Two startling theorems

• Strongly believe $P \neq NP$
• Nondeterminism seems to add enormous power
• For space: Savitch '70:
 \[\text{NPSPACE} = \text{PSPACE} \]
 and
 \[\text{NL} \subseteq \text{SPACE}(\log^2 n) \]

Two startling theorems

• Strongly believe $NP \neq \text{coNP}$
• Seems impossible to convert existential into universal
• For space: Immerman/Szelepscényi '87/88:
 \[\text{NL} = \text{coNL} \]

Savitch’s Theorem

Theorem: $\text{STCONN} \subseteq \text{SPACE}(\log^2 n)$

• Corollary: $\text{NL} \subseteq \text{SPACE}(\log^2 n)$
• Corollary: $\text{NPSPACE} = \text{PSPACE}$

Proof of Theorem

– Input: $G = (V, E)$, two nodes s and t
– Recursive algorithm:

  ```
  /* return true iff path from $x$ to $y$ of length at most $2^i$ */
  PATH(x, y, i)
  if $i = 0$ return ($x = y$ or $(x, y) \in E$)
  /* base case */
  for $z \in V$
    if PATH(x, z, i-1) and PATH(z, y, i-1) return(true);
  return(false);
  ```

Proof of Theorem

– Answer to STCONN: $\text{PATH}(s, t, \log n)$
– Space used:
 • $(\text{depth of recursion}) \times (\text{size of stack record})$
 • $\text{depth} = \log n$
– Claim stack record: “x, y, i” sufficient
 • $\text{size } O(\log n)$
– When return from PATH(a, b, i) can figure out what to do next from record (a, b, i) and previous record
Nondeterministic space

- Robust nondeterministic space classes:
 \[\text{NL} = \text{NSPACE}(\log n) \]
 \[\text{NPSPACE} = \bigcup_k \text{NSPACE}(n^k) \]

Second startling theorem

- Strongly believe \(\text{NP} \neq \text{coNP} \)
- Seems impossible to convert existential into universal
 \[\text{for space: Immerman/Szelepscényi '87/'88:} \]
 \[\text{NL} = \text{coNL} \]

I-S Theorem

Theorem: \(\text{ST-NON-CONN} \in \text{NL} \)

- Observation: given count of # nodes reachable from s, can solve problem
 - for each \(v \in V \), guess if it is reachable
 - if yes, guess path from s to v
 - if guess doesn't lead to v, reject.
 - if \(v = t \), reject.
 - else counter++
 - if counter = count accept

- Every computation path has sequence of guesses...
 - Only way computation path can lead to accept:
 - Correctly guessed reachable/unreachable for each node \(v \)
 - Correctly guessed path from s to v for each reachable node v
 - Saw all reachable nodes
 - t not among reachable nodes
I-S Theorem

- \(R(i) = \) # nodes reachable from \(s \) in at most \(i \) steps
- \(R(0) = 1: \) node \(s \)
- we will compute \(R(i+1) \) from \(R(i) \)
- only \(O(\log n) \) space and nondeterminism

\[R(i) = R(2) = 6 \]

I-S Theorem

- Outline: in \(n \) phases, compute \(R(1), R(2), R(3), \ldots R(n) \)
- only \(O(\log n) \) bits of storage between phases
- in end, lots of computation paths that lead to reject
- only computation paths that survive have computed correct value of \(R(n) \)
- apply observation.

I-S Theorem

- computing \(R(i+1) \) from \(R(i) \):
 - Initialize \(R(i+1) = 0 \)
 - For each \(v \in V \), guess if \(v \) reachable from \(s \) in at most \(i+1 \) steps

I-S Theorem

- if "yes", guess path from \(s \) to \(v \) of at most \(i+1 \) steps. Increment \(R(i+1) \)
- if "no", visit \(R(i) \) nodes reachable in at most \(i \) steps, check that none is \(v \) or adjacent to \(v \)
 - for \(u \in V \) guess if reachable in \(\leq i \) steps; guess path to \(u \); counter++
 - KEY: if counter \(\neq R(i) \), reject
 - at this point: can be sure \(v \) not reachable

I-S Theorem

- two types of errors we can make
 - (1) might guess \(v \) is reachable in at most \(i+1 \) steps when it is not
 - won’t be able to guess path from \(s \) to \(v \) of correct length, so we will reject.
 - "easy" type of error

I-S Theorem

- (2) might guess \(v \) is not reachable in at most \(i+1 \) steps when it is
 - then must not see \(v \) or neighbor of \(v \) while visiting nodes reachable in \(i \) steps.
 - but forced to visit \(R(i) \) distinct nodes
 - therefore must try to visit node \(v \) that is not reachable in \(\leq i \) steps
 - won’t be able to guess path from \(s \) to \(v \) of correct length, so we will reject.
 - "easy" type of error
Summary

• nondeterministic space classes \(\mathbf{NL}\) and \(\mathbf{NPSPACE}\)

• ST-CONN \(\mathbf{NL}\)-complete

Summary

• Savitch: \(\mathbf{NPSPACE} = \mathbf{PSPACE}\)
 – Proof: ST-CONN \(\in \mathbf{SPACE}(\log^2 n)\)
 – open question: \(\mathbf{NL} = \mathbf{L}\)?

• Immerman/Szelepcsényi : \(\mathbf{NL} = \mathbf{coNL}\)
 – Proof: ST-NON-CONN \(\in \mathbf{NL}\)

Introduction

Power from an unexpected source?
• we know \(\mathbf{P} \neq \mathbf{EXP}\), which implies no poly-time algorithm for Succinct CVAL
• poly-size Boolean circuits for Succinct CVAL ??

Does \(\mathbf{NP}\) have linear-size, log-depth Boolean circuits ??

Outline

• Boolean circuits and formulas
• uniformity and advice
• the \(\mathbf{NC}\) hierarchy and parallel computation
• the quest for circuit lower bounds
• a lower bound for formulas

Boolean circuits

• circuit \(C\)
 – directed acyclic graph
 – nodes: AND (\&); OR (\lor);
 – NOT (\neg); variables \(x_1, x_2, \ldots, x_n\)

• \(C\) computes function \(f:\{0,1\}^n \rightarrow \{0,1\}\) in natural way
 – identify \(C\) with function \(f\) it computes
Boolean circuits

- **size** = # gates
- **depth** = longest path from input to output
- **formula (or expression)**: graph is a tree

- every function \(f : \{0,1\}^n \rightarrow \{0,1\} \) computable by a circuit of size at most \(O(n^2) \)
 - AND of \(n \) literals for each \(x \) such that \(f(x) = 1 \)
 - OR of up to \(2^n \) such terms

Circuit families

- circuit works for specific input length
- we’re used to \(f : \Sigma^* \rightarrow \{0,1\} \)
- circuit **family** : a circuit for each input length \(C_1, C_2, C_3, \ldots = \{C_n\} \)
- \(\{C_n\} \) computes \(f \) iff for all \(x \)
 \[C_{|x|}(x) = f(x) \]
- \(\{C_n\} \) decides \(L \), where \(L \) is the language associated with \(f \)

Connection to TMs

- given TM \(M \) running in time \(t(n) \) decides language \(L \)
- can build circuit family \(\{C_n\} \) that decides \(L \)
 - size of \(C_n = O(t(n)\^2) \)
 - Proof: CVAL construction
- Conclude: \(L \in P \) implies family of polynomial-size circuits that decides \(L \)

Connection to TMs

- other direction?

 - A poly-size circuit family:
 - \(C_n = (x \lor \neg x) \) if \(M_n \) halts
 - \(C_n = (x \land \neg x) \) if \(M_n \) loops
 - decides (unary version of) HALT!
 - oops…

Uniformity

- Strange aspect of circuit family:
 - can “encode” (potentially uncomputable) information in family specification
- solution: **uniformity** – require specification is simple to compute

 Definition: circuit family \(\{C_n\} \) is **logspace uniform** iff TM \(M \) outputs \(C_n \) on input \(1^n \) and runs in \(O(\log n) \) space

Theorem: \(P = \) languages decidable by logspace uniform, polynomial-size circuit families \(\{C_n\} \).

- Proof:
 - already saw \((\Rightarrow) \)
 - \((\Leftarrow) \) on input \(x \), generate \(C_{|x|} \), evaluate it and accept iff output = 1
TMs that take advice

- family \{C_n\} without uniformity constraint is called "non-uniform"
- regard "non-uniformity" as a limited resource just like time, space, as follows:
 - add read-only "advice" tape to TM M
 - M "decides L with advice A(n)" iff
 \[M(x, A(|x|)) \text{ accepts } \iff x \in L \]
 - note: A(n) depends only on |x|

Definition: \(\text{TIME}(t(n))/f(n) \) = the set of those languages L for which:
- there exists A(n) s.t. \(|A(n)| \leq f(n)\)
- TM M decides L with advice A(n) in time t(n)
- most important such class: \(P/poly = \bigcup_k \text{TIME}(n^k)/n^k \)

Theorem: \(L \in P/poly \) iff L decided by family of (non-uniform) polynomial size circuits.
- Proof:
 - (⇒) \(C_n \) from CVAL construction; hardwire advice A(n)
 - (⇐) define A(n) = description of \(C_n \); on input x, TM simulates \(C_{|x|}(x) \)

Approach to P/NP

- Believe \(\text{NP} \neq \text{P} \)
 - equivalent: "\text{NP} does not have uniform, polynomial-size circuits"
- Even believe \(\text{NP} \notin P/poly \)
 - equivalent: "\text{NP} (or e.g. SAT) does not have polynomial-size circuits"
 - implies \(\text{P} \neq \text{NP} \)
 - many believe: best hope for \(\text{P} \neq \text{NP} \)

Parallelism

- uniform circuits allow refinement of polynomial time:
 - circuit \(C \) depth \(\equiv \) parallel time
 - size \(\equiv \) parallel work

- the \(\text{NC} \) ("Nick’s Class") Hierarchy (of logspace uniform circuits):
 - \(\text{NC}_k = O(\log^k n) \) depth, poly(n) size
 - \(\text{NC} = \bigcup_k \text{NC}_k \)
 - captures "efficiently parallelizable problems"
 - not realistic? overly generous
 - OK for proving non-parallelizable
Matrix Multiplication

- what is the parallel complexity of this problem?
 - work = poly(n)
 - time = log^k(n)? (which k?)

n x n matrix A
n x n matrix B
n x n matrix AB

Matrix Multiplication

- two details
 - arithmetic matrix multiplication…
 A = (a_{i,k}) B = (b_{k,j}) (AB)_{i,j} = \sum_k (a_{i,k} \times b_{k,j})
 … vs. Boolean matrix multiplication:
 A = (a_{i,k}) B = (b_{k,j}) (AB)_{i,j} = \bigvee_k (a_{i,k} \wedge b_{k,j})

- single output bit: to make matrix multiplication a language: on input A, B, (i, j) output (AB)_{i,j}

Boolean formulas and \textbf{NC}_1

- Previous circuit is actually a formula. This is no accident:

\textbf{Theorem}: L \in \textbf{NC}_1 iff decidable by polynomial-size uniform* family of Boolean formulas.

* DSPACE(\log^k n)-uniform

Note: we measure formula size by leaf-size.

Boolean formulas and \textbf{NC}_1

- Proof:
 - (\Rightarrow) convert \textbf{NC}_1 circuit into formula
 - recursively:

- (\Leftarrow) convert formula of size n into formula of depth O(\log n)
 - note: size \leq 2^{O(\log^2 n)} so new formula has poly(n) size

key transformation
Boolean formulas and \(\text{NC}_1 \)

- D any minimal subtree with size at least \(n/3 \)
 - implies size(D) \(\leq 2n/3 \)
- define \(T(n) \) = maximum depth required for any size \(n \) formula
- \(\mathcal{C}_1, \mathcal{C}_0, D \) all size \(\leq 2n/3 \)

\[T(n) \leq T(2n/3) + 3 \]

implies \(T(n) \leq O(\log n) \)

Relation to other classes

- Clearly \(\text{NC} \subseteq \text{P} \)
 - recall \(\text{P} \equiv \text{uniform poly-size circuits} \)
- \(\text{NC}_1 \subseteq \text{L} \)
 - on input \(x \), compose logspace algorithms for:
 - generating \(\mathcal{C}_0 \)
 - converting to formula
 - FVAL

\(\rightarrow \) \(\text{NL} \subseteq \text{NC}_2 \)

\(\text{S-T-CONN} \in \text{NC}_2 \)
- given \(G = (V, E) \), vertices \(s, t \)
- \(A = \) adjacency matrix (with self-loops)
- \((A^2)_{ij} = 1 \) iff path of length \(\leq 2 \) from node \(i \) to node \(j \)
- \((A^n)_{ij} = 1 \) iff path of length \(\leq n \) from node \(i \) to node \(j \)
- compute with depth \(\log n \) tree of Boolean matrix multiplications, output entry \(s, t \)
- \(\log^2 n \) depth total

\(\text{NC} \) vs. \(\text{P} \)

- can every efficient algorithm be efficiently parallelized?
 \(\text{NC} \neq \text{P} \)
- \(\text{P} \)-complete problems least-likely to be parallelizable
 - if \(\text{P} \)-complete problem is in \(\text{NC} \), then \(\text{P} = \text{NC} \)
 - Why? we use logspace reductions to show problem \(\text{P} \)-complete; \(\text{L} \) in \(\text{NC} \)

\(\text{NC}_1 \neq \text{P} \)

- can every uniform, poly-size Boolean circuit family be converted into a uniform, poly-size Boolean formula family?
 \(\text{NC}_1 = \text{P} \)