CS151
Complexity
Theory

Lecture 4
April 13, 2023

Ladner’ s Theorem

* Assuming P # NP, what does the world
(inside NP) look like?

NP: NP:
NPC NPC
P P

April 13, 2023 CS151 Lecture 4

Ladner’ s Theorem

Theorem (Ladner): If P # NP, then there
exists L € NP that is neither in P nor NP-
complete.

* Proof: “lazy diagonalization”

—deal with similar problem as in NTIME
Hierarchy proof

April 13,2023 CS151 Lecture 4

Ladner’ s Theorem

» Can enumerate (TMs deciding) all
languages in P.
—enumerate TMs so that each machine
appears infinitely often
—add clock to M; so that it runs in at most ni
steps

April 13,2023 CS151 Lecture 4

Ladner’ s Theorem

» Can enumerate (TMs deciding) all NP-
complete languages.
— enumerate TMs f; computing all polynomial-
time functions
—machine N; decides language SAT reduces to

via fi if f;is reduction, else SAT (details
omitted...)

April 13, 2023 CS151 Lecture 4 5

Ladner’ s Theorem

+ Our goal: }
Lenp M
that is Mo
neither in -
P nor ‘ inputs
NP- No
complete '\‘]

|

April 13,2023 CS151 Lecture 4

Ladner’ s Theorem

* Top half, assuming P # NP:

« focus on M, I
«for any x, M
can always |
find some z Mo
= x on which
M and SAT SAT| |
differ (why?)
‘\ input x .

input z

April 13, 2023 CS151 Lecture 4

Ladner’ s Theorem

* Bottom half, assuming P # NP:
TRIV=%

« focus on N; / / input x input z
«for any x, /
can always TRIV ‘

find some z

2 x on which

N; and TRIV

No
\
differ (why?) T

April 13, 2023 CS151 Lecture 4

Ladner’ s Theorem

« Tryto “merge”: }
SAT TRIV. :
Mo |_|
* on input x, either 7 u
— answer SAT(x) " Z
— answer TRIV(x) No |_|
« if can decide which |
oneinP,L € NP N;
April 13, 2023 CS151 Lecture 4 9

Ladner’ s Theorem

» General scheme: f(n) slowly increasing
function

R 00 e
fx[o[o[o[t]1]1]2[2[2[2[... | A

—f(|x]) even: answer SAT(x)
—f(|x|) odd: answer TRIV(x)

* notice choice only depends on length of
input... that's OK

April 13,2023 CS151 Lecture 4

10

8 9
Ladner’s Theorem Ladner’s Theorem
« 1stattempt to define f(n) * Problem: eager f(n) too difficult to compute
« “eager f(n)”: increase at 1t opportunity « oninput of length n,
* Inductive definition: f(0) = 0; f(n) = — look at all strings z of length <n
—if f(n-1) = 2i, trying to kill M, — compute SAT(z) or Ni(z) for each !
«if3z<1nst M(z) # SAT(z), then + Solution: “lazy” f(n)
f(n) = f(n-1) + 1; else f(n) = f(n-1) — on input of length n, only run for 2n steps
—if f(n-1) = 2i+1, trying to kill N; — if enough time to see should increase (over f(n-1)), do
«if3z< st Ni(z) # TRIV(z), then it else, stay same B
f(n) = f(n-1) + 1; else f(n) = f(n-1) — (alternate proof: give explicit f(n) that grows slowly
enough...)
April 13,2023 CS151 Lecture 4 1 April 13, 2023 CS151 Lecture 4 12
11 12

Ladner’ s Theorem

*I'm
sup

osédef A
Eraipe

* Key: n eventually large enough to
notice completed previous stage

M | | [- Zfinally
have
F3 enough
L ° input z
¢ [olo[1[t]- [WkIkk[k[T T | :Eppte
. Job,
input z < x . ¢ ;,ngrelgsﬁ
suppose k = 2i nput x f
April 13, 2023 CS151 Lecture 4 13
13
Ladner’ s Theorem
* Finishing up:

L={x|x € SAT if f(|x]) even,
x € TRIV if f(|x]) odd }

» L € NP since f(|x|) can be computed in
O(n) time

April 13,2023 CS151 Lecture 4 16

Ladner’ s Theorem

* Inductive definition of f(n)
-f(0)=0
—f(n): for n steps compute f(0), f(1), f(2),...

L B EBnn

f [ofo[1]1]---[k[k]k] -~ |

got this far in n steps input x,
x| =n

April 13, 2023 CS151 Lecture 4 14

Ladner’ s Theorem

—ifk=2i
« for n steps try (lex order) to find z s.t.
SAT(z) # Mi(z) and f(|z|) even
« if found, f(n) = f(n-1)+1 else f(n-1)
—ifk=2i+1:
« for n steps try (lex order) to find z s.t.
TRIV(z) # Ni(z) and f(|z|) odd
« if found, f(n) = f(n-1)+1 else f(n-1)

April 13,2023 CS151 Lecture 4 15

14

— implies SAT € P. Contradiction.

suppose N; decides L

— f gets stuck at 2i+1
—-L=TRIVforz:|z| >n,

— implies L(N;) € P. Contradiction.

* (last of diagonalization...)

April 13, 2023 CS151 Lecture 4 17

16

15
Ladner’ s Theorem
» suppose M decides L _
— f gets stuck at 2i QV %ulzﬁlgé
—L=SATforz:|z|>n, of trees

 cover up nodes with ¢ colors
 promise: never color “arrow” same as “blank”
« determine which kind of tree in poly(n, c) steps?

April 13,2023 CS151 Lecture 4 18

17

18

A puzzle

April 13,2023 CS151 Lecture 4 19

19

Sparse languages and NP

» We often say NP-compete languages are
*hard”

* More accurate: NP-complete languages
are “expressive”
— lots of languages reduce to them

April 13,2023 CS151 Lecture 4 22

A puzzle

depth
n

April 13, 2023 CS151 Lecture 4 20

Introduction

* Ideas
— depth-first-search; stop if see O
—how many times may we see a given “arrow
color’?
* at most n+1
— pruning rule?
« if see a color > n+1 times, it can’t be an
arrow node; prune
—# nodes visited before know answer?
* at most c(n+2)

April 13,2023 CS151 Lecture 4 21

20

21

22

Sparse languages and NP

» Sparse language: one that contains at
most poly(n) strings of length < n

* not very expressive — can we show this
cannot be NP-complete (assuming P # NP) ?
—yes: Mahaney ‘82 (homework problem)

» Unary language: subset of 1* (at most n
strings of length < n)

April 13, 2023 CS151 Lecture 4 23

Sparse languages and NP

Theorem (Berman ’78): if a unary language
is NP-complete then P = NP.

* Proof:

—let U € 1* be a unary language and assume
SAT < U via reduction R

— @(X1,X2,...,%n) instance of SAT

April 13,2023 CS151 Lecture 4 24

23

Sparse languages and NP

— self-reduction tree for ¢:

O(X1,X2,...,Xn)
cp(O,xz,..A,><n)g©hq>(l,x2 ,,,,, X,)

q>(o,o,.__,0)O q Qp(l,l,...,l)

satisfying assignment

April 13,2023

CS151 Lecture 4

25

25

Summary

» nondeterministic time classes:
NP, coNP, NEXP
* NTIME Hierarchy Theorem:
NP # NEXP
* major open questions:

? ?
PZNP NP £ coNP

April 13,2023 CS151 Lecture 4

28

Sparse languages and NP

— applying reduction R:

R(p(x1.%2.... %))
R(p(0,xs,..., xn))g%lz(«p(l,xz ,,,,, X))

R(q»(o,o,....ono q C%(q)(l,l,...,l))

satisfying assignment

Sparse languages and NP

+ on input of length m = |@(x1,X2,...,Xy)|, R
produces string of length < p(m)

 R’s different outputs are “colors”
— 1 color for strings not in 1*
— at most p(m) other colors

* puzzle solution = can solve SAT in
poly(p(m)+1, n+1) = poly(m) time!

April 13, 2023 CS151 Lecture 4 2 April 13, 2023 CS151 Lecture 4 27
26 27
Summary Summary
+ NP-“intermediate” problems (unless P = NP) NEXP coNEXP

28

— technique: delayed diagonalization
« unary languages not NP-complete (unless P = NP)
— true for sparse languages as well (homework)
complete problems:
— circuit SAT is NP-complete
— UNSAT is coNP-complete
— succinct circuit SAT is NEXP-complete

April 13, 2023 CS151 Lecture 4 29

PSPACE
NP coNP

P

0

CS151 Lecture 4

April 13,2023

29

30

Remainder of lecture

* nondeterminism applied to space
* reachability
* two surprises:

— Savitch’s Theorem

— Immerman/Szelepcsényi Theorem

April 13,2023 CS151 Lecture 4

31

31

Reachability

« Recall: at most nk configurations of given
NTM M running in NSPACE(log n).

» easy to QstartX1X2X3..Xn
determine if C ~ x€L xel
yields C’ in one

step

« configuration

graph for M on

Ianlt X Qaccept Qreject

April 13,2023 CS151 Lecture 4

Qaccept Qreject

34

Nondeterministic space

* NSPACE(f(n)) = languages decidable by a
multi-tape NTM that touches at most f(n)
squares of its work tapes along any

computation path, where n is the input
length, and f:N - N

April 13, 2023 CS151 Lecture 4 32

Nondeterministic space

* Robust nondeterministic space classes:
NL = NSPACE(log n)

NPSPACE = U, NSPACE(n)

April 13,2023 CS151 Lecture 4 33

32 33
Reachability Reachability
» Conclude: NL € P * Proof:
—and NPSPACE c EXP —in NL: guess path from s to t one node at a

34

» S-T-Connectivity (STCONN): given
directed graph G = (V, E) and nodes s, t, is
there a path fromstot?

Theorem: STCONN is NL-complete under
logspace reductions.

April 13, 2023 CS151 Lecture 4 35

time
—given L € NL decided by NTM M construct

configuration graph for M on input x (can be
done in logspace)

—s = starting configuration; t = Qaccept

April 13,2023 CS151 Lecture 4 36

35

36

Two startling theorems

« Strongly believe P # NP
* nondeterminism seems to add enormous
power

« for space: Savitch ‘70:

April 13,2023

NPSPACE = PSPACE
and
NL < SPACE(log?n)

CS151 Lecture 4

37

37

Two startling theorems

 Strongly believe NP # coNP

* seems impossible to convert existential
into universal

« for space: Immerman/Szelepscényi '87/'88:

April 13, 2023

NL = coNL

CS151 Lecture 4

38

38

