Introduction

Power from an unexpected source?

- we know $P \neq EXP$, which implies no poly-time algorithm for Succinct CVAL
- poly-size Boolean circuits for Succinct CVAL ??

Does NP have linear-size, log-depth Boolean circuits ??

Outline

- Boolean circuits and formulas
- uniformity and advice
- the NC hierarchy and parallel computation
- the quest for circuit lower bounds
- a lower bound for formulas

Boolean circuits

- circuit C
 - directed acyclic graph
 - nodes: AND (\land); OR (\lor);
 - NOT (\neg); variables x_i

- C computes function $f : \{0,1\}^n \rightarrow \{0,1\}$ in natural way
 - identify C with function f it computes

Boolean circuits

- size = # gates
- depth = longest path from input to output
- formula (or expression): graph is a tree

- every function $f : \{0,1\}^n \rightarrow \{0,1\}$ computable by a circuit of size at most $O(n2^n)$
 - AND of n literals for each x such that $f(x) = 1$
 - OR of up to 2^n such terms

Circuit families

- circuit works for specific input length
- we’re used to $f : \Sigma^* \rightarrow \{0,1\}$
- circuit family: a circuit for each input length $C_1, C_2, C_3, \ldots = \{C_n\}$
- “$\{C_n\}$ computes f” iff for all x
 \[C_{\mid x\mid}(x) = f(x) \]
- “$\{C_n\}$ decides L^*, where L is the language associated with f
Connection to TMs

- given TM M running in time $t(n)$ decides language L
- can build circuit family $\{C_n\}$ that decides L
 - size of $C_n = O(t(n)^2)$
 - Proof: CVAL construction
- Conclude: $L \in P$ implies family of polynomial-size circuits that decides L

Other direction?

- A poly-size circuit family:
 - $C_n = (x_1 \lor \neg x_1)$ if M_n halts
 - $C_n = (x_1 \land \neg x_1)$ if M_n loops
- decides (unary version of) HALT!
- oops…

Uniformity

- Strange aspect of circuit family:
 - can "encode" (potentially uncomputable) information in family specification
- solution: uniformity – require specification is simple to compute
 Definition: circuit family $\{C_n\}$ is **logspace uniform** iff TM M outputs C_n on input 1^n and runs in $O(\log n)$ space

Theorem: $P = \text{languages decidable by logspace uniform, polynomial-size circuit families } \{C_n\}$.

- Proof:
 - already saw (\Rightarrow)
 - (\Leftarrow) on input x, generate $C_{|x|}$, evaluate it and accept iff output = 1

TMs that take advice

- family $\{C_n\}$ without uniformity constraint is called "non-uniform"
- regard "non-uniformity" as a limited resource just like time, space, as follows:
 - add read-only "advice" tape to TM M
 - M "decides L with advice $A(n)$" iff $M(x, A(|x|))$ accepts $\iff x \in L$
 - note: $A(n)$ depends only on $|x|$

Definition: $\text{TIME}(t(n))/f(n)$ = the set of those languages L for which:
- there exists $A(n)$ s.t. $|A(n)| \leq f(n)$
- TM M decides L with advice $A(n)$ in time $t(n)$
- most important such class:
 $$P/poly = \bigcup_k \text{TIME}(n^k)/n^k$$
TMs that take advice

Theorem: \(L \in \text{P/poly} \) iff \(L \) decided by family of (non-uniform) polynomial size circuits.

- **Proof**:
 - \((\Rightarrow)\) \(C_n \) from CVAL construction; hardwire advice \(A(n) \)
 - \((\Leftarrow)\) define \(A(n) = \) description of \(C_n \); on input \(x \), TM simulates \(C_n(x) \)

Approach to P/NP

- Believe \(\text{NP} \neq \text{P} \)
 - equivalent: "\(\text{NP} \) does not have uniform, polynomial-size circuits"
- Even believe \(\text{NP} \notin \text{P/poly} \)
 - equivalent: "\(\text{NP} \) (or, e.g. SAT) does not have polynomial-size circuits"
 - implies \(\text{P} \neq \text{NP} \)
 - many believe: best hope for \(\text{P} \neq \text{NP} \)

Parallelism

- uniform circuits allow refinement of polynomial time:

Parallellism

- the \(\text{NC} \) ("Nick’s Class") Hierarchy (of logspace uniform circuits):
 \[\text{NC}_k = O(\log^k n) \text{ depth, poly}(n) \text{ size} \]
 \[\text{NC} = \bigcup_k \text{NC}_k \]
 - captures "efficiently parallelizable problems"
 - not realistic? overly generous
 - OK for proving non-parallelizable

Matrix Multiplication

- what is the parallel complexity of this problem?
 - work = poly(n)
 - time = \(\log^k(n) \) (which \(k \)?)

Matrix Multiplication

- two details
 - arithmetic matrix multiplication...
 \[A = (a_{i,k}), B = (b_{k,j}) \] \((AB)_{i,j} = \Sigma_k (a_{i,k} \times b_{k,j}) \)
 - vs. Boolean matrix multiplication:
 \[A = (a_{i,k}), B = (b_{k,j}) \] \((AB)_{i,j} = \lor_k (a_{i,k} \land b_{k,j}) \)
 - single output bit: to make matrix multiplication a language: on input \(A, B, (i, j) \) output \((AB)_{i,j} \)
Matrix Multiplication

- Boolean Matrix Multiplication is in NC_1
 - level 1: compute n ANDS: $a_{i,k} \land b_{k,j}$
 - next $\log n$ levels: tree of ORS
- n^2 subtrees for all pairs (i, j)
- select correct one and output

Boolean formulas and NC_1

- Previous circuit is actually a formula. This is no accident:
 - Theorem: $L \in \text{NC}_1$ iff decidable by polynomial-size uniform* family of Boolean formulas.
 - Note: we measure formula size by leaf-size.

Boolean formulas and NC_1

- Proof:
 - (\Rightarrow) convert NC_1 circuit into formula
 - recursively:
 $\land \Rightarrow \land$
 - note: logspace transformation (stack depth $\log n$, stack record 1 bit — “left” or “right”)

Boolean formulas and NC_1

- (\Leftarrow) convert formula of size n into formula of depth $O(\log n)$
 - note: size $\leq 2^\text{depth}$, so new formula has poly(n) size

Relation to other classes

- Clearly $\text{NC} \subseteq \text{P}$
 - recall P ≡ uniform poly-size circuits
- $\text{NC}_1 \subseteq \text{L}$
 - on input x, compose logspace algorithms for:
 - generating C_{11}
 - converting to formula
 - FVAL
Relation to other classes

- \(\text{NL} \subseteq \text{NC}_2 \): S-T-CONN \(\in \text{NC}_2 \)
 - given \(G = (V, E) \), vertices \(s, t \)
 - \(A \) = adjacency matrix (with self-loops)
 - \((A^2)_{ij} = 1 \) iff path of length \(\leq 2 \) from node \(i \) to node \(j \)
 - \((A^n)_{ij} = 1 \) iff path of length \(\leq n \) from node \(i \) to node \(j \)
 - compute with depth \(\log n \) tree of Boolean matrix multiplications, output entry \(s, t \)
 - \(\log^2 n \) depth total

NC vs. P

- can every efficient algorithm be efficiently parallelized?
 - \(\text{NC} \subseteq \text{P} \)
- \(\text{P} \)-complete problems least-likely to be parallelizable
 - if \(\text{P} \)-complete problem is in \(\text{NC} \), then \(\text{P} = \text{NC} \)
 - Why?
 - we use logspace reductions to show problem \(\text{P} \)-complete; \(L \) in \(\text{NC} \)

NC Hierarchy Collapse

- \(\text{NC}_1 \subseteq \text{NC}_2 \subseteq \text{NC}_3 \subseteq \text{NC}_4 \subseteq \ldots \subseteq \text{NC} \)

Exercise

if \(\text{NC}_i = \text{NC}_{i+1} \), then \(\text{NC} = \text{NC}_i \)
(prove for non-uniform versions of classes)

Lower bounds

- Recall: “\(\text{NP} \) does not have polynomial-size circuits” (\(\text{NP} \not\subset \text{P/poly} \)) implies \(\text{P} \neq \text{NP} \)
- major goal: prove lower bounds on (non-uniform) circuit size for problems in \(\text{NP} \)
 - believe exponential
 - super-polynomial enough for \(\text{P} \neq \text{NP} \)
 - best bound known: \((5-o(1))n \)
 - don’t even have super-polynomial bounds for problems in \(\text{NEXP} \)

Lower bounds

- lots of work on lower bounds for restricted classes of circuits
 - we’ll see two such lower bounds:
 - formulas
 - monotone circuits
Shannon’s counting argument

• frustrating fact: *almost all* functions require huge circuits

Theorem (Shannon): With probability at least $1 - o(1)$, a random function $f: \{0,1\}^n \rightarrow \{0,1\}$ requires a circuit of size $\Omega(2^n/n)$.

Proof (counting):

- $B(n) = 2^{2^n} = \# functions f: \{0,1\}^n \rightarrow \{0,1\}$
- $\# circuits with n inputs + size s$, is at most $C(n, s) \leq ((n+3)s^2)^s$ gates

 n gate types

 2 inputs per gate

Shannon’s counting argument

\[C(n, s) \leq ((n+3)s^2)^s \]

- $C(n, c2^n/n) < (2n)c^22^{2n}/n^2)^{c2^n/n}

 < o(1)2^{c2^n}$

 (if $c \leq \frac{1}{2}$)

- probability a random function has a circuit of size $s = (\frac{1}{2})2^n/n$ is at most $C(n, s)/B(n) < o(1)$

Shannon’s counting argument

- frustrating fact: *almost all* functions require huge formulas

Theorem (Shannon): With probability at least $1 - o(1)$, a random function $f: \{0,1\}^n \rightarrow \{0,1\}$ requires a formula of size $\Omega(2^n/log n)$.

Proof (counting):

- $F(n) = 2^{2^n} = \# formulas f: \{0,1\}^n \rightarrow \{0,1\}$
- $\# formulas with n inputs + size s$, is at most $F(n, s) \leq 4^s2^s(2n)^s$

- $F(n, c2^n/log n) < (16n)^{(c2^n)log n}$

 < $16(c2^n/log n)2(c2^n) = (1 + o(1))2^{c2^n}$

 < $o(1)2^2n$ (if $c \leq \frac{1}{2}$)

- probability a random function has a formula of size $s = (\frac{1}{2})2^n/log n$ is at most $F(n, s)/B(n) < o(1)$
Andreev function

- best formula lower bound for language in NP:

Theorem (Andreev, Hastad '93): the Andreev function requires (\wedge, \vee, \neg)-formulas of size at least $\Omega(n^{3-o(1)})$.

Random restrictions

- key idea: given function $f: \{0,1\}^n \rightarrow \{0,1\}$ restrict by ρ to get f_ρ
 - ρ sets some variables to 0/1, others remain free
- $R(n, \epsilon n) =$ set of restrictions that leave ϵn variables free
- Definition: $L(f) =$ smallest (\wedge, \vee, \neg) formula computing f (measured as leaf-size)

Random restrictions

- observation:
 $$E_{\rho \sim R(n, \epsilon n)}[L(f_\rho)] \leq \epsilon L(f)$$
 - each leaf survives with probability ϵ
- may shrink more…
 - propagate constants

Lemma (Hastad 93): for all f
 $$E_{\rho \sim R(n, \epsilon n)}[L(f_\rho)] \leq O(\epsilon^{2-o(1)} L(f))$$