CS151
Complexity Theory

Lecture 17
May 30, 2023

NP < PCPJ[log n, polylog n]

* MAX-k-PCS gap problem:

—given:
« variables x1, X, ..., X, taking values from field F
* n =q" for some integer m
« k-ary constraints C,, C,, ..., C,

— assignment viewed as f:(Fq)™ = Fq

— YES: some degree d assignment satisfies all

constraints

—NO: no degree d assignment satisfies more
than (1-¢) fraction of constraints

May 30, 2023 CS151 Lecture 17

NP < PCPJlog n, polylog n]

Lemma: for every constant 1 > € > 0, the

MAX-k-PCS gap problem with
t = poly(n) k-ary constraints with k = polylog(n)
field size q = polylog(n)
n = g™ variables with m = O(log n / loglog n)
degree of assignments d = polylog(n)
gap €

is NP-hard.

May 30, 2023 CS151 Lecture 17

NP < PCPJlog n, polylog n]

* Proof of Lemma
—reduce from 3-SAT
—3-CNF @(x1, X2,..., Xn)
—can encode as ¥:[n] x [n] x [n] x {0,1}3—{0,1}
= (i1, iz, i3, b1, by, bs) = 1 iff @ contains clause
(%i, 21V Xi,P2 V X;,03)

—e.g. (XaV =XsVx2) = 1(3,5,2,1,0,1) = 1

May 30, 2023 CS151 Lecture 17

NP < PCPJ[log n, polylog n]

—pick H € F, with {0,1} € H, |H| = polylog n
— pick m = O(log n/loglog n) so [HIm=n
— identify [n] with H™
- :Hm x Hm x Hm x H3 — {0,1} encodes ¢
— assignment a:H™ — {0,1}
—Key: a satisfies @ iff Viy,iz,i3,b1,b2,b3
Y(i,iz,is,b1,b2,b3) = 0 or
a(i1)=b4 or a(iz)=b or a(is)=bs

May 30, 2023 CS151 Lecture 17

NP < PCPJlog n, polylog n]

P:HM x HM x Hm x H3 — {0,1} encodes ¢
a satisfies @ iff Viy,iz,is,bq,b2,b3
Y(is,ia,i3,b1,b2,03) = 0 or a(is)=b; or a(i,)=b, or a(i;)=bs

—extend y to a function y’:(F,)3™*3 — F, with
degree at most |H| in each variable

— can extend any assignment a:H™ — {0,1} to
a":(Fq)m - F4 with degree |H| in each variable

May 30, 2023 CS151 Lecture 17




May 30, 2023

NP < PCPJlog n, polylog n]

Y':(Fq)3m+3 — Fq encodes ¢
a':(Fq)’" - Fq s.a. iff V(i1,i2,i3,b1,b2,b3) € H3m+3
Y (i1,1,15,b1,05,b5) = 0 or &'(i;)=b, or a'(i,)=b, or a’(is)=bs

—define: p,:(Fq)3m3 — F, from a’ as follows

Pa(it,i2,i3,01,02,03) =
Y'(i1,iz,15,b1,b2,05)(@'(i1) - by )(@(i2) - b2 )(@'(is) - bs)
—a's.a.liffv (i1,i2,i3,b1,b2,b3) € H3m+3
Pa(i1,i2,i3,01,02,03) = 0

CS151 Lecture 17

NP < PCPJ[log n, polylog n]

Y"(Fq)*m+3 — F, encodes ¢
a’:(Fq)'" - Fq s.a. iff V(i1,i2,i3,b1,b2,b3) € H3m+3

Pa(i1,ia,i5,01,05,05) = 0

—note: deg(pa’) < 2(3m+3)|H|

— start using Z as shorthand for (is,iz,is,b1,b2,b3)
— another way to write “a’ s.a.” is:
« exists po:(F,)*™** — F, of degree < 2(3m+3)[H|

* Po(Z) = pa(2) VZ € (Fq)m+?

NP < PCPJlog n, polylog n]

—Focus on “py(Z) = 0 VZ € H3m+3”
—given: po:(Fq)*m*3 — Fq
—define: p1(x1, X2, X, ..., Xam+3) =
Zhjero(hj, X2, X3, +., Xam+3)X1)
~ Claim:
Po(Z)=0 VZ € H3m*3 & p;(Z)=0 VZe FyxH3m+3-1

— Proof (=) for each xy, X3, ..., Xams3 € H3m*3-1,

May 30, 2023

NP < PCPJlog n, polylog n]

—Focus on “pg(Z) = 0 VZ € H3m+3"
—given: po:(Fq)*m*3 = F,

deg(p) <
deg(po) + [HI

—define: pi(X1, X2, X3, +.., X5m+3) =
ZnyerPo(Nj, X2, Xs, ., Xam+3)Xt
— Claim:
Po(Z2)=0 VZ € H3m*3 & p4(Z)=0 VZE FyxH3m+3-1

— Proof (&) for each Xz, X3, ..., Xam+3 EH3M*3-1,
univariate poly in x1 is = 0 = has all 0 coeffs.

CS151 Lecture 17

10

* Po(2)=0 vZeHms resulting univariate poly in x has all 0 coeffs.
May 30, 2023 CS151 Lecture 17 May 30, 2023 CS151 Lecture 17
8 9

NP c PCPJ[log n, polylog n] NP € PCP[log n, polylog n]
_given: p.: m+ deg(p) < e - deg(p) <

given: pr:(Fefm = Fy deg(p) * IH| ~given: puai(Fem = Fq deg(p.1) * H
—define: pa(Xy, X2, X3, ..., X3e3) = —define: pi(x1, X2, X3, ..., X3m<3) =

Zhj enP1(X4, Dy X3, Xa, -, Xames)Xol Zhj eHP1(X1, X2, «- ey Xicty Njy X1, Xiv2, -.., Xam+3)Xd
— Claim: — Claim:
P1(2)=0 VZ € Fox Ham+3-1 Pi1(Z)=0 VZ € (Fq)-" x Ham+3-(-1)
o o
p2(Z)=0 VZ € (Fq)2 x H3m+3-2 PI(Z)=0 VZ € (Fy) x H3m+-
— Proof: same. — Proof: same.
May 30, 2023 CS151 Lecture 17 May 30, 2023 CS151 Lecture 17
11 12




NP € PCP[log n, polylog n]

—define degree 3m+3+2 poly. &;:F, —F, so that
e J(v)=1ifv=i
«5(v)=0if0<v<3m+3+1and v #i

—define Q:F x (Fq)*™*® — F, by:
Q(V, Z) = Zizo...3m+30i(V)PI(Z) + Oamsa+1(V)a'(Z)

— note: degree of Q is at most
3(3m+3)[H| + 3m + 3 + 2 < 10m|H|

May 30, 2023 CS151 Lecture 17

13

NP < PCPJlog n, polylog n]

— Instance of MAX-k-PCS gap problem:
« setd=10m[H|
« given assignment Q:F, x (F,)*™*® = F,

« expect it to be formed in the way we have
described from an assignment a:H™ — {0,1} to @

« constraints: vZ € (F,)*m*3

(Corz): Po(Z) = p=(2)
0<i3m+2 (C,,,): PiZ1s Zas +oos Ziy Zists ooy Zames) =
thEH pii(Z1, 22, -ovy Zit, Ny, Zisr, o, ZK)Z)

(Cameanz): Pam+3(Z) = 0

May 30, 2023 CS151 Lecture 17

NP < PCP[log n, polylog n]

* Recall: MAX-k-PCS gap problem:

—given:
« variables x1, X, ..., X, taking values from field F
* n =q" for some integer m
« k-ary constraints C,, C,, ..., C,

— assignment viewed as f:(Fq)™ — Fq

— YES: some degree d assignment satisfies all

constraints

—NO: no degree d assignment satisfies more
than (1-¢) fraction of constraints

May 30, 2023 CS151 Lecture 17

NP < PCPJlog n, polylog n]

— Instance of MAX-k-PCS gap problem:

» setd = 10m[H|

* given assignment Q:F, x (Fy)*™*® = F,

« expect it to be formed in the way we have

described from an assignment a:H™ — {0,1} to @

* note
to access a'(Z), evaluate Q(3m+3+1, Z)
p=(Z) formed from a’ and 1’ (formed from @)
to access pi(Z), evaluate Q(i, Z)

16

May 30, 2023 CS151 Lecture 17
14 15
NP c PCPJ[log n, polylog n] NP < PCPJlog n, polylog n]
« given Q:F, x (F,)*m** - F, of degree d = 10m|H|  Proof of Lemma (summary):
« constraints: vV Z € (F,)*"** Key: all low- — reducing 3-SAT to MAX-k-PCS gap problem
(Corz): Do(2) = pav(Z)/ degree polys — @(X1, Xa,..., X,) instance of 3-SAT
(C.y): @,z o Zomss) = — set m = O(log n/loglog n)
vzl PAZ1 Zovcoos 20 ooty o Zomes ~HCcFsuchthat|H["=n  (JH| = polylog n, q ~[H?)
Zhien Pia(Zi, 2o, oy Ziy, DY, Ziss, o, 22 _ -
. _ — generate |F,|*™*3 = poly(n) constraints:
(C3m+312)' p3m+3(z) =0 z = /\‘:o 3m+3+1 C\ z
- Schwal"tz-Z_ipp'eI: if any one of these sets of — each refers to assignment poly Q and ¢ (via p.:)
constraints is wolatgd a_t all then at Iea;t a — all polys degree d = O(m|H]) = polylog n
(1 = 12m|H|/q) fraction in the set are violated — either all are satisfied or at most d/q = o(1) << &
May 30, 2023 CS151 Lecture 17 May 30, 2023 CS151 Lecture 17
17 18




NP < PCPJlog n, polylog n]

* O(log n) random bits to pick a constraint
* query assignment in O(polylog(n)) locations
to determine if constraint is satisfied
—completeness 1
— soundness (1-¢€) if prover keeps promise to
supply degree d polynomial

« prover can cheat by not supplying proof in
expected form

May 30, 2023 CS151 Lecture 17

19

NP < PCPJlog n, polylog n]

idea of proof:
— restrict to random line L
—check if it is low degree

—1

= Der

— always accepts if deg(f) < d
— other direction more complex

May 30, 2023 CS151 Lecture 17

NP < PCPJ[log n, polylog n]

» Low-degree testing:

—want: randomized procedure that is given d,
oracle access to f:(Fq)™ = Fq

 runs in poly(m, d) time
« always accepts if deg(f) < d
« rejects with high probability if deg(f) > d

—too much to ask. Why?

May 30, 2023 CS151 Lecture 17

NP < PCPJlog n, polylog n]

Definition: functions f, g are d-close if
PrJf(x) # g(x)] < &
Lemma: 30 > 0 and a randomized procedure that
is given d, oracle access to f:(Fq) — Fq
—runs in poly(m, d) time
—uses O(m log |Fg4|) random bits
— always accepts if deg(f) < d
—rejects with high probability if f is not 5-close
to any g with deg(g) <d

CS151 Lecture 17

May 30, 2023

22

20 21
NP c PCPJ[log n, polylog n] NP < PCPJlog n, polylog n]
— can only force prover to supply function f that » Self-correction:
is close to a low-degree polynomial —want: randomized procedure that is given x,
oracle access to f:(Fq)™ — (Fg) that is &-close
—how to bridge the gap? to a (unique) degree d polynomial g
* runs in poly(m, d) time
— recall low-degree polynomials form an error * uses O(m log |F[) random bits
correcting code (Reed-Muller) « with high probability outputs g(x)
— view “close” function as corrupted codeword
May 30, 2023 CS151 Lecture 17 May 30, 2023 CS151 Lecture 17
23 24



NP < PCPJlog n, polylog n]

Lemma: 3 a randomized procedure that is
given x, oracle access to f:(Fq)™ — (Fq)
that is d-close to a (unique) degree d
polynomial g
—runs in poly(m, d) time
—uses O(m log |Fg4|) random bits
— outputs g(x) with high probability

May 30, 2023 CS151 Lecture 17

25
New topic:
relativization
and
natural proofs
28

NP < PCPJ[log n, polylog n]

* idea of proof:
— restrict to random line L passing through x
— query points along line
—apply error correction

ey

May 30, 2023 CS151 Lecture 17

NP < PCPJlog n, polylog n]

« Putting it all together:

— given L € NP and an instance x, verifier computes

reduction to MAX-k-PCS gap problem
— prover supplies proof in form

f:(Fa)m = (Fo)

(plus some other info used for low-degree testing)

— verifier runs low-degree test
« rejects if f not close to some low degree function g

— verifier picks random constraint C;; checks if sat. by g
« uses self-correction to get values of g from f

— accept if C; satisfied; otherwise reject

May 30, 2023 CS151 Lecture 17

26

27

Approaches to open problems

» Almost all major open problems we have
seen entail proving lower bounds

—-P#NP -P=BPP*

-L#P -NP=AM*

—P # PSPACE - we know circuit lower

—NC proper bounds imply derandomization
—BPP # EXP + more difficult (and recent):
— PH proper derandomization implies

—EXP & Plpoly  circuit lower bounds!

May 30, 2023 CS151 Lecture 17

Approaches to open problems

+ two natural approaches
— simulation + diagonalization (uniform)

— circuit lower bounds (non-uniform)

* no success for either approach as applied
to date

Why?

May 30, 2023 CS151 Lecture 17

29

30



Approaches to open problems

in a precise, formal sense
these approaches are
too powerful !

« if they could be used to resolve major
open problems, a side effect would be:
— proving something that is false, or
— proving something that is believed to be false

May 30, 2023 CS151 Lecture 17

3

1

Relativization

* Oracles are known that falsify almost every
major conjecture concerning complexity classes

— for these conjectures, non-relativizing proofs are
required

— almost all known proofs in Complexity relativize
(sometimes after some reformulation)
— notable exceptions:
* The PCP Theorem
« IP = PSPACE

» most circuit lower bounds (more on these later)

May 30, 2023 CS151 Lecture 17

34

Relativization

» Many proofs and techniques we have
seen relativize:

—they hold after replacing all TMs with oracle
TMs that have access to an oracle A

—e.g. LA c PA for all oracles A

—e.g. PA# EXPA for all oracles A

May 30, 2023 CS151 Lecture 17

Relativization

« Idea: design an oracle A relative to which some
statement is false

— implies there can be no relativizing proof of that
statement

— e.g. design A for which PA = NP~

Better: also design an oracle B relative to which
statement is true

— e.g. also design B for which P® # NP®

— implies no relativizing proof can resolve truth of the
statement either way !

May 30, 2023 CS151 Lecture 17

32

33

Oracles for P vs. NP

» Goal:
—oracle A for which PA = NPA
—oracle B for which PB # NP8

» conclusion: resolving
P vs. NP
requires a non-relativizing proof

May 30, 2023 CS151 Lecture 17

Oracles for P vs. NP

« for PA = NPAneed Ato be powerful

—warning: intend to make P more powerful, but
also make NP more powerful.

—e.g. A =SAT doesn’t work
—however A = QSAT works:
PSPACE < PQSAT c NPQSAT c NPSPACE

and we know NPSPACE = PSPACE

May 30, 2023 CS151 Lecture 17

35

36




Oracles for P vs. NP

Theorem: there exists an oracle B for which
PB # NPB,

* Proof:
— define
L={1k:3xeBs.t x| =k}
—we will show L € NPB — PB,
—easy: L € NPB (no matter what B is)

May 30, 2023 CS151 Lecture 17

37

Oracles for P vs. NP

L={1x:3xeBs.t [x] =k}
* Proof (continued):
— if M; accepts, we ensure no strings of length i in B
— therefore 1" ¢ L, and so M, does not decide L
— if M, rejects, we ensure some string of length i in B
— Why?
B=B.; U{xe{0,1}:x & X}
and |X] is at most 2, <9 << 21
— therefore 17 € L, and so M, does not decide L
— Conclude: L ¢ P®

May 30, 2023 CS151 Lecture 17

40

Oracles for P vs. NP

— design B by diagonalizing against all
“PB machines”

— My, Mz, M3, ... is an enumeration of
deterministic OTMs

— each machine appears infinitely often

— B; will be those strings of length <iin B
—we build B; after simulating machine M;

May 30, 2023 CS151 Lecture 17

Oracles for P vs. NP

L={1x:3xeBs.t x| =k}
* Proof (continued):

— maintain “exceptions” X that must not go in B
— initially X={}, By ={}
Stage i:
— simulate M(1') for ivs ' steps
— when M; makes an oracle query q:

« if |q| < i, answer using B

« if |g| = i, answer “no”; add q to X
— if simulated M; accepts 1' then B, = B,
— if simulated M; rejects 17, Bi=B.; U{x e {0,1} : x & X}

May 30, 2023 CS151 Lecture 17

38

39

Circuit lower bounds

Relativizing techniques are out...

* but most circuit lower bound techniques do
not relativize

» exponential circuit lower bounds known for

weak models:

— e.g. constant-depth poly-size circuits

But, utter failure (so far) for more general
models. Why?

May 30, 2023 CS151 Lecture 17

Natural Proofs

» Razborov and Rudich defined the following
“natural” format for circuit lower bounds:
— identify property P of functions f:{0,1} — {0,1}
— P =U,P, is a natural property if:
* (useful) vnf, € P, implies f does not have poly-
size circuits [ie. f. € By implies ckt size > s(n) >> poly(n)]
* (constructive) can decide “f, € P,?” in poly time
given the truth table of f,

« (large) at least (V5)°™ fraction of all 22" functions
on n bits are in P,

— show some function family g = {g,} is in P,

May 30, 2023 CS151 Lecture 17

41

42



Natural Proofs

* all known circuit lower bound techniques
are natural for a suitably parameterized
version of the definition

Theorem (RR): if there is a 2"°-OWF, then
there is no natural property P.

— factoring believed to be 2" -OWF

— general version also rules out natural
properties useful for proving many other
separations, under similar cryptographic
assumptions

May 30, 2023 CS151 Lecture 17

43



