Lecture 2
April 6, 2023

/

. \\,//‘

Diagonalization

inputs

Turing
Machines

H [[Y[n [Y]v[n]v]

CS151 Lecture 2

box
(M, x):
does M

halt on
x?

The existence of
H which tells us
yes/no for each
box allows us to
constructa TM H’
that cannot be in
the table.

Turing Machines

* Amazing fact: there exist (natural)
undecidable problems

HALT ={ (M, x) : M halts on input x }

e Theorem: HALT is undecidable.

CS151 Lecture 2

Turing Machines

* Proof:
— Suppose TM H decides HALT
— Define new TM H’: on input <M>
« if H accepts (M, <M>) then loop
« if H rejects (M, <M>) then halt
— Consider H’ on input <H’ >:

« if it halts, then H rejects (H', <H’ >), which implies
it cannot halt

« if it loops, then H accepts (H", <H’ >) which implies
it must halt

— contradiction.

CS151 Lecture 2 3

Turing Machines

» Back to complexity classes:

— TIME(f(n)) = languages decidable by a multi-
tape TM in at most f(n) steps, where n is the
input length, and f:N - N

— SPACE(f(n)) = languages decidable by a
multi-tape TM that touches at most f(n)
squares of its work tapes, where n is the input
length, and f :N -N

Note: P = Uy » 1 TIME(nk)

Cs151 Lecture 2 5

Interlude

* In an ideal world, given language L
— state an algorithm deciding L
— prove that no algorithm does better

* we are pretty good at part 1

» we are currently completely helpless

when it comes to part 2, for most problems
that we care about

Cs151 Lecture 2 6

Interlude

* in place of part 2 we can

— relate the difficulty of problems to each other
via reductions

— prove that a problem is a “hardest” problem
in a complexity class via completeness

+ powerful, successful surrogate for lower
bounds

CS151 Lecture 2

Reductions

* reductions are the main tool for relating
problems to each other

- given two languages L1 and L, we say “L4
reduces to L,” and we write “L1S Ly” to
mean:

— there exists an efficient (for now, poly-time)
algorithm that computes a function f s.t.
* x € L1 implies f(x) € L2
* x & L1 implies f(x) & L2

CS151 Lecture 2

Reductions
yes f yes
f
L1 no no Lz

* positive use: given new problem L4 reduce
it to L2 that we know to be in P. Conclude
L1 in P (how?)

— e.g. bipartite matching < max flow
—formalizes “L4 as easy as L,”

CS151 Lecture 2 9

7
Reductions
yes f yes
f
L1 no no Lz
* negative use: given new problem L,

reduce L4 (that we believe not to be in P)

to it. Conclude L, not in P if Ly notin P

(how?)

— e.g. satisfiability < graph 3-coloring

—formalizes “L,as hard as Ly”

CS151 Lecture 2 10

10

9
Reductions Ind. Set is NP-complete
» Example reduction: The reduction f: given
—3SAT ={ ¢ : @ is a 3-CNF Boolean formula Q=(XVYV=Z)A(=XVWVZ)A...A(..)
that has a satisfying assignment } we produce graph Ge:
(3-CNF = AND of OR of < 3 literals) X
—I1S ={(G, k) | Gis a graph with an @ A
independent set V' < V of size 2 k } y Sz w 2
(ind. set = set of vertices no two of which are connected .
by an edge) + one triangle for each of m clauses
» edge between every pair of contradictory literals
* setk=m
CS151 Lecture 2 1 CS151 Lecture 2 12
11

12

Reductions
P=(XVYVaz)A(-XVWVZ)A...A(...)

KA - A

y -—zw z

» Claim: ¢ has a satisfying assignment if
and only if G has an independent set of
size at least k
— proof?

» Conclude that 3SAT < IS.

CS151 Lecture 2 13

13

Completeness

» May ask: how to show every language in
C reduces to L?

—in practice, shown by reducing known C-
complete problem to L
— often not hard to find “1st” C-complete

language, but it might not be “natural”

Cs151 Lecture 2 16

Completeness

» complexity class C
* language L is C-complete if
—LisinC
— every language in C reduces to L
* very important concept

formalizes “L is hardest problem in
complexity class C”

CS151 Lecture 2 14

Completeness

» Completeness allows us to reason about
the entire class by thinking about a single
concrete problem

* related concept: language L is C-hard if
—every language in C reduces to L

CS151 Lecture 2 15

16

14 15
Completeness Summary
. * problems
— Example: — function, decision
NP = the set of languages L where — language = set of strings
L={x:3y, Iyl =[x (x,y) eR} «+ complexity class = set of languages
and Ris a language in P. « efficient computation identified with efficient
one NP-complete language “bounded computation on Turing Machine
halting”: — single-tape, multi-tape
BH ={(M, x, 151m) : 3y, |y| < || s.t. M — diagonalization technique: HALT undecidable
accepts (x, y) in at most m steps } » TIME and SPACE classes
— challenge is to find natural complete problem * reductions
— Cook 71 : 3-SAT NP-complete » C-completeness, C-hardness
CS151 Lecture 2 17 CS151 Lecture 2 18
17 18

CS151 Lecture 2

19

Time and Space

* Recall:
— TIME(f(n)), SPACE(f(n))
* Questions:
—how are these classes related to each other?

—how do we define robust time and space
classes?

— what problems are contained in these
classes? complete for these classes?

CS151 Lecture 2 22

Time and Space

A motivating question:
— Boolean formula with n nodes
— evaluate using O(log n) space?

Time and Space

» Can we evaluate an n node Boolean
circuit using O(log n) space?

A
e N
A %
/\A intermediate values T~ T
L) « idea: short-circuit v A N
1 0 1 ANDs and ORs when 1/\0 1/\0 \1
possible
CS151 Lecture 2 20 CS151 Lecture 2 21
20 21
Outline Linear Speedup

* Why big-oh? Linear Speedup Theorem
» Hierarchy Theorems

* Robust Time and Space Classes

* Relationships between classes

» Some complete problems

CS151 Lecture 2 23

22

Theorem: Suppose TM M decides language L in
fime T(n). Then for any e > 0, there exists TM M’
that decides L in time

ef(n) + n+ 2.
* Proof:
— simple idea: increase “word length”
— M’ will have
« one more tape than M
* m-tuples of symbols of M
Ynew = YoldU Yold™
* many more states

CS151 Lecture 2 24

23

24

Linear Speedup

* part 1: compress input onto fresh tape

lalofalblolafala | [..

e

| aba | bb

=]
o
D

CS151 Lecture 2 25

25

Time and Space

» Moral: big-oh notation necessary given our
model of computation
— Recall: f(n) = O(g(n)) if there exists ¢ such that f(n) < c
g(n) for all sufficiently large n.
— TM model incapable of making distinctions between
time and space usage that differs by a constant.

« In general: interested in course distinctions not

affected by model
— e.g. simulation of k-string TM running in time f(n) by
single-string TM running in time O(f(n)?)

Cs151 Lecture 2 28

Linear Speedup

 part 2: simulate M, m steps at a time
‘b‘b‘n‘a a‘b‘a‘u‘a‘b‘...
m 1] m
[abb [aab [aba | aab | aba |- .-

—4 (L,R,R,L) steps to read relevant symbols,
“remember” in state

—2(L,R or R,L) to make M’s changes

CS151 Lecture 2 26

Linear Speedup

* accounting:
— part 1 (copying): n + 2 steps
— part 2 (simulation): 6 (f(n)/m)
—setm=6/¢
— total: ef(n) +n + 2

Theorem: Suppose TM M decides language L in
space f(n). Then for any e > 0, there exists TM
M’ that decides L in space €f(n) + 2.

* Proof: same.

CS151 Lecture 2 27

26

27

28

Hierarchy Theorems

» Does genuinely more time permit us to
decide new languages?

* how can we construct a language L that is
not in TIME(f(n))...

* idea: same as “HALT undecidable”
diagonalization and simulation

CS151 Lecture 2 29

Recall proof for Halting Problem

inputs ——— ?l\c/)lxx)'
. does M
Turing halt on
Machines ?

The existence of
H which tells us
yes/no for each
box allows us to
constructa TM H’
that cannot be in

He [[YIn[Y[Y[n]Y]
the table.

Cs151 Lecture 2 30

29

30

Time Hierarchy Theorem
box (M, x): does M
accept x in time f(n)?

inputs

Turing

Machines * TM SIM tells us
yes/no for each box
in time g(n)
* rows include all of
TIME(f(n))

* construct TM D

) running in time g(2n)
D: [n]Y[n[Y[Y[n]Y] that is not in table

CS151 Lecture 2 31

31

Proof of Time Hierarchy Theorem

* Proof (continued):
— suppose M in TIME(f(n)) decides L(D)
* M(<M>) = SIM(<M, M>) # D(<M>)
* but M(<M>) = D(<M>)
— contradiction.

CS151 Lecture 2 34

Time Hierarchy Theorem
Theorem (Time Hierarchy Theorem): For

every proper complexity function f(n) = n:
TIME(f(n)) & TIME(f(2n)3).

* more on “proper complexity functions”
later...

CS151 Lecture 2 32

Proof of Time Hierarchy Theorem

* Proof:
—SIM is TM deciding language
{ <M, x> : M accepts x in < f(|x]) steps }

— Claim: SIM runs in time g(n) = f(n)3.
— define new TM D: on input <M>

« if SIM accepts <M, M>, reject

« if SIM rejects <M, M>, accept
—D runs in time g(2n)

CS151 Lecture 2 33

32

33

Proof of Time Hierarchy Theorem

 Claim: there is a TM SIM that decides
{<M, x> : M accepts x in < f(|x|) steps}
and runs in time g(n) = f(n)°.
* Proof sketch: SIM has 4 work tapes

- contents and “virtual head” positions for
M'’s tapes

« M’s transition function and state

« f(|x|) “+"s used as a clock

* scratch space

Cs151 Lecture 2 35

34

Proof of Time Hierarchy Theorem

« contents and “virtual head” positions for M's tapes
» M's transition function and state
« f(|x]) “+"s used as a clock
« scratch space
— initialize tapes
— simulate step of M, advance head on tape 3;
repeat.
— can check running time is as claimed.
* Important detail: need to initialize tape 3 in
time O(f(n))

Cs151 Lecture 2 36

35

36

Proper Complexity Functions
* Definition: f is a proper complexity
function if
—f(n) =f(n-1) for all n

—there exists a TM M that outputs exactly f(n)
symbols on input 17, and runs in time
O(f(n) + n) and space O(f(n)).

CS151 Lecture 2 37

37

Robust Time and Space Classes

* What is meant by “robust” class?
— no formal definition

—reasonable changes to model of computation
shouldn’t change class
— should allow “modular composition” — calling

subroutine in class (for classes closed under
complement...)

Cs151 Lecture 2 40

40

Proper Complexity Functions

« includes all reasonable functions we will
work with
—logn,\n, n2, 2" nl, ...

—if f and g are proper then f + g, fg, f(g), fe, 29
are all proper

» can mostly ignore, but be aware it is a
genuine concern:

» Theorem: 3 non-proper f such that
TIME(f(n)) = TIME(2f(™).

CS151 Lecture 2 38

38

Hierarchy Theorems

» Does genuinely more space permit us to
decide new languages?

Theorem (Space Hierarchy Theorem): For
every proper complexity function f(n) 2 log
n:

SPACE(f(n)) & SPACE(f(n)log f(n)).

* Proof: same ideas.

CS151 Lecture 2

39

Robust Time and Space Classes

* Robust time and space classes:

L = SPACE(log n)
PSPACE = ux SPACE(n¥)

P = Uk TIME(n¥)
EXP = Uy TIME(2")

41

CS151 Lecture 2 41

Time and Space Classes

* Problems in these classes:
L : EVAL, integer

multiplication, most
reductions...

A
N
\% -
T /
1 01

pasadena

auckland athens - PSPACE : generalized
davis m 2-pel’SOn

oakland games....

san
francisco

CS151 Lecture 2 42

42

Time and Space Classes

A

P : CVAL, linear /\

programming, max- A v

flow... T

-

\2 A
1 0 1 (0] 1

EXP : SAT, all of NP and much more...

CS151 Lecture 2 43

43

Relationships between classes

+ Useful convention: Turing Machine
configurations. Any point in computation

o [o [= o Jou] = o] ...

state=q

represented by string:
C=010...0iq Oi+1 Ois2... Om
« start configuration for single-tape TM on
input X: gstartX1X2...Xn

Cs151 Lecture 2 4

46

Relationships between classes

* How are these four classes related to each
other?

» Time Hierarchy Theorem implies

P < EXP
- P c TIME(2") @ TIME(22?) € EXP

» Space Hierarchy Theorem implies

L « PSPACE
— L = SPACE(log n) & SPACE(log? n) € PSPACE

CS151 Lecture 2 44

Relationships between classes

» Easy: P < PSPACE
* Lvs. P, PSPACE vs. EXP ?

CS151 Lecture 2 45

44

45

Relationships between classes

« easy to tell if C yields C’ in 1 step
« configuration graph: nodes are configurations,
edge (C, C) iff C yields C’ in one step
« # configurations for a 2-tape TM (work tape +
read-only input) that runs in space t(n)
__hx t(n) x IQI\XIZI““>

input-tape head [

position state work-tape

work-tape head contents
position

CS151 Lecture 2 47

Relationships between classes

* if t(n) = c log n, at most
nx (clogn) x co x c4¢'°9n< nk
configurations.

+ can determine if reach Qaccept OF Qreject
from start configuration by exploring
config. graph of size n* (e.g. by DFS)

* Conclude: L< P

Cs151 Lecture 2 48

47

48

Relationships between classes

* if t(n) = n°, at most
Kk
N X Nn®xcox ¢ < 2N
configurations.

+ can determine if reach Qaccept OF Qreject
from start configurationkby exploring
config. graph of size 2™ (e.g. by DFS)

* Conclude: PSPACE < EXP

CS151 Lecture 2 49

Relationships between classes

So far:

L € P € PSPACE c EXP
believe all containments strict
know L < PSPACE, P ¢ EXP

even before any mention of NP, two major
unsolved problems:

? ?
L=P P = PSPACE

CS151 Lecture 2 50

49

50

