y1,Y2,…Ym’’)
• (close to) exact AND:

CC( {(Xi ∪ Yj) : 1 ≤ i ≤ m’, 1 ≤ j ≤ m’’} )
– some sets may be larger than h; discard them
– may be up to M2 sets. While > M sets, find (h, p)-

sunflower; replace with its core (“pluck”)
• approximate AND:

CC( pluck ( {(Xi∪Yj) : |Xi∪Yj| ≤ h } ))

∧

C’ C’’
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