A puzzle

• cover up nodes with c colors
• promise: never color “arrow” same as “blank”
• determine which kind of tree in poly(n, c) steps?

A puzzle

depth n

A puzzle

depth n

Introduction

• Ideas
 – depth-first-search; stop if see
 – how many times may we see a given “arrow color”?
 • at most n+1
 – pruning rule?
 • if see a color > n+1 times, it can’t be an arrow node; prune
 – # nodes visited before know answer?
 • at most c(n+2)

Sparse languages and NP

• We often say NP-compete languages are “hard”

• More accurate: NP-complete languages are “expressive”
 – lots of languages reduce to them
Sparse languages and NP

- Sparse language: one that contains at most poly(n) strings of length ≤ n
- not very expressive – can we show this cannot be NP-complete (assuming P ≠ NP)?
 - yes: Mahaney ’82 (homework problem)

- Unary language: subset of 1* (at most n strings of length ≤ n)

Theorem (Berman ’78): if a unary language is NP-complete then P = NP.

- Proof:
 - let U ⊆ 1* be a unary language and assume SAT ≤ U via reduction R
 - φ(x₁,x₂,…,xₙ) instance of SAT

Sparse languages and NP

- self-reduction tree for φ:

Sparse languages and NP

- applying reduction R:

Sparse languages and NP

- on input of length m = |φ(x₁,x₂,…,xₙ)|, R produces string of length ≤ p(m)
- R’s different outputs are “colors”
 - 1 color for strings not in 1*
 - at most p(m) other colors
- puzzle solution ⇒ can solve SAT in poly(p(m)+1, n+1) = poly(m) time!

Summary

- nondeterministic time classes:
 NP, coNP, NEXP
- NTIME Hierarchy Theorem:
 NP ≠ NEXP
- major open questions:
 P ≠ NP
 NP ≠ coNP
Summary

- NP-"intermediate" problems (unless $P = NP$)
 - technique: delayed diagonalization
- unary languages not NP-complete (unless $P = NP$)
 - true for sparse languages as well (homework)
- complete problems:
 - circuit SAT is NP-complete
 - UNSAT is coNP-complete
 - succinct circuit SAT is $NEXP$-complete

Remainder of lecture

- nondeterminism applied to space
- reachability
- two surprises:
 - Savitch’s Theorem
 - Immerman/Szelepcsényi Theorem

Nondeterministic space

- Robust nondeterministic space classes:
 \[
 NL = \text{NSPACE}(\log n) \\
 \text{NPSPACE} = \bigcup_k \text{NSPACE}(n^k)
 \]
Reachability

• Conclude: \(\text{NL} \subseteq \text{P} \)
 – and \(\text{NPSPACE} \subseteq \text{EXP} \)

• S-T-Connectivity (STCONN): given
 directed graph \(G = (V, E) \) and nodes \(s, t \), is
 there a path from \(s \) to \(t \) ?

 Theorem: STCONN is NL-complete under
 logspace reductions.

Two startling theorems

• Strongly believe \(\text{P} \neq \text{NP} \)
• nondeterminism seems to add enormous
 power
• for space: Savitch ‘70:
 \[\text{NPSPACE} = \text{PSPACE} \]
 and
 \[\text{NL} \subseteq \text{SPACE}(\log^2 n) \]

Savitch’s Theorem

Theorem: STCONN \(\in \text{SPACE}(\log^2 n) \)

• Corollary: \(\text{NL} \subseteq \text{SPACE}(\log^2 n) \)
• Corollary: \(\text{NPSPACE} = \text{PSPACE} \)

Two startling theorems

• Strongly believe \(\text{NP} \neq \text{coNP} \)
• seems impossible to convert existential
 into universal
• for space: Immerman/Szelepscényi ‘87/’88:
 \[\text{NL} = \text{coNL} \]

Proof of Theorem

– input: \(G = (V, E) \), two nodes \(s \) and \(t \)
– recursive algorithm:

```plaintext
/* return true iff path from x to y of length at most 2^i */
PATH(x, y, i)
if i = 0 return ( x = y or (x, y) \in E ) /* base case */
for z in V
  if PATH(x, z, i-1) and PATH(z, y, i-1) return(true);
return(false);
```

Reachability

• Proof:
 – in NL: guess path from \(s \) to \(t \) one node at a
 time
 – given \(L \in \text{NL} \) decided by NTM \(M \)
 construct
 configuration graph for \(M \) on input \(x \) (can be
 done in logspace)
 – \(s \) = starting configuration; \(t = q_{\text{accept}} \)
Proof of Theorem

– answer to STCONN: PATH(s, t, log n)
– space used:
 • (depth of recursion) x (size of "stack record")
 • depth = log n
– claim stack record: "(x, y, i)" sufficient
 • size O(log n)
– when return from PATH(a, b, i) can figure out what to do next from record (a, b, i) and previous record

Nondeterministic space

• Robust nondeterministic space classes:
 \[\text{NL} = \text{NSPACE}(\log n) \]
 \[\text{NPSPACE} = \bigcup_k \text{NSPACE}(n^k) \]

Second startling theorem

• Strongly believe \(\text{NP} \neq \text{coNP} \)
• seems impossible to convert existential into universal
• for space: Immerman/Szelepcsényi '87/'88:
 \[\text{NL} = \text{coNL} \]

I-S Theorem

Theorem: ST-NON-CONN \(\in \text{NL} \)

• Proof: slightly tricky setup:
 – input: \(G = (V, E) \), two nodes s, t

I-S Theorem

– want nondeterministic procedure using only \(O(\log n) \) space with behavior:

I-S Theorem

– observation: given count of # nodes reachable from s, can solve problem
 • for each \(v \in V \), guess if it is reachable
 • if yes, guess path from s to v
 – if guess doesn’t lead to v, reject.
 – if \(v = t \), reject.
 – else counter++
 • if counter = count accept
I-S Theorem

-- every computation path has sequence of guesses...
-- only way computation path can lead to accept:
 • correctly guessed reachable/unreachable for each node \(v \)
 • correctly guessed path from \(s \) to \(v \) for each reachable node \(v \)
 • saw all reachable nodes
 • \(t \) not among reachable nodes

April 8, 2015

I-S Theorem

-- \(R(i) \) = # nodes reachable from \(s \) in at most \(i \) steps
-- \(R(0) = 1 \): node \(s \)

-- we will compute \(R(i+1) \) from \(R(i) \) using \(O(\log n) \) space and nondeterminism

-- computation paths with "bad guesses" all lead to reject

April 8, 2015

I-S Theorem

-- Outline: in \(n \) phases, compute \(R(1), R(2), R(3), \ldots R(n) \)
-- only \(O(\log n) \) bits of storage between phases
-- in end, lots of computation paths that lead to reject
-- only computation paths that survive have computed correct value of \(R(n) \)
-- apply observation.

April 8, 2015

I-S Theorem

-- computing \(R(i+1) \) from \(R(i) \):
 \[R(i) = R(2) = 6 \]

 -- Initialize \(R(i+1) = 0 \)
 -- For each \(v \in V \), guess if \(v \) reachable from \(s \) in at most \(i+1 \) steps

 \[R(i) = R(2) = 6 \]

-- Outline: in \(n \) phases, compute \(R(1), R(2), R(3), \ldots R(n) \)
-- only \(O(\log n) \) bits of storage between phases
-- in end, lots of computation paths that lead to reject
-- only computation paths that survive have computed correct value of \(R(n) \)
-- apply observation.

April 8, 2015

I-S Theorem

-- if "yes", guess path from \(s \) to \(v \) of at most \(i+1 \) steps. Increment \(R(i+1) \)
-- if "no", visit \(R(i) \) nodes reachable in at most \(i \) steps, check that none is \(v \) or adjacent to \(v \)
 • for \(u \in V \) guess if reachable in \(\leq i \) steps; guess path to \(u \); counter++
 • KEY: if counter ≠ \(R(i) \), reject
 • at this point: can be sure \(v \) not reachable

April 8, 2015

I-S Theorem

-- correctness of procedure:
-- two types of errors we can make
 • (1) might guess \(v \) is reachable in at most \(i+1 \) steps when it is not
 -- won't be able to guess path from \(s \) to \(v \) of correct length, so we will reject.
 -- "easy" type of error

April 8, 2015
I-S Theorem

• (2) might guess v is not reachable in at most i+1 steps when it is
 – then must not see v or neighbor of v while visiting nodes reachable in i steps.
 – but forced to visit R(i) distinct nodes
 – therefore must try to visit node v that is not reachable in ≤ i steps
 – won’t be able to guess path from s to v of correct length, so we will reject.

 "easy" type of error

April 8, 2015

Summary

• nondeterministic space classes
 \(\text{NL} \) and \(\text{NPSPACE} \)

• \(\text{ST-CONN} \) \(\text{NL} \)-complete

April 8, 2015

Introduction

Power from an unexpected source?

• we know \(\text{P} \neq \text{EXP} \), which implies no poly-time \text{algorithm} for Succinct CVAL
• poly-size Boolean \text{circuits} for Succinct CVAL ??

Does \(\text{NP} \) have linear-size, log-depth Boolean circuits ??

April 8, 2015

Outline

• Boolean circuits and formulas
• uniformity and advice
• the \text{NC} hierarchy and parallel computation
• the quest for circuit lower bounds
• a lower bound for formulas

April 8, 2015

Summary

• Savitch: \(\text{NPSPACE} = \text{PSPACE} \)
 – Proof: \(\text{ST-CONN} \in \text{SPACE}(\log^2 n) \)
 – open question:
 \[\text{NL} = \text{L} ? \]

• Immerman/Szelepcsényi : \(\text{NL} = \text{coNL} \)
 – Proof: \(\text{ST-NON-CONN} \in \text{NL} \)

April 8, 2015

Boolean circuits

• circuit \(C \)
 – directed acyclic graph
 – nodes: AND (\(\wedge \)); OR (\(\vee \)); NOT (\(\neg \)); variables \(x_i \)
 \[x_1, x_2, x_3, \ldots, x_n \]

• \(C \) computes function \(f: \{0,1\}^n \rightarrow \{0,1\} \) in natural way
 – identify \(C \) with function \(f \) it computes

April 8, 2015
Boolean circuits

- **size** = # gates
- **depth** = longest path from input to output
- **formula (or expression)**: graph is a tree

- every function $f: \{0,1\}^n \rightarrow \{0,1\}$ computable by a circuit of size at most $O(n^{2^n})$
 - AND of n literals for each x such that $f(x) = 1$
 - OR of up to 2^n such terms

Circuit families

- circuit works for specific input length
- we’re used to $f: \sum \rightarrow \{0,1\}$
- circuit family : a circuit for each input length $C_1, C_2, C_3, \ldots = \{C_n\}$
- “$\{C_n\}$ computes f” iff for all x
 - $C_n(x) = f(x)$
- “$\{C_n\}$ decides L”, where L is the language associated with f

Connection to TMs

- given TM M running in time $t(n)$ decides language L
- can build circuit family $\{C_n\}$ that decides L
 - size of $C_n = O(t(n)^2)$
 - Proof: CVAL construction
- Conclude: $L \in \text{P}$ implies family of polynomial-size circuits that decides L

Uniformity

- Strange aspect of circuit family:
 - can “encode” (potentially uncomputable) information in family specification
- solution: **uniformity** – require specification is simple to compute
 - **Definition:** circuit family $\{C_n\}$ is logspace uniform iff TM M outputs C_n on input 1^n and runs in $O(\log n)$ space

Theorem: $\text{P} = \text{languages decidable by logspace uniform, polynomial-size circuit families } \{C_n\}$

- Proof:
 - already saw (\Rightarrow)
 - (\Leftarrow) on input x, generate $C_{|x|}$ evaluate it and accept iff output = 1
TM's that take advice

- Family \(\{C_n\} \) without uniformity constraint is called "non-uniform"
- Regard "non-uniformity" as a limited resource just like time, space, as follows:
 - Add read-only "advice" tape to TM \(M \)
 - \(M \) "decides \(L \) with advice \(A(n) \)" iff
 \[M(x, A(|x|)) \text{ accepts } x \in L \]
 - Note: \(A(n) \) depends only on \(|x| \)

TM's that take advice

Definition: \(\text{TIME}(t(n))/f(n) = \) the set of those languages \(L \) for which:
- There exists \(A(n) \) s.t. \(|A(n)| \leq f(n) \)
- TM \(M \) decides \(L \) with advice \(A(n) \) in time \(t(n) \)
- Most important such class:
 \[\text{P/poly} = \bigcup_k \text{TIME}(n^k)/n^k \]

TM's that take advice

Theorem: \(L \in \text{P/poly} \) iff \(L \) decided by family of (non-uniform) polynomial size circuits.

- Proof:
 - \((\Rightarrow)\) \(C_n \) from CVAL construction; hardwire advice \(A(n) \)
 - \((\Leftarrow)\) Define \(A(n) = \) description of \(C_n \); on input \(x \), TM simulates \(C_{|x|}(x) \)

Approach to P/NP

- Believe \(\text{NP} \not\subset \text{P} \)
 - Equivalent: "\(\text{NP} \) does not have uniform, polynomial-size circuits"
- **Even believe \(\text{NP} \not\subset \text{P/poly} \)**
 - Equivalent: "\(\text{NP} \) (or, e.g. SAT) does not have polynomial-size circuits"
 - Imply \(\text{P} \neq \text{NP} \)
 - Many believe: best hope for \(\text{P} \neq \text{NP} \)