
1

CS151
Complexity
Theory

Lecture 2
April 6, 2023

1

2

Turing Machines

• Amazing fact: there exist (natural)
undecidable problems

HALT = { (M, x) : M halts on input x }

• Theorem: HALT is undecidable.

CS151 Lecture 2

2

3

Turing Machines
• Proof:

– Suppose TM H decides HALT
– Define new TM H’: on input <M>

• if H accepts (M, <M>) then loop
• if H rejects (M, <M>) then halt

– Consider H’ on input <H’>:
• if it halts, then H rejects (H’, <H’>), which implies

it cannot halt
• if it loops, then H accepts (H’, <H’>) which implies

it must halt
– contradiction.

CS151 Lecture 2

3

4

Diagonalization

Turing
Machines

inputs
Y

n
Y

n
n

Y
n

Y n Y Y nn YH’ :

box
(M, x):
does M
halt on
x?

The existence of
H which tells us
yes/no for each
box allows us to
construct a TM H’
that cannot be in
the table.

CS151 Lecture 2

4

5

Turing Machines

• Back to complexity classes:
– TIME(f(n)) = languages decidable by a multi-

tape TM in at most f(n) steps, where n is the
input length, and f :N → N

– SPACE(f(n)) = languages decidable by a
multi-tape TM that touches at most f(n)
squares of its work tapes, where n is the input
length, and f :N →N

Note: P = ∪k ≥ 1 TIME(nk)
CS151 Lecture 2

5

6

Interlude

• In an ideal world, given language L
– state an algorithm deciding L
– prove that no algorithm does better

• we are pretty good at part 1
• we are currently completely helpless

when it comes to part 2, for most problems
that we care about

CS151 Lecture 2

6

2

7

Interlude

• in place of part 2 we can
– relate the difficulty of problems to each other

via reductions
– prove that a problem is a “hardest” problem

in a complexity class via completeness

• powerful, successful surrogate for lower
bounds

CS151 Lecture 2

7

8

Reductions
• reductions are the main tool for relating

problems to each other
• given two languages L1 and L2 we say “L1

reduces to L2” and we write “L1 ≤ L2” to
mean:
– there exists an efficient (for now, poly-time)

algorithm that computes a function f s.t.
• x ∈ L1 implies f(x) ∈ L2

• x ∉ L1 implies f(x) ∉ L2

CS151 Lecture 2

8

9

Reductions

• positive use: given new problem L1 reduce
it to L2 that we know to be in P. Conclude
L1 in P (how?)
– e.g. bipartite matching ≤ max flow
– formalizes “L1 as easy as L2”

yes

no

yes

noL1 L2

f

f

CS151 Lecture 2

9

10

Reductions

• negative use: given new problem L2
reduce L1 (that we believe not to be in P)
to it. Conclude L2 not in P if L1 not in P
(how?)
– e.g. satisfiability ≤ graph 3-coloring
– formalizes “L2 as hard as L1”

yes

no

yes

noL1 L2

f

f

CS151 Lecture 2

10

11

Reductions

• Example reduction:
– 3SAT = { φ : φ is a 3-CNF Boolean formula

that has a satisfying assignment }
(3-CNF = AND of OR of ≤ 3 literals)

– IS = { (G, k) | G is a graph with an
independent set V’ ⊆ V of size ≥ k }

(ind. set = set of vertices no two of which are connected
by an edge)

CS151 Lecture 2

11

12

Ind. Set is NP-complete

The reduction f: given
φ = (x ∨ y ∨¬z) ∧ (¬x ∨ w ∨ z) ∧ … ∧ (…)

we produce graph Gφ:
x

y ¬z

¬x

w z
• one triangle for each of m clauses
• edge between every pair of contradictory literals
• set k = m

…

CS151 Lecture 2

12

3

13

Reductions
φ = (x ∨ y ∨¬z) ∧ (¬x ∨ w ∨ z) ∧ … ∧ (…)

• Claim: φ has a satisfying assignment if
and only if G has an independent set of
size at least k
– proof?

• Conclude that 3SAT ≤ IS.

x

y ¬z

¬x

w z
…

CS151 Lecture 2

13

14

Completeness

• complexity class C
• language L is C-complete if

– L is in C
– every language in C reduces to L

• very important concept
• formalizes “L is hardest problem in

complexity class C”

CS151 Lecture 2

14

15

Completeness

• Completeness allows us to reason about
the entire class by thinking about a single
concrete problem

• related concept: language L is C-hard if
– every language in C reduces to L

CS151 Lecture 2

15

16

Completeness

• May ask: how to show every language in
C reduces to L?
– in practice, shown by reducing known C-

complete problem to L

– often not hard to find “1st” C-complete
language, but it might not be “natural”

CS151 Lecture 2

16

17

Completeness
– Example:

NP = the set of languages L where
L = { x : ∃ y, |y| ≤ |x|k, (x, y) ∈ R }

and R is a language in P.
one NP-complete language “bounded
halting”:
BH = {(M, x, 1!,1m) : ∃ y, |y| ≤ |x|k s.t. M

accepts (x, y) in at most m steps }
– challenge is to find natural complete problem
– Cook 71 : 3-SAT NP-complete

CS151 Lecture 2

17

18

Summary
• problems

– function, decision
– language = set of strings

• complexity class = set of languages
• efficient computation identified with efficient

computation on Turing Machine
– single-tape, multi-tape
– diagonalization technique: HALT undecidable

• TIME and SPACE classes
• reductions
• C-completeness, C-hardness

CS151 Lecture 2

18

4

19CS151 Lecture 2

19

20

Time and Space

A motivating question:
– Boolean formula with n nodes
– evaluate using O(log n) space?

∨

∧ ¬

1 0 1

• depth-first traversal
requires storing
intermediate values

• idea: short-circuit
ANDs and ORs when
possible

CS151 Lecture 2

20

Time and Space

• Can we evaluate an n node Boolean
circuit using O(log n) space?

21

∨

∧ ¬

1 0 1

∧

∧

∨

1 0

CS151 Lecture 2

21

22

Time and Space

• Recall:
– TIME(f(n)), SPACE(f(n))

• Questions:
– how are these classes related to each other?
– how do we define robust time and space

classes?
– what problems are contained in these

classes? complete for these classes?

CS151 Lecture 2

22

23

Outline

• Why big-oh? Linear Speedup Theorem

• Hierarchy Theorems

• Robust Time and Space Classes

• Relationships between classes

• Some complete problems

CS151 Lecture 2

23

24

Linear Speedup
Theorem: Suppose TM M decides language L in

time f(n). Then for any 𝜖 > 0, there exists TM Mʼ
that decides L in time

𝜖f(n) + n + 2.
• Proof:

– simple idea: increase “word length”
– Mʼ will have

• one more tape than M
• m-tuples of symbols of M

∑new = ∑old ∪∑oldm

• many more states

CS151 Lecture 2

24

5

25

Linear Speedup

• part 1: compress input onto fresh tape

. . . a b a b b a a a

. . . aba bba aa_

CS151 Lecture 2

25

26

Linear Speedup

• part 2: simulate M, m steps at a time
b b a a b a b a a a b

. . . abb aab aba aab aba

.

. . .
m m

– 4 (L,R,R,L) steps to read relevant symbols,
“remember” in state

– 2 (L,R or R,L) to make Mʼs changes

CS151 Lecture 2

26

27

Linear Speedup

• accounting:
– part 1 (copying): n + 2 steps
– part 2 (simulation): 6 (f(n)/m)
– set m = 6/𝜖
– total: 𝜖f(n) + n + 2

Theorem: Suppose TM M decides language L in
space f(n). Then for any 𝜖 > 0, there exists TM
Mʼ that decides L in space 𝜖f(n) + 2.

• Proof: same.

CS151 Lecture 2

27

28

Time and Space

• Moral: big-oh notation necessary given our
model of computation
– Recall: f(n) = O(g(n)) if there exists c such that f(n) ≤ c

g(n) for all sufficiently large n.
– TM model incapable of making distinctions between

time and space usage that differs by a constant.
• In general: interested in course distinctions not

affected by model
– e.g. simulation of k-string TM running in time f(n) by

single-string TM running in time O(f(n)2)

CS151 Lecture 2

28

29

Hierarchy Theorems

• Does genuinely more time permit us to
decide new languages?

• how can we construct a language L that is
not in TIME(f(n))…

• idea: same as “HALT undecidable”
diagonalization and simulation

CS151 Lecture 2

29

30

Recall proof for Halting Problem

Turing
Machines

inputs
Y

n
Y

n
n

Y
n

Y n Y Y nn YHʼ :

box
(M, x):
does M
halt on
x?

The existence of
H which tells us
yes/no for each
box allows us to
construct a TM Hʼ
that cannot be in
the table.

CS151 Lecture 2

30

6

31

Time Hierarchy Theorem

Turing
Machines

inputs
Y

n
Y

n
n

Y
n

Y n Y Y nn YD :

box (M, x): does M
accept x in time f(n)?

• TM SIM tells us
yes/no for each box
in time g(n)
• rows include all of
TIME(f(n))
• construct TM D
running in time g(2n)
that is not in table

CS151 Lecture 2

31

32

Time Hierarchy Theorem

Theorem (Time Hierarchy Theorem): For
every proper complexity function f(n) ≥ n:

TIME(f(n)) ⊆ TIME(f(2n)3).

• more on “proper complexity functions”
later…

CS151 Lecture 2

32

33

Proof of Time Hierarchy Theorem

• Proof:
– SIM is TM deciding language

{ <M, x> : M accepts x in ≤ f(|x|) steps }
– Claim: SIM runs in time g(n) = f(n)3.
– define new TM D: on input <M>

• if SIM accepts <M, M>, reject
• if SIM rejects <M, M>, accept

– D runs in time g(2n)

CS151 Lecture 2

33

34

Proof of Time Hierarchy Theorem

• Proof (continued):
– suppose M in TIME(f(n)) decides L(D)

• M(<M>) = SIM(<M, M>) ≠ D(<M>)
• but M(<M>) = D(<M>)

– contradiction.

CS151 Lecture 2

34

35

Proof of Time Hierarchy Theorem
• Claim: there is a TM SIM that decides

{<M, x> : M accepts x in ≤ f(|x|) steps}
and runs in time g(n) = f(n)3.

• Proof sketch: SIM has 4 work tapes
• contents and “virtual head” positions for

Mʼs tapes
• Mʼs transition function and state
• f(|x|) “+”s used as a clock
• scratch space

CS151 Lecture 2

35

36

Proof of Time Hierarchy Theorem
• contents and “virtual head” positions for Mʼs tapes
• Mʼs transition function and state
• f(|x|) “+”s used as a clock
• scratch space

– initialize tapes
– simulate step of M, advance head on tape 3;

repeat.
– can check running time is as claimed.

• Important detail: need to initialize tape 3 in
time O(f(n))

CS151 Lecture 2

36

7

37

Proper Complexity Functions

• Definition: f is a proper complexity
function if
– f(n) ≥ f(n-1) for all n
– there exists a TM M that outputs exactly f(n)

symbols on input 1n, and runs in time
O(f(n) + n) and space O(f(n)).

CS151 Lecture 2

37

38

Proper Complexity Functions

• includes all reasonable functions we will
work with
– log n, √n, n2, 2n, n!, …
– if f and g are proper then f + g, fg, f(g), fg, 2g

are all proper
• can mostly ignore, but be aware it is a

genuine concern:
• Theorem: ∃ non-proper f such that

TIME(f(n)) = TIME(2f(n)).

CS151 Lecture 2

38

39

Hierarchy Theorems

• Does genuinely more space permit us to
decide new languages?

Theorem (Space Hierarchy Theorem): For
every proper complexity function f(n) ≥ log
n:

SPACE(f(n)) ⊆ SPACE(f(n)log f(n)).
• Proof: same ideas.

CS151 Lecture 2

39

40

Robust Time and Space Classes

• What is meant by “robust” class?
– no formal definition
– reasonable changes to model of computation

shouldnʼt change class
– should allow “modular composition” – calling

subroutine in class (for classes closed under
complement…)

CS151 Lecture 2

40

41

Robust Time and Space Classes

• Robust time and space classes:

L = SPACE(log n)
PSPACE = ∪k SPACE(nk)

P = ∪k TIME(nk)
EXP = ∪k TIME(2nk)

CS151 Lecture 2

41

42

Time and Space Classes

• Problems in these classes: ∧

∨ ¬

1 0 1

L : FVAL, integer
multiplication, most
reductions…

PSPACE : generalized
geography, 2-person
games…

pasadena

athensauckland

san
francisco oakland

davis

CS151 Lecture 2

42

8

43

Time and Space Classes

P : CVAL, linear
programming, max-
flow…

EXP : SAT, all of NP and much more…

∨

∧ ¬

1 0 1

∧

∧

∨

1 0

CS151 Lecture 2

43

44

Relationships between classes

• How are these four classes related to each
other?

• Time Hierarchy Theorem implies
P ⊆ EXP

– P ⊆ TIME(2n) ⊆ TIME(2(2n)3) ⊆ EXP

• Space Hierarchy Theorem implies
L ⊆ PSPACE

– L = SPACE(log n) ⊆ SPACE(log2 n) ⊆ PSPACE

CS151 Lecture 2

44

45

Relationships between classes

• Easy: P ⊆ PSPACE
• L vs. P, PSPACE vs. EXP ?

CS151 Lecture 2

45

46

Relationships between classes

• Useful convention: Turing Machine
configurations. Any point in computation

represented by string:
C = σ1 σ2 … σi q σi+1 σi+2… σm

• start configuration for single-tape TM on
input x: qstartx1x2…xn

σ1 . . .
state = q

σ2 … σi σi+1 … σm

CS151 Lecture 2

46

47

Relationships between classes
• easy to tell if C yields Cʼ in 1 step
• configuration graph: nodes are configurations,

edge (C, Cʼ) iff C yields Cʼ in one step
• # configurations for a 2-tape TM (work tape +

read-only input) that runs in space t(n)
n x t(n) x |Q| x |∑|t(n)

input-tape head
position work-tape head

position

state work-tape
contents

CS151 Lecture 2

47

48

Relationships between classes

• if t(n) = c log n, at most
n x (c log n) x c0 x c1c log n ≤ nk

configurations.
• can determine if reach qaccept or qreject

from start configuration by exploring
config. graph of size nk (e.g. by DFS)

• Conclude: L ⊆ P
CS151 Lecture 2

48

9

49

Relationships between classes

• if t(n) = nc, at most
n x nc x c0 x c1nc ≤ 2nk

configurations.
• can determine if reach qaccept or qreject

from start configuration by exploring
config. graph of size 2nk (e.g. by DFS)

• Conclude: PSPACE ⊆ EXP
CS151 Lecture 2

49

50

Relationships between classes

• So far:
L ⊆ P ⊆ PSPACE ⊆ EXP

• believe all containments strict
• know L ⊆ PSPACE, P ⊆ EXP
• even before any mention of NP, two major

unsolved problems:

L = P P = PSPACE
? ?

CS151 Lecture 2

50

