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Relationships between classes

• So far:
L ⊆ P ⊆ PSPACE ⊆ EXP

• believe all containments strict
• know L ⊆ PSPACE, P ⊆ EXP 
• even before any mention of NP, two major

unsolved problems: 

L = P P = PSPACE
? ?
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A P-complete problem
• We donʼt know how to prove L ≠ P
• But, can identify problems in P least likely

to be in L using P- completeness.
• need stronger notion of reduction (why?)

yes

no

yes

noL1 L2

f

f
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A P-complete problem

• logspace reduction: f computable by TM 
that uses O(log n) space 
– denoted “L1 ≤L L2”

• If L2 is P-complete, then L2 in L implies L = 
P (homework problem)
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A P-complete problem

• Circuit Value (CVAL): given a variable-free 
Boolean circuit (gates ∧, ∨, ¬, 0, 1), does 
it output 1?

Theorem: CVAL is P-complete.
• Proof:

– already argued in P
– L arbitrary language in P, TM M decides L in 

nc steps
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A P-complete problem

• Tableau (configurations written in an 
array) for machine M on input w:

w1/qs w2 … wn _…
w1 w2/q1 … wn _…

w1/q1 a … wn _…

_/qa _ … _ _…

... 
... 

• height = 
time taken   
= |w|c

• width = 
space used 
≤ |w|c
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A P-complete problem

• Important observation: contents of cell in 
tableau determined by 3 others above it:

a/q1 b a
b/q1

a b/q1 a
a

a b a
b
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A P-complete problem

• Can build Boolean circuit STEP
– input (binary encoding of)  3 cells
– output (binary encoding of) 1 cell

a b/q1 a

a

STEP

• each output bit is some 
function of inputs

• can build circuit for each 

• size is independent of 
size of tableau
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A P-complete problem

• |w|c copies of STEP compute row i from i-1

w1/qs w2 … wn _…
w1 w2/q1 … wn _…

... 
... 

Tableau for 
M on input 

w

…

…

STEP STEP STEP STEP STEP
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A P-complete problem

w1/qs w2 … wn _…

STEP STEP STEP STEP STEP
STEP STEP STEP STEP STEP

STEP STEP STEP STEP STEP

... 
... 

1 iff cell contains qaccept

ignore these

This circuit  
CM, w has 
inputs 
w1w2…wn and 
outputs 1 iff M 
accepts input 
w.

logspace
reduction

Size = O(|w|2c)

w1 w2 wn
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Answer to question

• Can we evaluate an n node Boolean 
circuit using O(log n) space? 

• NO! (probably)

• CVAL in L if and 
only if L = P

∨

∧ ¬

1 0 1

∧

∧

∨

1 0
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Padding and succinctness

Two consequences of measuring running 
time as function of input length:

• “padding”
– suppose L ∈ EXP, and define

PADL = { x#N : x ∈ L, N = 2|x|k }
– TM that decides PADL: ensure suffix of N #s, 

ignore #s, then simulate TM that decides L
– running time now polynomial !
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Padding and succinctness

• converse (intuition only): “succinctness”
– suppose L is P-complete
– intuitively, some inputs are “hard” -- require 

full power of P
– SUCCINCTL has inputs encoded in different 

form than L, some exponentially shorter
– if “hard” inputs are exponentially shorter, then 

candidate to be EXP-complete
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Succinct encodings

• succinct encoding for a directed 
graph G= (V = {1,2,3,…}, E):

• a succinct encoding for a 
variable-free Boolean circuit:

i j

1 iff (i, j) ∈ E

i j

1 iff wire 
from gate 
i to gate j

type of 
gate i

type of 
gate j
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An EXP-complete problem

• Succinct Circuit Value: given a succinctly 
encoded variable-free Boolean circuit 
(gates ∧, ∨, ¬, 0, 1), does it output 1?

Theorem: Succinct Circuit Value is EXP-
complete.

• Proof:
– in EXP (why?)
– L arbitrary language in EXP, TM M decides L 

in 2nk steps
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An EXP-complete problem

– tableau for input x = x1x2x3…xn:

– Circuit C from CVAL reduction has size 
O(22nk).

– TM M accepts input x iff circuit outputs 1

x _ _ _ _ _

height, 
width 2nk
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An EXP-complete problem

– Can encode C succinctly:

• if i, j within single STEP circuit, easy to compute 
output

• if i, j between two STEP circuits, easy to compute 
output

• if one of i, j refers to input gates, consult x to 
compute output

i j

1 iff wire 
from gate 
i to gate j

type of 
gate i

type of 
gate j
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Summary
• Remaining TM details: big-oh necessary.
• First complexity classes: 

L, P, PSPACE, EXP
• First separations (via simulation and 

diagonalization):
P ≠ EXP, L ≠ PSPACE

• First major open questions:
L = P P = PSPACE

• First complete problems:
– CVAL is P-complete
– Succinct CVAL is EXP-complete

? ?
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Summary

EXP
PSPACE

P
L
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Nondeterminism: introduction

A motivating question:

• Can computers replace mathematicians?

L = { (x, 1k) : statement x has a proof of 
length at most k }
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Nondeterminism: introduction

• Outline:
– nondeterminism
– nondeterministic time classes
– NP, NP-completeness, P vs. NP
– coNP
– NTIME Hierarchy
– Ladner’s Theorem
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Nondeterminism

• Recall deterministic TM

– Q finite set of states
– ∑ alphabet including blank: “_”
– qstart, qaccept, qreject in Q
– transition function:

δ : Q x ∑ → Q x ∑ x {L, R, -}
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Nondeterminism

• nondeterministic Turing Machine:
– Q finite set of states
– ∑ alphabet including blank: “_”
– qstart, qaccept, qreject in Q
– transition relation

∆ ⊆ (Q x ∑) x (Q x ∑ x {L, R, -}) 
• given current state and symbol scanned, 

several choices of what to do next.
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Nondeterminism
• deterministic TM: given current configuration, 

unique next configuration

• nondeterministic TM: given current configuration, 
several  possible next configurations

qstartx1x2x3…xn qstartx1x2x3…xn

qaccept qreject

x∈ L x ∉ L
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Nondeterminism 

• asymmetric accept/reject criterion

qstartx1x2x3…xn qstartx1x2x3…xn

qaccept
qreject

x ∈ L x ∉ L

“guess”

“computation 
path”
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Nondeterminism

• all paths terminate

• time used: maximum length of paths from 
root

• space used: maximum # of work tape 
squares touched on any path from root 
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Nondeterminism 

• NTIME(f(n)) = languages decidable by a 
multi-tape NTM that runs for at most f(n) 
steps on any computation path, where n is 
the input length, and f :N → N

• NSPACE(f(n)) = languages decidable by a 
multi-tape NTM that touches at most f(n) 
squares of its work tapes along any 
computation path, where n is the input 
length, and f :N → N

CS151 Lecture 3

27

April 11, 2023 28

Nondeterminism

• Focus on time classes first:

NP = ∪k NTIME(nk) 

NEXP = ∪k NTIME(2nk)
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Poly-time verifiers

Very useful alternate definition of NP:

Theorem: language L is in NP if and only if 
it is expressible as:

L = { x| ∃ y, |y| ≤ |x|k, (x, y) ∈ R }
where R is a language in P.

• poly-time TM MR deciding R is a “verifier”

“witness” or 
“certificate”

efficiently 
verifiable
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Poly-time verifiers

• Example: 3SAT expressible as
3SAT = {φ : φ is a 3-CNF formula for which  

∃ assignment A for which (φ, A) ∈ R}
R = {(φ, A) : A is a sat. assign. for φ}

– satisfying assignmdnt A is a “witness” of the 
satisfiability of φ (“certifies” satisfiability of φ)

– R is decidable in poly-time
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Poly-time verifiers

L = { x | ∃ y, |y| ≤ |x|k, (x, y) ∈ R }
Proof: (⇒)  give poly-time NTM deciding L

phase 1: “guess” y 
with |x|k
nondeterministic steps

phase 2: 
decide if 
(x, y) ∈ R 
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Poly-time verifiers

Proof: (⇐) given L ∈ NP, describe L as:
L = { x | ∃ y, |y| ≤ |x|k, (x, y) ∈ R }

– L is decided by NTM M running in time nk

– define the language
R = { (x, y) : y is an accepting computation 

history of M on input x}
– check: accepting history has length ≤ |x|k
– check: R is decidable in polynomial time
– check: M accepts x iff ∃y, |y| ≤ |x|k, (x, y) ∈ R
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Why NP?

• not a realistic model of computation
• but, captures important computational 

feature of many problems: 
exhaustive search works

• contains huge number of natural, practical 
problems

• many problems have form:
L = { x | ∃ y s.t. (x,y) ∈ R}

problem 
requirements

object we 
are seeking

efficient test: 
does y meet 

requirements?
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Why NP?

• Why not EXP?

– too strong! 
– important problems not complete.
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Relationships between classes
• Easy: P ⊆ NP, EXP ⊆ NEXP

– TM special case of NTM
• Recall: L ∈ NP iff expressible as

L = { x | ∃ y, |y| ≤ |x|k s.t. (x,y) ∈ R}
• NP ⊆ PSPACE (try all possible y)
• The central question:

P = NP
finding a solution vs. recognizing a solution 

?
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NP-completeness

• Circuit SAT: given a Boolean circuit (gates 
∧, ∨, ¬), with variables y1, y2, …, ym is 
there some assignment that makes it 
output 1?

Theorem: Circuit SAT is NP-complete.
• Proof:  

– clearly in NP
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NP-completeness

– Given L ∈ NP of form
L = { x | ∃ y s.t. (x,y) ∈ R}

x1 x2 … xn y1 y2 … ym

CVAL reduction 
for R

1 iff (x,y) ∈ R

– hardwire input x; leave y as variables
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NEXP-completeness

• Succinct Circuit SAT: given a succinctly 
encoded Boolean circuit (gates ∧, ∨, ¬), 
with variables y1, y2, …, ym is there some 
assignment that makes it output 1?

Theorem: Succinct Circuit SAT is NEXP-
complete.

• Proof: 
– same trick as for Succinct CVAL EXP-

complete.
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Complement classes

• In general, if C is a complexity class
• co-C is the complement class, containing 

all complements of languages in C
– L ∈ C implies (Σ* - L) ∈ co-C
– (Σ* - L) ∈ C implies L ∈ co-C

• Some classes closed under complement:
– e.g. co-P = P
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coNP

• Is NP closed under complement?

qaccept qreject

x ∈ L x ∉ L

qacceptqreject

x ∉ Lx ∈ L

Can we transform 
this machine:

into a machine 
with this behavior?
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coNP
• “proof system” interpretation:
• Recall: L ∈ NP iff expressible as

L = { x | ∃ y, |y| ≤ |x|k, (x, y) ∈ R }
“proof” “proof 

verifier”
• languages in NP have “short proofs”
• coNP captures (in its complete problems) 

problems least likely to have “short proofs”.
– e.g., UNSAT is coNP-complete

CS151 Lecture 3

41

April 11, 2023 42

coNP

• P = NP implies NP = coNP

• Belief: 
NP ≠ coNP

– another major open problem
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NTIME Hierarchy Theorem

Theorem (Nondeterministic Time Hierarchy 
Theorem): 
For every proper complexity function f(n) ≥ 
n, and g(n) = ω(f(n+1)), 

NTIME(f(n)) ⊆ NTIME(g(n)).
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NTIME Hierarchy Theorem
inputs 

Y
n

Y
n

n
Y

n

Y n Y Y nn YD :

Turing 
Machines (M, x): 

does 
NTM M 
accept x 
in f(n) 
steps? 

Proof 
attempt :

(what’s 
wrong?)
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NTIME Hierarchy Theorem
• Let t(n) be large enough so that can 

decide if NTM M running in time f(n) 
accepts 1n, in time t(n).

y n y ? ? ? ?

n y n ? ? ? ?
n y y ? ? ? ?

. . . 
1t(n)1n

Mi

Mi-1

M1
... 

... 

D : . . . 

I’m 
responsible 
for dealing 
with NTM 
Mi
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NTIME Hierarchy Theorem

• Enough time on input 1t(n) to do the 
opposite of Mi(1n):

y ? ? ? ?Mi

nD : . . . 

. . . 
1t(n)1n
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NTIME Hierarchy Theorem

• For k in [n…t(n)] can to do same as Mi(1k+1) 
on input 1k

y ? ? ? ?Mi

nD : . . . 

. . . 
1t(n)1n
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NTIME Hierarchy Theorem

• Did we diagonalize against Mi?
– if L(Mi) = L(D) then:

– equality along all arrows.
– contradiction.

y ? ? ? ?Mi

nD : . . . 

. . . 
1t(n)1n
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NTIME Hierarchy Theorem

• General scheme: 
– interval [1...t(1)] kills M1

– interval [t(1)…t(t(1))] kills M2

– interval [ti-1(1)…ti(1)] kills Mi

• Running time of D on 1n: f(n+1) + time to 
compute interval containing n

• conclude D in NTIME(g(n))   (g(n) = ω(f(n+1)))
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