
1

CS151
Complexity 
Theory

Lecture 5
April 18, 2023

1

April 18, 2023

Two startling theorems

• Strongly believe P ≠ NP
• nondeterminism seems to add enormous 

power
• for space: Savitch ‘70: 

NPSPACE = PSPACE
and

NL ⊆ SPACE(log2n)

CS151 Lecture 5 2

2

April 18, 2023

Two startling theorems

• Strongly believe NP ≠ coNP
• seems impossible to convert existential 

into universal

• for space: Immerman/Szelepscényi ’87/’88:

NL = coNL

CS151 Lecture 5 3

3

April 18, 2023

Savitch’s Theorem

Theorem: STCONN ⊆ SPACE(log2 n)

• Corollary: NL ⊆ SPACE(log2n)

• Corollary: NPSPACE = PSPACE

CS151 Lecture 5 4

4

April 18, 2023

Proof of Theorem

– input: G = (V, E), two nodes s and t
– recursive algorithm:

/* return true iff path from x to y of length at most 2i */
PATH(x, y, i)
if i = 0 return ( x = y or (x, y) ∈ E ) /* base case */
for z in V

if PATH(x, z, i-1) and PATH(z, y, i-1) return(true);
return(false);
end

CS151 Lecture 5 5

5

April 18, 2023

Proof of Theorem

– answer to STCONN: PATH(s, t, log n)
– space used: 

• (depth of recursion) x (size of “stack record”)
– depth = log n
– claim stack record: “(x, y, i)” sufficient

• size O(log n)
– when return from PATH(a, b, i) can figure out 

what to do next from record (a, b, i) and 
previous record

CS151 Lecture 5 6

6



2

April 18, 2023

Nondeterministic space

• Robust nondeterministic space classes:

NL = NSPACE(log n)

NPSPACE = ∪k NSPACE(nk)

CS151 Lecture 5 7

7

April 18, 2023

Second startling theorem

• Strongly believe NP ≠ coNP
• seems impossible to convert existential 

into universal

• for space: Immerman/Szelepscényi ’87/’88:

NL = coNL

CS151 Lecture 5 8

8

April 18, 2023

I-S Theorem

Theorem: ST-NON-CONN ∈ NL
• Proof: slightly tricky setup:

– input: G = (V, E), two nodes s, t

t

s
“yes”

t

s
“no”

CS151 Lecture 5 9

9

April 18, 2023

I-S Theorem

– want nondeterministic procedure using only 
O(log n) space with behavior:

“yes”
input

“no”
input

qaccept qreject qaccept qreject

t

s

t

s

CS151 Lecture 5 10

10

April 18, 2023

I-S Theorem

– observation: given count of # nodes 
reachable from s, can solve problem
• for each v ∈ V, guess if it is reachable
• if yes, guess path from s to v

– if guess doesn’t lead to v, reject. 
– if v = t, reject. 
– else counter++

• if counter = count accept

CS151 Lecture 5 11

11

April 18, 2023

I-S Theorem
– every computation path has sequence of 

guesses…
– only way computation path can lead to 

accept:
• correctly guessed reachable/unreachable 

for each node v
• correctly guessed path from s to v for each 

reachable node v
• saw all reachable nodes
• t not among reachable nodes

CS151 Lecture 5 12

12



3

April 18, 2023

I-S Theorem

– R(i) = # nodes reachable from s in at most i 
steps

– R(0) = 1: node s

– we will compute R(i+1) from R(i) using       
O(log n) space and nondeterminism

– computation paths with “bad guesses” all lead 
to reject

CS151 Lecture 5 13

13

April 18, 2023

I-S Theorem

– Outline: in n phases, compute 
R(1), R(2), R(3), … R(n)

– only O(log n) bits of storage between phases
– in end, lots of computation paths that lead to 

reject
– only computation paths that survive have 

computed correct value of R(n)
– apply observation.

CS151 Lecture 5 14

14

April 18, 2023

I-S Theorem
– computing R(i+1) from R(i):

– Initialize R(i+1) = 0
– For each v ∈V, guess if v reachable from s in 

at most i+1 steps

R(i) = R(2) = 6

CS151 Lecture 5 15

15

April 18, 2023

I-S Theorem

– if “yes”, guess path from s to v of at most i+1 
steps. Increment R(i+1)

– if “no”, visit R(i) nodes reachable in at most i
steps, check that none is v or adjacent to v
• for u ∈ V guess if reachable in ≤ i steps; 
guess path to u; counter++

• KEY: if counter ≠ R(i), reject
• at this point: can be sure v not reachable

CS151 Lecture 5 16

16

April 18, 2023

I-S Theorem

• correctness of procedure:
• two types of errors we can make 
• (1) might guess v is reachable in at most 

i+1 steps when it is not
– won’t be able to guess path from s to v of 

correct length, so we will reject.

“easy” type of error

CS151 Lecture 5 17

17

April 18, 2023

I-S Theorem
• (2) might guess v is not reachable in at 

most i+1 steps when it is
– then must not see v or neighbor of v while 

visiting nodes reachable in i steps.
– but forced to visit R(i) distinct nodes
– therefore must try to visit node v that is not

reachable in ≤ i steps
– won’t be able to guess path from s to v of 

correct length, so we will reject.
“easy” type of error

CS151 Lecture 5 18

18



4

April 18, 2023

Summary

• nondeterministic space classes
NL and    NPSPACE

• ST-CONN NL-complete

CS151 Lecture 5 19

19

April 18, 2023

Summary

• Savitch: NPSPACE = PSPACE
– Proof: ST-CONN ∈SPACE(log2 n)
– open question:

NL = L?

• Immerman/Szelepcsényi : NL = coNL
– Proof: ST-NON-CONN ∈ NL

CS151 Lecture 5 20

20

April 18, 2023 CS151 Lecture 5 21

21

April 18, 2023

Introduction

Power from an unexpected source?
• we know P ≠ EXP, which implies no poly-

time algorithm for Succinct CVAL 
• poly-size Boolean circuits for Succinct 

CVAL ??

Does NP have linear-size, log-depth
Boolean circuits ??

CS151 Lecture 5 22

22

April 18, 2023

Outline

• Boolean circuits and formulas

• uniformity and advice

• the NC hierarchy and parallel computation

• the quest for circuit lower bounds

• a lower bound for formulas

CS151 Lecture 5 23

23

April 18, 2023

Boolean circuits

• C computes function f:{0,1}n → {0,1} in 
natural way 
– identify C with function f it computes

• circuit C
– directed acyclic graph
– nodes: AND (∧); OR (∨); 

NOT (¬); variables xi

∨

∧

x1 x2

∧

∨ ¬

x3 … xn

∧

CS151 Lecture 5 24

24



5

April 18, 2023

Boolean circuits

• size = # gates
• depth = longest path from input to output
• formula (or expression): graph is a tree

• every function f:{0,1}n → {0,1} computable 
by a circuit of size at most O(n2n)
– AND of n literals for each x such that f(x) = 1
– OR of up to 2n such terms 

CS151 Lecture 5 25

25

April 18, 2023

Circuit families

• circuit works for specific input length
• we’re used to f:∑*→ {0,1}
• circuit family : a circuit for each input 

length C1, C2, C3, … = “{Cn}”
• “{Cn} computes f” iff for all x

C|x|(x) = f(x)
• “{Cn} decides L”, where L is the language  

associated with f 
CS151 Lecture 5 26

26

April 18, 2023

Connection to TMs

• given TM M running in time t(n) decides 
language L

• can build circuit family {Cn} that decides L 
– size of Cn = O(t(n)2)
– Proof: CVAL construction

• Conclude: L ∈ P implies family of 
polynomial-size circuits that decides L

CS151 Lecture 5 27

27

April 18, 2023

Connection to TMs

• other direction?

• A poly-size circuit family:
– Cn = (x1 ∨ ¬ x1) if Mn halts
– Cn = (x1 ∧ ¬ x1) if Mn loops

• decides (unary version of) HALT!
• oops…

CS151 Lecture 5 28

28

April 18, 2023

Uniformity

• Strange aspect of circuit family:
– can “encode” (potentially uncomputable) 

information in family specification
• solution: uniformity – require specification 

is simple to compute
Definition: circuit family {Cn} is logspace

uniform iff TM M outputs Cn on input 1n and 
runs in O(log n) space

CS151 Lecture 5 29

29

April 18, 2023

Uniformity

Theorem: P = languages decidable by 
logspace uniform, polynomial-size circuit 
families {Cn}.

• Proof:
– already saw (⇒)
– (⇐) on input x, generate C|x|, evaluate it and 

accept iff output = 1

CS151 Lecture 5 30

30



6

April 18, 2023

TMs that take advice

• family {Cn} without uniformity constraint is 
called “non-uniform”

• regard “non-uniformity” as a limited 
resource just like time, space, as follows:
– add read-only “advice” tape to TM M
– M “decides L with advice A(n)” iff

M(x, A(|x|)) accepts ⇔ x ∈ L
– note: A(n) depends only on |x|

CS151 Lecture 5 31

31

April 18, 2023

TMs that take advice

• Definition: TIME(t(n))/f(n) = the set of 
those languages L for which: 
– there exists A(n) s.t. |A(n)| ≤ f(n)
–TM M decides L with advice A(n) in time 

t(n)
• most important such class:

P/poly = ∪k TIME(nk)/nk

CS151 Lecture 5 32

32

April 18, 2023

TMs that take advice

Theorem: L ∈ P/poly iff L decided by family 
of (non-uniform) polynomial size circuits.

• Proof:
– (⇒) Cn from CVAL construction; hardwire 

advice A(n)
– (⇐) define A(n) = description of Cn; on input x, 

TM simulates C|x|(x)

CS151 Lecture 5 33

33

April 18, 2023

Approach to P/NP

• Believe NP ≠ P
– equivalent: “NP does not have uniform, 

polynomial-size circuits”
• Even believe NP ⊂ P/poly

– equivalent: “NP (or, e.g. SAT) does not have 
polynomial-size circuits”

– implies P ≠ NP
– many believe: best hope for P ≠ NP

CS151 Lecture 5 34

34

April 18, 2023

Parallelism

• uniform circuits allow refinement of 
polynomial time:

circuit 
C

depth ≡ parallel time

size ≡ parallel 
work

CS151 Lecture 5 35

35

April 18, 2023

Parallelism

• the NC (“Nick’s Class”) Hierarchy (of 
logspace uniform circuits):

NCk = O(logk n) depth, poly(n) size
NC = ∪k NCk

• captures “efficiently parallelizable 
problems”

• not realistic? overly generous
• OK for proving non-parallelizable

CS151 Lecture 5 36

36



7

April 18, 2023

Matrix Multiplication

• what is the parallel complexity of this 
problem?
– work = poly(n) 
– time = logk(n)? (which k?) 

n x n 
matrix A

n x n 
matrix B =

n x n 
matrix AB

CS151 Lecture 5 37

37

April 18, 2023

Matrix Multiplication

• two details
– arithmetic matrix multiplication…

A = (ai, k) B = (bk, j) (AB)i,j = Σk (ai,k x bk, j) 
… vs. Boolean matrix multiplication:

A = (ai, k) B = (bk, j) (AB)i,j = ∨k (ai,k∧ bk, j)

– single output bit: to make matrix multiplication 
a language: on input A, B, (i, j) output (AB)i,j

CS151 Lecture 5 38

38

April 18, 2023

Matrix Multiplication

• Boolean Matrix Multiplication is in NC1

– level 1: compute n ANDS: ai,k∧ bk, j

– next log n levels: tree of ORS

– n2 subtrees for all pairs (i, j)
– select correct one and output  

CS151 Lecture 5 39

39

April 18, 2023

Boolean formulas and NC1

• Previous circuit is actually a formula. This 
is no accident:

Theorem: L ∈NC1 iff decidable by 
polynomial-size uniform* family of Boolean 
formulas.

Note: we measure formula size by leaf-size.

* DSPACE(log2 n)-uniform

CS151 Lecture 5 40

40

April 18, 2023

Boolean formulas and NC1

• Proof: 
– (⇒) convert NC1 circuit into formula

• recursively:

• note: logspace transformation (stack depth 
log n, stack record 1 bit – “left” or “right”)

∧ ∧

⇒

CS151 Lecture 5 41

41

April 18, 2023

Boolean formulas and NC1

– (⇐) convert formula of size n into 
formula of depth O(log n) 
• note: size ≤ 2depth, so new formula has 

poly(n) size

D

C C1

1

C0

0

D

∨

∧ ∧

¬

D

key transformation

CS151 Lecture 5 42

42



8

April 18, 2023

Boolean formulas and NC1

– D any minimal subtree with size at least n/3 
• implies size(D) ≤ 2n/3

– define T(n) = maximum depth required for any
size n formula

– C1, C0, D all size ≤ 2n/3
T(n) ≤ T(2n/3) + 3 

implies T(n) ≤ O(log n)

CS151 Lecture 5 43

43

April 18, 2023

Relation to other classes

• Clearly NC⊆ P
– recall P ≡ uniform poly-size circuits

• NC1 ⊆ L
– on input x, compose logspace algorithms for:

• generating C|x|

• converting to formula
• FVAL

CS151 Lecture 5 44

44

April 18, 2023

Relation to other classes

• NL ⊆ NC2: S-T-CONN ∈ NC2
– given G = (V, E), vertices s, t
– A = adjacency matrix (with self-loops)
– (A2)i, j = 1 iff path of length ≤ 2 from node i to 

node j
– (An)i, j = 1 iff path of length ≤ n from node i to 

node j
– compute with depth log n tree of Boolean 

matrix multiplications, output entry s, t 
– log2 n depth total

CS151 Lecture 5 45

45

April 18, 2023

NC vs. P
• can every efficient algorithm be efficiently 

parallelized?
NC = P

• P-complete problems least-likely to be 
parallelizable
– if P-complete problem is in NC, then P = NC 
– Why? 

we use logspace reductions to show problem 
P-complete; L in NC

?

CS151 Lecture 5 46

46

April 18, 2023

NC vs. P

• can every uniform, poly-size Boolean 
circuit family be converted into a uniform, 
poly-size Boolean formula family?

NC1 = P
?

CS151 Lecture 5 47

47


