Introduction

Power from an unexpected source?
• we know $P \neq \text{EXP}$, which implies no poly-time algorithm for Succinct CVAL
• poly-size Boolean circuits for Succinct CVAL ??

Does NP have linear-size, log-depth Boolean circuits ??

Outline

• Boolean circuits and formulas
• uniformity and advice
 • the NC hierarchy and parallel computation
 • the quest for circuit lower bounds
 • a lower bound for formulas

Boolean circuits

• circuit C
 – directed acyclic graph
 – nodes: AND (\land); OR (\lor);
 NOT (\neg); variables x_i
 – $x_1, x_2, x_3, \ldots, x_n$

• C computes function $f: \{0,1\}^n \to \{0,1\}$ in natural way
 – identify C with function f it computes

Boolean circuits

• size = # gates
• depth = longest path from input to output
• formula (or expression): graph is a tree

• every function $f: \{0,1\}^n \to \{0,1\}$ computable by a circuit of size at most $O(n2^n)$
 – AND of n literals for each x such that $f(x) = 1$
 – OR of up to 2^n such terms

Circuit families

• circuit family : a circuit for each input length $C_1, C_2, C_3, \ldots = \{C_n\}$
• $\{C_n\}$ computes f iff for all x
 $C_{|x|}(x) = f(x)$

• Definition: circuit family $\{C_n\}$ is logspace uniform iff TM M outputs C_n on input 1^n and runs in $O(\log n)$ space
TMs that take advice

- family \(\{C_n\} \) without uniformity constraint is called "non-uniform"
- regard "non-uniformity" as a limited resource just like time, space, as follows:
 - add read-only "advice" tape to TM \(M \)
 - \(M \) "decides L with advice A(n)" iff
 \[M(x, A(|x|)) \text{ accepts } \iff x \in L \]
 - note: \(A(n) \) depends only on \(|x|\)

Definition: \(\text{TIME}(t(n))/f(n) = \) the set of those languages \(L \) for which:
- there exists \(A(n) \) s.t. \(|A(n)| \leq f(n)\)
- TM \(M \) decides \(L \) with advice \(A(n) \) in time \(t(n) \)
- most important such class:
 \[\text{P/poly} = \cup_k \text{TIME}(n^k)/n^k \]

Uniformity

Theorem: \(\text{P} \) = languages decidable by logspace uniform, polynomial-size circuit families \(\{C_n\} \).

- Proof:
 - already saw \((\Rightarrow)\)
 - \((\Leftarrow)\) on input \(x \), generate \(C_{|x|} \), evaluate it and accept iff output = 1

Approach to P/NP

- Believe \(\text{NP} \not\subset \text{P} \)
 - equivalent: "\(\text{NP} \) does not have uniform, polynomial-size circuits"
- **Even believe \(\text{NP} \not\subset \text{P/poly} \)**
 - equivalent: "\(\text{NP} \) (or, e.g. SAT) does not have polynomial-size circuits"
 - implies \(\text{P} \neq \text{NP} \)
 - many believe: best hope for \(\text{P} \neq \text{NP} \)

Parallelism

- uniform circuits allow refinement of polynomial time:

\[\text{depth} = \text{parallel time} \]
\[\text{size} = \text{parallel work} \]
Parallelism

• the \textbf{NC} ("Nick’s Class") Hierarchy (of logspace uniform circuits):
 \[\text{NC}_k = O(\log^k n) \text{ depth, } \text{poly}(n) \text{ size} \]
 \[\text{NC} = \bigcup_k \text{NC}_k \]
• captures “efficiently parallelizable problems”
• not realistic? overly generous
• OK for proving non-parallelizable

Matrix Multiplication

• two details
 – arithmetic matrix multiplication…
 \[A = (a_{i,k}) B = (b_{k,j}) \quad (AB)_{i,j} = \sum_k (a_{i,k} \times b_{k,j}) \]
 … vs. Boolean matrix multiplication:
 \[A = (a_{i,k}) B = (b_{k,j}) \quad (AB)_{i,j} = \lor_k (a_{i,k} \land b_{k,j}) \]
 – single output bit: to make matrix multiplication a language: on input $A, B, (i, j)$ output $(AB)_{i,j}$

Boolean formulas and \textbf{NC}_1

• Previous circuit is actually a formula. This is no accident:

 \textbf{Theorem}: $L \in \text{NC}_1$ iff decidable by polynomial-size uniform family of Boolean formulas.

 Note: we measure formula size by leaf-size.
Boolean formulas and \textbf{NC}\textsubscript{1}

\begin{itemize}
 \item \((\leq)\) convert formula of size \(n\) into formula of depth \(O(\log n)\)
 \item note: size \(\leq 2^\text{depth}\), so new formula has \(\text{poly}(n)\) size
\end{itemize}

Relation to other classes

\begin{itemize}
 \item Clearly \(\text{NC} \subseteq \text{P}\)
 \begin{itemize}
 \item recall \(\text{P} = \text{uniform poly-size circuits}\)
 \end{itemize}
 \item \(\text{NC}_1 \subseteq \text{L}\)
 \begin{itemize}
 \item on input \(x\), compose \textit{logspace} algorithms for:
 \begin{itemize}
 \item generating \(C_{\text{val}}\)
 \item converting to formula
 \item FVAL
 \end{itemize}
 \end{itemize}
\end{itemize}

\textbf{NC} vs. \textbf{P}

\begin{itemize}
 \item can every \textit{efficient} algorithm be efficiently parallelized?
 \[\text{NC} \overset{?}{=} \text{P}\]
 \item \textbf{P}-complete problems least-likely to be parallelizable
 \begin{itemize}
 \item if \textbf{P}-complete problem is in \textbf{NC}, then \(\text{P} = \text{NC}\)
 \item Why?
 we use \textit{logspace} reductions to show \textbf{P}-complete; \textbf{L} in \textbf{NC}
 \end{itemize}
\end{itemize}
NC Hierarchy Collapse

$NC_1 \subseteq NC_2 \subseteq NC_3 \subseteq NC_4 \subseteq \ldots \subseteq NC$

Exercise

if $NC_i = NC_{i+1}$, then $NC = NC_i$

(prove for non-uniform versions of classes)

Lower bounds

- Recall: "**NP does not have polynomial-size circuits**" (NP $\not\subset$ P/poly) implies $P \neq NP$

- **major goal**: prove lower bounds on (non-uniform) circuit size for problems in **NP**
 - believe exponential
 - super-polynomial enough for $P \neq NP$
 - best bound known: $4.5n$
 - don’t even have super-polynomial bounds for problems in **NEXP**

Lower bounds

- lots of work on lower bounds for **restricted classes** of circuits
 - we’ll see two such lower bounds:
 - formulas
 - monotone circuits

Shannon’s counting argument

- frustrating fact: almost all functions require huge circuits

Theorem (Shannon): With probability at least $1 - o(1)$, a random function

$f : \{0,1\}^n \rightarrow \{0,1\} \quad \Rightarrow \quad \text{ requires a circuit of size } \Omega(2^{\alpha n})$.

Shannon’s counting argument

- Proof (counting):
 - $B(n) = 2^{2^n}$ = # functions $f : \{0,1\}^n \rightarrow \{0,1\}$
 - # circuits with n inputs + size s, is at most

$$C(n, s) \leq ((n+3)s^2)$$

- probability a random function has a circuit of size $s = (\frac{1}{2})2^{\alpha n}$ is at most

$$C(n, s)/B(n) < o(1)$$
Shannon’s counting argument

- Frustrating fact: almost all functions require huge formulas

Theorem (Shannon): With probability at least $1 - o(1)$, a random function $f : \{0,1\}^n \to \{0,1\}$ requires a formula of size $\Omega(2^{n/\log n})$.

Proof (counting):
- $B(n) = 2^{2^n} = \# \text{ functions } f : \{0,1\}^n \to \{0,1\}$
- $\# \text{ formulas with } n \text{ inputs + size } s$, is at most
 $$F(n, s) \leq 4^s 2^n \binom{s}{2} \cdot 2^n \cdot 2^{n/\log n}$$
 2 gate choices per internal node
 2n choices per leaf
 4^s binary trees with s internal nodes

- $F(n, s) \leq 4^s 2^n \binom{s}{2} \cdot 2^n \cdot 2^{n/\log n} \leq (16n)^{c 2^n/\log n}$
- $< 16 (c 2^n/\log n)^2 \left(1 + o(1)\right) 2^{(c/2)n}$
- $< o(1)$

- Probability a random function has a formula of size $s = (1/2) 2^{n/\log n}$ is at most $F(n, s)/B(n) = o(1)$

Andreev function

- Best formula lower bound for language in NP:

 Theorem (Andreev, Hastad ’93): the Andreev function requires $\Omega(n^{3-o(1)})$-formulas of size at least $\Omega(n^{3-o(1)})$.

Random restrictions

- Key idea: given function $f : \{0,1\}^n \to \{0,1\}$ restrict by ρ to get f_ρ
 - ρ sets some variables to 0/1, others remain free

 - $R(n, \rho) = \text{ set of restrictions that leave } \rho \text{ variables free}$

 - Definition: $L(f)$ = smallest (\land, \lor, \neg) formula computing f (measured as leaf-size)
Random restrictions

- observation:

 \[E_{R(n, m)}[L(f)] \leq \varepsilon L(f) \]

 - each leaf survives with probability \(\varepsilon \)

- may shrink more...

 - propagate constants

Lemma (Hastad 93): for all \(f \)

 \[E_{R(n, m)}[L(f)] \leq O(\varepsilon^{2-o(1)}L(f)) \]

Hastad’s shrinkage result

- Proof of theorem:

 - Recall: there exists a function

 \[h: (0,1)^{\log n} \rightarrow (0,1) \]

 for which \(L(h) > n/2\log \log n \).

 - hardwire truth table of that function into \(y \) to get \(A(x) \)

 - apply random restriction from \(R(n, m = 2(\log n)(\ln \log n)) \)

The lower bound

- Proof of theorem (continued):

 - probability given XOR is killed by restriction is probability that we “miss it” \(m \) times:

 \[(1 - (n/\log n)/n)^m \leq (1 - 1/\log n)^m \leq (1/e)^{m/\log n} \leq 1/\log^2 n \]

 - probability even one of XORs is killed by restriction is at most:

 \[\log n(1/\log^2 n) = 1/\log n < 1/2. \]

The lower bound

- (1): probability even one of XORs is killed by restriction is at most:

 \[\log n(1/\log^2 n) = 1/\log n < 1/2. \]

- (2): by Markov:

 \[\Pr[L(A_{\rho}) > 2 E_{R(n, m)}[L(A_{\rho})]] < 1/2. \]

- Conclude: for some restriction \(\rho \)

 - all XORs survive, and

 \[L(A_{\rho}) \leq 2 E_{R(n, m)}[L(A_{\rho})] \leq O((\log n)(\ln \log n)/\log^2 n) \]

 - implies \(\Omega(n^{3-o(1)}) \leq L(A) \leq L(A) \).

Clique

CLIQUE = \(\{ (G, k) | G \text{ is a graph with a clique of size} \geq k \} \)

- \(\text{clique} = \text{set of vertices every pair of which are connected by an edge} \)

 - **CLIQUE** is **NP-complete**.
Circuit lower bounds

- We think that \textbf{NP} requires exponential-size circuits.
- Where should we look for a problem to attempt to prove this?
- Intuition: “hardest problems” – i.e., \textbf{NP}-complete problems

Circuit lower bounds

- Formally:
 - if any problem in \textbf{NP} requires super-polynomial size circuits
 - then every \textbf{NP}-complete problem requires super-polynomial size circuits
- Proof idea: poly-time reductions can be performed by poly-size circuits using a variant of CVAL construction

Monotone problems

- Definition: monotone language = language $L \subseteq \{0,1\}^*$ such that $x \in L$ implies $x' \in L$ for all $x \leq x'$.
 - flipping a bit of the input from 0 to 1 can only change the output from “no” to “yes” (or not at all)

Monotone problems

- some \textbf{NP}-complete languages are monotone
 - e.g. CLIQUE (given as adjacency matrix):
 - others: HAMILTON CYCLE, SET COVER…
 - but not SAT, KNAPSACK…

Monotone circuits

A restricted class of circuits:

- Definition: monotone circuit = circuit whose gates are ANDs (\wedge), ORs (\vee), but no NOTs
- can compute exactly the monotone fnns.
 - monotone functions closed under AND, OR

Monotone circuits

- A question:
 Do all poly-time computable monotone functions have poly-size monotone circuits?
 - recall: true in non-monotone case
Monotone circuits

A monotone circuit for $\text{CLIQUE}_{n,k}$

- Input: graph $G = (V, E)$ as adj. matrix, $|V|=n$
 - variable x_{ij} for each possible edge (i,j)
- $\text{ISCLIQUE}(S)$ = monotone circuit that = 1 if $S \subseteq V$ is a clique: $\land_{ij \in S} x_{ij}$
- $\text{CLIQUE}_{n,k}$ computed by monotone circuit: $\lor_{S \subseteq V, |S|=k} \text{ISCLIQUE}(S)$

- Size of this monotone circuit for $\text{CLIQUE}_{n,k}$:
 - when $k = n^{1/4}$, size is approximately:

$\left(\frac{n}{\binom{n}{k}}\right)^{k^2/2} \approx n^{\Omega(n^{1/4})}$

- Theorem (Razborov 85): monotone circuits for $\text{CLIQUE}_{n,k}$ with $k = n^{1/4}$ must have size at least $2^{\Omega(n^{1/8})}$.

- Proof:
 - next lecture

April 13, 2015