Natural Proofs

- Razborov and Rudich defined the following "natural" format for circuit lower bounds:
 - identify property P of functions $f : \{0,1\}^* \rightarrow \{0,1\}$
 - $P = \cup_n P_n$ is a natural property if:
 - (useful) $\forall n f_n \in P_n$ implies f does not have poly-size circuits
 \[f_n \in P_n \implies \text{ckt size } \geq s(n) > \text{poly}(n) \]
 - (constructive) can decide $f_n \in P_n$ in poly time given the truth table of f_n
 - (large) at least $(\frac{1}{2})^{O(n)}$ fraction of all 2^n functions on n bits are in P_n
 - show some function family $g = \{g_n\}$ is in P_n

- all known circuit lower bound techniques are natural for a suitably parameterized version of the definition

Theorem (RR): if there is a 2^n-OWF, then there is no natural property P_n.
 - factoring believed to be 2^n-OWF
 - general version also rules out natural properties useful for proving many other separations, under similar cryptographic assumptions

Proof:

- main idea: natural property P_n can efficiently distinguish pseudorandom functions from truly random functions
 - but cryptographic assumption implies existence of pseudorandom functions for which this is impossible

Proof (continued)

- Recall: assuming One-Way-Permutations $f_k : \{0,1\}^k \rightarrow \{0,1\}^k$ that are not invertible by 2^k size circuits
 - we constructed PRG $G : \{0,1\}^k \rightarrow \{0,1\}^k \times \{0,1\}^k$ $G(x) = (y_1, y_2)$
 - no circuit C of size $s = 2^k$ for which $|\Pr_x[C(G(x)) = 1] - \Pr_z[C(z) = 1]| > 1/s$
 \[(\text{BMY construction with slightly modified parameters}) \]

Graphically:

\[
\begin{array}{c}
\text{x} \\
\text{y}_1 \\
\text{y}_2
\end{array}
\]
Proof (continued)

• A function $F: \{0,1\}^k \rightarrow \{0,1\}^{2^n}$
 (set $n = k$)

 Given x, i, can compute i-th output bit
 in time $n \cdot \text{poly}(k)$

 height $n - \log k$

 each x, defines a poly-time computable function f_x

\bullet f_x in poly-time \Rightarrow for all x: $f_x \notin \text{P}_n$
 (useful)

\bullet $\Pr_{g \in \text{P}_n}[g = 1] \geq (1/2)^{O(n)}$ (large)

\bullet constructive: exists circuit $T: \{0,1\}^{2^n} \rightarrow \{0,1\}$
 of size $2^{O(n)}$ for which

 $|\Pr_x[T(f_x) = 1] - \Pr_g[T(g) = 1]| \geq (1/2)^{O(n)}$

 $\forall f \in \text{P}_n \Rightarrow f$ does not have poly-size circuits
 (constructive)

\bullet if $f \in \text{P}_n$?

 in poly time given truth table

 of f at least $(1/2)^{O(n)}$ fraction of all 2^{2^n} fn.s. on n-bits
 in P_n. (large)
Proof (continued)

• $|\Pr_x[T(f_x) = 1] - \Pr_y[T(g) = 1]| \geq (1/2)^O(n)$

distribution D_4: pick roots of red subtrees independently from $(0,1)^k$

June 1, 2023
CS151 Lecture 18

13

Proof (continued)

• $|\Pr_x[T(f_x) = 1] - \Pr_y[T(g) = 1]| \geq (1/2)^O(n)$

distribution D_5: pick roots of red subtrees independently from $(0,1)^k$

June 1, 2023
CS151 Lecture 18

14

Proof (continued)

• $|\Pr_x[T(f_x) = 1] - \Pr_y[T(g) = 1]| \geq (1/2)^O(n)$

distribution D_6: pick roots of red subtrees independently from $(0,1)^k$

June 1, 2023
CS151 Lecture 18

15

Proof (continued)

• $|\Pr_x[T(f_x) = 1] - \Pr_y[T(g) = 1]| \geq (1/2)^O(n)$

distribution D_7: pick roots of red subtrees independently from $(0,1)^k$

June 1, 2023
CS151 Lecture 18

16

Proof (continued)

• $|\Pr_x[T(f_x) = 1] - \Pr_y[T(g) = 1]| \geq (1/2)^O(n)$

distribution $D_{5,1}$: pick roots of red subtrees independently from $(0,1)^k$

June 1, 2023
CS151 Lecture 18

17

Proof (continued)

• $|\Pr_x[T(f_x) = 1] - \Pr_y[T(g) = 1]| \geq (1/2)^O(n)$

June 1, 2023
CS151 Lecture 18

18

– For some i: $|\Pr_x[T(D_i) = 1] - \Pr_y[T(D_i) = 1]| \geq (1/2)^{n/2} = (1/2)^{O(n)}$
Proof (continued)

For some i:

$|\Pr[T(D_i) = 1] - \Pr[T(D_{i-1}) = 1]| \geq (1/2)^{O(n)/2} = (1/2)^{O(n)}$

fix values at roots of all other subtrees to preserve difference

D_i: distribution D_i after fixing

D_{i-1}: distribution D_i after fixing

Natural Proofs

To prove circuit lower bounds, we must either:

- Violate largeness: seize upon an incredibly specific feature of hard functions (one not possessed by a random function !)

- Violate constructivity: identify a feature of hard functions that cannot be computed efficiently from the truth table

- No "non-natural property" known for all but the very weakest models...
"We do not conclude that researchers should give up on proving serious lower bounds. Quite the contrary, by classifying a large number of techniques that are unable to do the job, we hope to focus research in a more fruitful direction. Pessimism will only be warranted if a long period of time passes without the discovery of a non-naturalizing lower bound proof."

Rudich and Razborov 1994

Moral

• To resolve central questions:
 – avoid relativizing arguments
 • use PCP theorem and related results
 • focus on circuits, etc...
 – avoid constructive arguments
 – avoid arguments that yield lower bounds for random functions

Course Summary

• Time and space
 – hierarchy theorems
 – FVAL in L
 – CVAL P-complete
 – QSAT PSPACE-complete
 – succinct CVAL EXP-complete
Course summary

• Non-determinism
 – NTIME hierarchy theorem
 – "NP-intermediate" problems (Ladner’s Theorem)
 – unary languages (likely) not NP-complete
 – Savitch’s Theorem
 – Immerman-Szelepcsényi Theorem

Problem sets:
 – sparse languages (likely) not NP-complete

– formula lower bound (Andreev, Hastad)
– monotone circuit lower bound (Razborov)

Problem sets:
 – Barrington’s Theorem
 – formula lower bound for parity

Course summary

• Randomness
 – polynomial identity testing + Schwartz-Zippel
 – unique-SAT (Valiant-Vazirani Theorem)
 – Blum-Micali-Yao PRG
 – Nisan-Wigderson PRG
 – worst-case hardness ⇒ average-case hardness
 – Trevisan extractor

Problem sets:
 – Goldreich-Levin hard bit

Course summary

• Alternation
 – QSAT, complete for levels of the PH
 – Karp-Lipton theorem
 – BPP in PH

Problem sets:
 – approximate counting + sampling with an NP-oracle
 – VC-dimension is \(\Sigma_2 \)-complete
 – the class \(S_2^P \) (final)

Course summary

• Counting
 – #matching is \#P-complete

Problem sets:
 – permanent is \#P-complete
 – Toda’s theorem: \(\text{PH} \subseteq \text{P}^{\#P} \)

Course summary

• Interaction
 – IP = PSPACE
 – GI in \(\text{NP} \cap \text{coAM} \)
 – using NW PRG for MA, variant for AM
 – hardness of approximation, PCPs
 – elements of the PCP theorem

Problem sets:
 – BLR linearity test
 – Clique hard to approximate to within \(N^\epsilon \)
Course summary

- **Barriers to progress**
 - oracles rule out relativizing proofs
 - "natural proofs" rule out many circuit lower bound techniques

Course summary

- Time and space: L, P, PSPACE, EXP
- Non-determinism: NL, NP, coNP, NEXP
- Non-uniformity: NC, P/poly
- Randomness: RL, ZPP, RP, coRP, BPP
- Alternation: PH, PSPACE
- Counting: #P
- Interaction: IP, MA, AM, PCP[log n, 1]

The big picture

- All classes on previous slide are probably distinct, except:
 - P, ZPP, RP, coRP, BPP (probably all equal)
 - L, RL (probably all equal; NL?)
 - NP, MA, AM (probably all equal)
 - IP = PSPACE
 - PCP[log n, 1] = NP
- Only real separations we know separate classes delimiting same resource:
 - e.g. L ≠ PSPACE, NP ≠ NEXP

The big picture

Remember:

possible explanation for failure to prove conjectured separations…

…is that they are false

The big picture

- Important techniques/ideas:
 - simulation and diagonalization
 - reductions and completeness
 - self-reducibility
 - encoding information using low-degree polynomials
 - randomness
 - others…

The big picture

- I hope you take away:
 - an ability to extract the essential features of a problem that make it hard/easy…
 - knowledge and tools to connect computational problems you encounter with larger questions in complexity
 - background needed to understand current research in this area
The big picture

- background to contribute to current research in this area
 - many open problems
 - young field
 - try your hand…