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Turing Machines

• Amazing fact: there exist (natural) 
undecidable problems

HALT = { (M, x) : M halts on input x }

• Theorem: HALT is undecidable.
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Turing Machines
• Proof:

– Suppose TM H decides HALT
– Define new TM H’: on input <M>

• if H accepts (M, <M>) then loop
• if H rejects (M, <M>) then halt

– Consider H’ on input <H’>:
• if it halts, then H rejects (H’, <H’>), which implies 

it cannot halt
• if it loops, then H accepts (H’, <H’>) which implies 

it must halt
– contradiction.
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Diagonalization

Turing 
Machines 

inputs 
Y

n
Y

n
n

Y
n

Y n Y Y nn YH’ :

box   
(M, x): 
does M 
halt on 
x? 

The existence of 
H which tells us 
yes/no for each 
box allows us to 
construct a TM H’
that cannot be in 
the table.
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Turing Machines

• Back to complexity classes:
– TIME(f(n)) = languages decidable by a multi-

tape TM in at most f(n) steps, where n is the 
input length, and f :N → N

– SPACE(f(n)) = languages decidable by a 
multi-tape TM that touches at most f(n) 
squares of its work tapes, where n is the input 
length, and f :N →N

Note: P = ∪k ≥ 1 TIME(nk)
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Interlude

• In an ideal world, given language L
– state an algorithm deciding L
– prove that no algorithm does better

• we are pretty good at part 1
• we are currently completely helpless

when it comes to part 2, for most problems 
that we care about
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Interlude

• in place of part 2 we can
– relate the difficulty of problems to each other 

via reductions
– prove that a problem is a “hardest” problem 

in a complexity class via completeness

• powerful, successful surrogate for lower 
bounds
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Reductions
• reductions are the main tool for relating 

problems to each other 
• given two languages L1 and L2 we say “L1

reduces to L2” and we write “L1 ≤ L2” to 
mean:
– there exists an efficient (for now, poly-time) 

algorithm that computes a function f s.t.
• x ∈ L1  implies f(x) ∈ L2

• x ∉ L1  implies f(x) ∉ L2
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Reductions

• positive use: given new problem L1 reduce 
it to L2 that we know to be in P. Conclude 
L1 in P (how?)
– e.g. bipartite matching ≤ max flow 
– formalizes “L1 as easy as L2”

yes

no

yes

noL1 L2

f

f
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Reductions

• negative use: given new problem L2
reduce L1 (that we believe not to be in P) 
to it. Conclude L2 not in P if L1 not in P 
(how?)
– e.g. satisfiability ≤ graph 3-coloring
– formalizes “L2 as hard as L1”

yes

no

yes

noL1 L2

f

f
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Reductions

• Example reduction:
– 3SAT = { φ : φ is a 3-CNF Boolean formula 

that has a satisfying assignment }
(3-CNF = AND of OR of ≤ 3 literals) 

– IS = { (G, k) | G is a graph with an 
independent set V’ ⊆ V of size ≥ k }

(ind. set = set of vertices no two of which are connected 
by an edge)
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Ind. Set is NP-complete

The reduction f: given
φ = (x ∨ y ∨¬z) ∧ (¬x ∨ w ∨ z) ∧ … ∧ (…)

we produce graph Gφ:
x

y ¬z

¬x

w z
• one triangle for each of m clauses
• edge between every pair of contradictory literals
• set k = m

…
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Reductions
φ = (x ∨ y ∨¬z) ∧ (¬x ∨ w ∨ z) ∧ … ∧ (…)

• Claim: φ has a satisfying assignment if 
and only if G has an independent set of 
size at least k
– proof? 

• Conclude that 3SAT ≤ IS. 

x

y ¬z

¬x

w z
…
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Completeness

• complexity class C
• language L is C-complete if

– L is in C
– every language in C reduces to L

• very important concept
• formalizes “L is hardest problem in 

complexity class C”

CS151 Lecture 2

14

15

Completeness

• Completeness allows us to reason about 
the entire class by thinking about a single 
concrete problem

• related concept: language L is C-hard if
– every language in C reduces to L
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Completeness

• May ask: how to show every language in 
C reduces to L?
– in practice, shown by reducing known C-

complete problem to L

– often not hard to find “1st” C-complete 
language, but it might not be “natural”
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Completeness
– Example:

NP = the set of languages L where
L = { x : ∃ y, |y| ≤ |x|k, (x, y) ∈ R }

and R is a language in P.
one NP-complete language “bounded 
halting”:
BH = {(M, x, 1!,1m) : ∃ y, |y| ≤ |x|k s.t. M 

accepts (x, y) in at most m steps }
– challenge is to find natural complete problem
– Cook 71 : 3-SAT NP-complete
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Summary
• problems

– function, decision 
– language = set of strings

• complexity class = set of languages
• efficient computation identified with efficient 

computation on Turing Machine
– single-tape, multi-tape
– diagonalization technique: HALT undecidable

• TIME and SPACE classes
• reductions
• C-completeness, C-hardness
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Time and Space

A motivating question:
– Boolean formula with n nodes
– evaluate using O(log n) space? 

∨

∧ ¬

1 0 1

• depth-first traversal 
requires storing 
intermediate values

• idea: short-circuit 
ANDs and ORs when 
possible
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Time and Space

• Can we evaluate an n node Boolean 
circuit using O(log n) space? 

21

∨

∧ ¬

1 0 1

∧

∧

∨

1 0
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Time and Space

• Recall:
– TIME(f(n)), SPACE(f(n)) 

• Questions:
– how are these classes related to each other? 
– how do we define robust time and space 

classes?
– what problems are contained in these 

classes? complete for these classes?
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Outline

• Why big-oh? Linear Speedup Theorem

• Hierarchy Theorems

• Robust Time and Space Classes

• Relationships between classes

• Some complete problems
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Linear Speedup
Theorem: Suppose TM M decides language L in 

time f(n). Then for any 𝜖 > 0, there exists TM Mʼ
that decides L in time

𝜖f(n) + n + 2.
• Proof:

– simple idea: increase “word length”
– Mʼ will have

• one more tape than M
• m-tuples of symbols of M

∑new = ∑old ∪∑oldm

• many more states
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Linear Speedup

• part 1: compress input onto fresh tape

. . . a b a b b a a a

. . . aba bba aa_
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Linear Speedup

• part 2: simulate M, m steps at a time
b b a a b a b a a a b

. . . abb aab aba aab aba

. . . . . . 

. . . 
m m

– 4 (L,R,R,L) steps to read relevant symbols, 
“remember” in state

– 2 (L,R or R,L) to make Mʼs changes 
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Linear Speedup

• accounting:
– part 1 (copying): n + 2 steps
– part 2 (simulation): 6 (f(n)/m)
– set m = 6/𝜖
– total: 𝜖f(n) + n + 2

Theorem: Suppose TM M decides language L in 
space f(n). Then for any 𝜖 > 0, there exists TM 
Mʼ that decides L in space 𝜖f(n) + 2.

• Proof: same.
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Time and Space

• Moral: big-oh notation necessary given our 
model of computation
– Recall: f(n) = O(g(n)) if there exists c such that f(n) ≤ c 

g(n) for all sufficiently large n.
– TM model incapable of making distinctions between 

time and space usage that differs by a constant.
• In general: interested in course distinctions not 

affected by model
– e.g. simulation of k-string TM running in time f(n) by 

single-string TM running in time O(f(n)2)
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Hierarchy Theorems

• Does genuinely more time permit us to 
decide new languages?

• how can we construct a language L that is 
not in TIME(f(n))…

• idea: same as “HALT undecidable”
diagonalization and simulation

CS151 Lecture 2

29

30

Recall proof for Halting Problem

Turing 
Machines 

inputs 
Y

n
Y

n
n

Y
n

Y n Y Y nn YHʼ :

box   
(M, x): 
does M 
halt on 
x? 

The existence of 
H which tells us 
yes/no for each 
box allows us to 
construct a TM Hʼ
that cannot be in 
the table.
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Time Hierarchy Theorem

Turing 
Machines 

inputs 
Y

n
Y

n
n

Y
n

Y n Y Y nn YD :

box   (M, x): does M 
accept x in time f(n)? 

• TM SIM tells us 
yes/no for each box 
in time g(n)
• rows include all of 
TIME(f(n))
• construct TM D 
running in time g(2n) 
that is not in table
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Time Hierarchy Theorem

Theorem (Time Hierarchy Theorem): For 
every proper complexity function f(n) ≥ n:

TIME(f(n)) ⊆ TIME(f(2n)3).

• more on “proper complexity functions”
later…
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Proof of Time Hierarchy Theorem

• Proof: 
– SIM is TM deciding language

{ <M, x> : M accepts x in ≤ f(|x|) steps }
– Claim: SIM runs in time g(n) = f(n)3.
– define new TM D: on input <M>

• if SIM accepts <M, M>, reject
• if SIM rejects <M, M>, accept

– D runs in time g(2n) 
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Proof of Time Hierarchy Theorem

• Proof (continued):
– suppose M in TIME(f(n)) decides L(D) 

• M(<M>) = SIM(<M, M>) ≠ D(<M>)
• but M(<M>) = D(<M>)

– contradiction.
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Proof of Time Hierarchy Theorem
• Claim: there is a TM SIM that decides 

{<M, x> : M accepts x in ≤ f(|x|) steps}
and runs in time g(n) = f(n)3.

• Proof sketch: SIM has 4 work tapes
• contents and “virtual head” positions for 

Mʼs tapes 
• Mʼs transition function and state
• f(|x|) “+”s used as a clock
• scratch space
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Proof of Time Hierarchy Theorem
• contents and “virtual head” positions for Mʼs tapes 
• Mʼs transition function and state
• f(|x|) “+”s used as a clock
• scratch space

– initialize tapes
– simulate step of M, advance head on tape 3; 

repeat.
– can check running time is as claimed. 

• Important detail: need to initialize tape 3 in 
time O(f(n))
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Proper Complexity Functions

• Definition: f is a proper complexity 
function if
– f(n) ≥ f(n-1) for all n
– there exists a TM M that outputs exactly f(n) 

symbols on input 1n, and runs in time        
O(f(n) + n) and space O(f(n)).
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Proper Complexity Functions

• includes all reasonable functions we will 
work with
– log n, √n, n2, 2n, n!, …
– if f and g are proper then f + g, fg, f(g), fg, 2g

are all proper
• can mostly ignore, but be aware it is a 

genuine concern:
• Theorem: ∃ non-proper f such that 

TIME(f(n)) = TIME(2f(n)).
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Hierarchy Theorems

• Does genuinely more space permit us to 
decide new languages?

Theorem (Space Hierarchy Theorem): For 
every proper complexity function f(n) ≥ log 
n:

SPACE(f(n)) ⊆ SPACE(f(n)log f(n)).
• Proof: same ideas.
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Robust Time and Space Classes

• What is meant by “robust” class? 
– no formal definition
– reasonable changes to model of computation 

shouldnʼt change class
– should allow “modular composition” – calling 

subroutine in class (for classes closed under 
complement…)
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Robust Time and Space Classes

• Robust time and space classes:

L = SPACE(log n)
PSPACE = ∪k SPACE(nk)

P = ∪k TIME(nk) 
EXP = ∪k TIME(2nk) 
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Time and Space Classes

• Problems in these classes: ∧

∨ ¬

1 0 1

L : FVAL, integer 
multiplication, most 
reductions…

PSPACE : generalized 
geography, 2-person 
games…

pasadena

athensauckland

san 
francisco oakland

davis
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Time and Space Classes

P : CVAL, linear 
programming, max-
flow…

EXP : SAT, all of NP and much more…

∨

∧ ¬

1 0 1

∧

∧

∨

1 0
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Relationships between classes

• How are these four classes related to each 
other?

• Time Hierarchy Theorem implies
P ⊆ EXP

– P ⊆ TIME(2n) ⊆ TIME(2(2n)3) ⊆ EXP

• Space Hierarchy Theorem implies
L ⊆ PSPACE

– L = SPACE(log n) ⊆ SPACE(log2 n) ⊆ PSPACE
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Relationships between classes

• Easy: P ⊆ PSPACE
• L vs. P, PSPACE vs. EXP ?
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Relationships between classes

• Useful convention: Turing Machine 
configurations. Any point in computation

represented by string:
C = σ1 σ2 … σi q σi+1 σi+2… σm

• start configuration for single-tape TM on 
input x: qstartx1x2…xn

σ1 . . . 
state = q

σ2 … σi σi+1 … σm
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Relationships between classes
• easy to tell if C yields Cʼ in 1 step 
• configuration graph: nodes are configurations, 

edge (C, Cʼ) iff C yields Cʼ in one step
• # configurations for a 2-tape TM (work tape + 

read-only input) that runs in space t(n) 
n x t(n) x |Q| x |∑|t(n)

input-tape head 
position work-tape head 

position

state work-tape 
contents
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Relationships between classes

• if t(n) = c log n, at most
n x (c log n) x c0 x c1c log n ≤ nk

configurations.
• can determine if reach qaccept or qreject

from start configuration by exploring 
config. graph of size nk (e.g. by DFS)

• Conclude: L ⊆ P
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Relationships between classes

• if t(n) = nc, at most
n x nc x c0 x c1nc ≤ 2nk

configurations.
• can determine if reach qaccept or qreject

from start configuration by exploring 
config. graph of size 2nk (e.g. by DFS)

• Conclude: PSPACE ⊆ EXP
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Relationships between classes

• So far:
L ⊆ P ⊆ PSPACE ⊆ EXP

• believe all containments strict
• know L ⊆ PSPACE, P ⊆ EXP 
• even before any mention of NP, two major

unsolved problems: 

L = P P = PSPACE
? ?
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