Lecture 5
April 18, 2023

Two startling theorems

» Strongly believe P # NP

* nondeterminism seems to add enormous
power

« for space: Savitch ‘70:
NPSPACE = PSPACE
and
NL c SPACE(log?n)

April 18, 2023 CS151 Lecture 5

Two startling theorems

« Strongly believe NP # coNP

» seems impossible to convert existential
into universal

» for space: Immerman/Szelepscényi '87/88:

NL = coNL

April 18, 2023 CS151 Lecture 5

Savitch’s Theorem

Theorem: STCONN < SPACE(log? n)

« Corollary: NL € SPACE(log?n)

+ Corollary: NPSPACE = PSPACE

April 18, 2023

CS151 Lecture 5

Proof of Theorem

—input: G = (V, E), two nodes s and t
— recursive algorithm:

/* return true iff path from x to y of length at most 2! */
PATH(x, Y, i)
ifi=0return (x=yor(x,y)€E) /* base case */
forzinV
if PATH(X, z, i-1) and PATH(z, y, i-1) return(true);

return(false);
end

April 18, 2023 CS151 Lecture 5

Proof of Theorem

—answer to STCONN: PATH(s, t, log n)
— space used:
* (depth of recursion) x (size of “stack record”)
—depth =log n
— claim stack record: “(x, v, i)” sufficient
« size O(log n)
—when return from PATH(a, b, i) can figure out
what to do next from record (a, b, i) and
previous record

April 18, 2023 CS151 Lecture 5

Nondeterministic space

* Robust nondeterministic space classes:
NL = NSPACE(log n)

NPSPACE = U, NSPACE(n¥)

April 18, 2023 CS151 Lecture 5

Second startling theorem

 Strongly believe NP # coNP

* seems impossible to convert existential
into universal

I-S Theorem

Theorem: ST-NON-CONN € NL
* Proof: slightly tricky setup:
—input: G = (V, E), two nodes s, t
S

I-S Theorem

—want nondeterministic procedure using only
O(log n) space with behavior:

S S

“yes” “no”
input input

Qaccept Qreject Qaccept Qreject

April 18, 2023 CS151 Lecture 5

10

« for space: Immerman/Szelepscényi '87/'88: ‘yes”
NL = coNL
t
April 18, 2023 CS151 Lecture 5 8 April 18, 2023 CS151 Lecture 5 9
8 9
I-S Theorem I-S Theorem
— observation: given count of # nodes — every computation path has sequence of
reachable from s, can solve problem guesses...)
« for each v € V, guess if it is reachable — only way computation path can lead to
« if yes, guess path from s to v accept:
e d 't lead oct « correctly guessed reachable/unreachable
—Irguess doesntlead to v, reject. fOI’ each node v
—if v =t, reject. | d path f to v fi h
_ else counters+ « correctly guessed path from s to v for eac
e reachable node v
« if counter = count accept « saw all reachable nodes
« t not among reachable nodes
April 18, 2023 CS151 Lecture 5 " April 18, 2023 CS151 Lecture 5 12
11 12

I-S Theorem

—R(i) = # nodes reachable from s in at most i
steps

—R(0) =1: node s

—we will compute R(i+1) from R(i) using
O(log n) space and nondeterminism

— computation paths with “bad guesses” all lead
to reject

April 18, 2023 CS151 Lecture 5 13

I-S Theorem

— Outline: in n phases, compute
R(1), R(2), R(3), ... R(n)
—only O(log n) bits of storage between phases
—in end, lots of computation paths that lead to
reject
— only computation paths that survive have
computed correct value of R(n)
— apply observation.

April 18, 2023 CS151 Lecture 5 14

I-S Theorem

— computing R(i+1) from R(i):

R(i)=R(2)=6

— Initialize R(i+1) =0
—Foreach v €V, guess if v reachable from s in
at most i+1 steps

April 18, 2023 CS151 Lecture 5 15

14

15

13
I-S Theorem
—if “yes”, guess path from s to v of at most i+1
steps. Increment R(i+1)
—if “no”, visit R(i) nodes reachable in at most i
steps, check that none is v or adjacent to v
« for u € V guess if reachable in < i steps;
guess path to u; counter++
» KEY: if counter # R(i), reject
« at this point: can be sure v not reachable
April 18, 2023 CS151 Lecture 5 16
16

I-S Theorem

« correctness of procedure:

* two types of errors we can make

* (1) might guess v is reachable in at most
i+1 steps when it is not
—won't be able to guess path from s to v of

correct length, so we will reject.

“easy” type of error

April 18, 2023 CS151 Lecture 5 17

I-S Theorem

* (2) might guess v is not reachable in at
most i+1 steps when it is
— then must not see v or neighbor of v while
visiting nodes reachable in i steps.
— but forced to visit R(i) distinct nodes
— therefore must try to visit node v that is not
reachable in < i steps
—won'’t be able to guess path from s to v of
correct length, so we will reject.
“easy” type of error

April 18, 2023 CS151 Lecture 5 18

17

18

Summary

* nondeterministic space classes
NL and NPSPACE

+ ST-CONN NL-complete

April 18, 2023 CS151 Lecture 5 19

Summary

» Savitch: NPSPACE = PSPACE
— Proof: ST-CONN € SPACE(log? n)
—open question:

NL =L?

* Immerman/Szelepcsényi : NL = coNL
— Proof: ST-NON-CONN € NL

April 18, 2023 CS151 Lecture 5 20

April 18, 2023 CS151 Lecture 5 21

19

Introduction

Power from an unexpected source?

» we know P # EXP, which implies no poly-
time algorithm for Succinct CVAL

* poly-size Boolean circuits for Succinct
CVAL ??

Does NP have linear-size, log-depth
Boolean circuits ??

April 18, 2023 CS151 Lecture 5 22

20 21
Outline Boolean circuits
» Boolean circuits and formulas . circui A
clrt?ult C . P
« uniformity and advice —directed acyclic graph v A
—nodes: AND (A); OR (v); NN
- the NC hierarchy and parallel computation NOT (-); variables x; /"\ /V\ ;
X1 Xz Xz .. Xn

22

« the quest for circuit lower bounds

* alower bound for formulas

April 18, 2023 CS151 Lecture 5 23

» C computes function f:{0,1}" - {0,1} in
natural way
—identify C with function f it computes

April 18, 2023 CS151 Lecture 5 24

23

24

Boolean circuits

* size = # gates
+ depth = longest path from input to output
» formula (or expression): graph is a tree

« every function f:{0,1}" - {0,1} computable
by a circuit of size at most O(n2")
— AND of n literals for each x such that f(x) = 1
— OR of up to 2nsuch terms

April 18, 2023 CS151 Lecture 5

25

25

Circuit families

circuit works for specific input length
we're used to :5 - {0,1}
circuit family : a circuit for each input

Iength C1, Cz, Cs, el = “{Cn}"
* “{Cn} computes f" iff for all x
C(x) = f(x)

» “{C} decides L", where L is the language
associated with f

April 18, 2023 CS151 Lecture 5 26

Connection to TMs

» given TM M running in time t(n) decides
language L

* can build circuit family {C.} that decides L
—size of C, = O(t(n)?)
— Proof: CVAL construction

» Conclude: L € P implies family of
polynomial-size circuits that decides L

April 18, 2023 CS151 Lecture 5 27

Connection to TMs

« other direction?

* A poly-size circuit family:
—C, = (X4 V =1 x9) if M, halts
—C, = (X1 A = Xq) if M, loops

+ decides (unary version of) HALT!
* 00pS...

April 18, 2023 CS151 Lecture 5

28

26

27

28

Uniformity

» Strange aspect of circuit family:
—can “encode” (potentially uncomputable)
information in family specification
» solution: uniformity — require specification
is simple to compute
Definition: circuit family {C,} is logspace
uniform iff TM M outputs C, on input 1" and
runs in O(log n) space

April 18, 2023 CS151 Lecture 5 29

Uniformity

Theorem: P = languages decidable by
logspace uniform, polynomial-size circuit
families {Cp}.

* Proof:
— already saw (=)

— (&) oninput x, generate Cy;, evaluate it and
accept iff output = 1

April 18, 2023 CS151 Lecture 5 30

30

TMs that take advice

« family {Cn} without uniformity constraint is
called “non-uniform”

* regard “non-uniformity” as a limited
resource just like time, space, as follows:
— add read-only “advice” tape to TM M
—M “decides L with advice A(n)” iff

M(x, A(|x|)) accepts & x € L
—note: A(n) depends only on x|

April 18, 2023 CS151 Lecture 5 31

31

Approach to P/NP

» Believe NP = P

—equivalent: “NP does not have uniform,
polynomial-size circuits”

* Even believe NP ¢ Plpoly

—equivalent: “NP (or, e.g. SAT) does not have
polynomial-size circuits”

—implies P # NP

—many believe: best hope for P # NP

April 18, 2023 CS151 Lecture 5 34

TMs that take advice

* Definition: TIME(t(n))/f(n) = the set of
those languages L for which:

—there exists A(n) s.t. |A(n)| < f(n)

—TM M decides L with advice A(n) in time
t(n)

* most important such class:
P/poly = Uk TIME(nk)/nk

April 18, 2023 CS151 Lecture 5 32

TMs that take advice

Theorem: L € P/poly iff L decided by family
of (non-uniform) polynomial size circuits.

* Proof:

— (=) C, from CVAL construction; hardwire
advice A(n)

— (&) define A(n) = description of Cy; on input X,
TM simulates Cy(x)

April 18, 2023 CS151 Lecture 5 33

32

33

34

Parallelism

« uniform circuits allow refinement of
polynomial time:

depth = parallel time

}

size = parallel
work

April 18, 2023 CS151 Lecture 5 35

Parallelism

« the NC (“Nick’s Class”) Hierarchy (of
logspace uniform circuits):

NC = O(log* n) depth, poly(n) size
NC = ux NCk

- captures “efficiently parallelizable
problems”

* not realistic? overly generous
 OK for proving non-parallelizable

April 18, 2023 CS151 Lecture 5 36

35

36

April 18, 2023

Matrix Multiplication

nxn nxn nxn
matrix A | | matrix B | = | matrix AB

» what is the parallel complexity of this

problem?
—work = poly(n)
—time = logk(n)? (which k?)

CS151 Lecture 5 37

37

April 18, 2023

Matrix Multiplication

 two details
— arithmetic matrix multiplication...
A=(a,)B= (b)) (AB);= Zk (@ikX bxj)
... vs. Boolean matrix multiplication:
A=(ai,x) B=(bx;) (AB);=Vk(aikA by;)

— single output bit: to make matrix multiplication
a language: on input A, B, (i, j) output (AB);

CS151 Lecture 5 38

April 18, 2023

Matrix Multiplication

Boolean Matrix Multiplication is in NC4
—level 1: compute n ANDS: ajk A by
—next log n levels: tree of ORS

—n2 subtrees for all pairs (i, j)
— select correct one and output

Boolean formulas and NC4

Previous circuit is actually a formula. This
is no accident:

Theorem: L € NC; iff decidable by

polynomial-size uniform* family of Boolean
formulas.

* DSPACE(log? n)-uniform

Note: we measure formula size by leaf-size.

April 18, 2023

CS151 Lecture 5 40

40

CS151 Lecture 5 39
38 39
Boolean formulas and NC4 Boolean formulas and NC;
* Proof: — (&) convert formula of size n into
— (=) convert NC, circuit into formula formula of depth O(log n)
« recursively: * note: size < 2%pth 50 new formula has
A A poly(n) size v
= T
key transformation A A
« note: logspace transformation (stack depth c c = ¢
log n, stack record 1 bit — “left” or “right”) YN ° SN
1\ Jo\
April 18, 2023 CS151 Lecture 5 4 April 18, 2023 CS151 Lecture 5 42
41

42

Boolean formulas and NC;

— D any minimal subtree with size at least n/3
« implies size(D) < 2n/3

— define T(n) = maximum depth required for any
size n formula

—Cy4, Cy, D all size <2n/3
T(n)£T(2n/3)+3

implies T(n) < O(log n)

April 18, 2023 CS151 Lecture 5 43

43

NC vs. P

+ can every efficient algorithm be efficiently
parallelized?

?
NC=P
» P-complete problems least-likely to be

parallelizable
— if P-complete problem is in NC, then P = NC
— Why?

we use logspace reductions to show problem

P-complete; L in NC

April 18, 2023 CS151 Lecture 5 46

46

Relation to other classes

* Clearly NC< P
—recall P = uniform poly-size circuits

« NC,cL

—on input X, compose logspace algorithms for:
* generating Cy,
« converting to formula
* FVAL

April 18, 2023 CS151 Lecture 5 44

Relation to other classes

* NL € NC3: S-T-CONN € NC;
—given G = (V, E), vertices s, t
— A = adjacency matrix (with self-loops)

— (A2);; = 1 iff path of length < 2 from node i to
node j

— (An); ;= 1 iff path of length < n from node i to
node j

— compute with depth log n tree of Boolean
matrix multiplications, output entry s, t

—log? n depth total

April 18, 2023 CS151 Lecture 5 45

44

NC vs. P

* can every uniform, poly-size Boolean
circuit family be converted into a uniform,
poly-size Boolean formula family?

?

NC.=P

April 18, 2023 CS151 Lecture 5 47

47

45

