PCP

- PCP[r(n),q(n)]: set of languages L with p.p.t. verifier V that has (r, q)-restricted access to a string “proof”
 - V tosses O(r(n)) coins
 - V accesses proof in O(q(n)) locations
 - (completeness) $x \in L \Rightarrow \exists$ proof such that $\Pr[V(x, proof) accepts] = 1$
 - (soundness) $x \notin L \Rightarrow \forall$ proof* $\Pr[V(x, proof*) accepts] \leq \frac{1}{2}$

Two observations:
- PCP[1, poly n] = NP
- PCP[log n, 1] ⊆ NP

The PCP Theorem (AS, ALMSS):
PCP[log n, 1] = NP.

The inner verifier

Theorem: NP ⊆ PCP[n^2, 1]

Proof (first steps):
1. Quadratic Equations is NP-hard
2. PCP for QE:
 - proof = all quadratic functions of a soln. x
 - verification = check that a random linear combination of equations is satisfied by x
 - (if prover keeps promise to supply all quadratic fns of x)

Quadratic Equations

- quadratic equation over F_2:
 $$\sum_{i<j} a_{i,j} X_i X_j + \sum_i b_i X_i + c = 0$$
- language QUADRATIC EQUATIONS (QE) = { systems of quadratic equations over F_2 that have a solution (assignment to the X variables) }
Quadratic Equations

Lemma: QE is NP-complete.

Proof: clearly in NP; reduce from CIRCUIT SAT
– circuit C an instance of CIRCUIT SAT
– QE variables = variables + gate variables

PCP for QE

If prover keeps promise to supply all quadratic fns of x, a solution of QE instance...
• Verifier’s action:
 – query a random linear combination R of the equations of the QE instance
 – Completeness: obvious
 – Soundness: x fails to satisfy some equation; imagine picking coeff. for this one last
 \[Pr[x satisfies R] = 1/2 \]

PCP for QE

\[f(x) = \sum a_i x_i \quad \text{Had}(x) \]
\[g(x) = \sum_{i,j} A[i,j] x_i x_j \quad \text{Had}(x \otimes x) \]

• Linearity test: given access to \(h : \mathbb{F}^n \to \mathbb{F} \)
 – pick random \(a,b \); check if \(h(a) + h(b) = h(a+b) \); repeat \(O(1) \) times
 – do this for functions \(f \) and \(g \) supplied by prover

Theorem [BLR]: h linear \(\Rightarrow \) prob. success = 1; prob. success \(\geq 1 - \delta \) \(\Rightarrow \) exists linear \(h' \) s.t.
\[Pr_u [h'(a) = h(a)] \geq 1 - O(\delta) \]

PCP for QE

\[f(x) = \sum a_i x_i \quad \text{Had}(x) \]
\[g(x) = \sum_{i,j} A[i,j] x_i x_j \quad \text{Had}(x \otimes x) \]

• Self-correction:
 – given access to \(h : \mathbb{F}^m \to \mathbb{F} \) close to linear \(h' \); i.e.,
 \[Pr_u [h'(a) = h(a)] \geq 1 - O(\delta) \]
 – to access \(h'(a) \), pick random \(b \); compute
 \(h(b) + h(a+b) \)
 – with prob. at least \(1 - 2O(\delta) \), \(h(b) = h'(b) \) and \(h(a+b) = h'(a+b) \); hence we compute \(h'(a) \)

Quadratic Functions Code

• intended proof:
 – \(F \) the field with 2 elements
 – given \(x \in F^n \), a solution to instance of QE
 – \(f : F^n \to F_2 \) all linear functions of \(x \)
 \[f(a) = \sum a_i x_i \]
 – \(g : F^n \to F_2 \) includes all quadratic fns of \(x \)
 \[g(A) = \sum_{i,j} A[i,j] x_i x_j \]
 – KEY: can evaluate any quadratic function of \(x \) with a single evaluation of \(f \) and \(g \)
PCP for QE

- **Consistency check:** given access to linear functions \(f = \text{Had}(u) \) and \(g' = \text{Had}(v) \)
 - pick random \(a, b \in F^n \); check that
 - completeness: if \(V = u \otimes u \)
 - soundness: claim that if \(V = u \otimes u \)

\[
\Pr[(\sum u_i, \Sigma v_i) = \Sigma (a_i b_i V[i,j]) = g'(ab^t)]
\]

NP \subseteq PCP[log n, polylog n]

- MAX-k-SAT
 - given: \(k\)-CNF \(\phi \)
 - output: max. # of simultaneously satisfiable clauses

- generalization: MAX-k-CSP
 - given:
 - variables \(x_1, x_2, ..., x_n \) taking values from field \(F_q \)
 - \(n = q^m \) for some integer \(m \)
 - \(k \)-ary constraints \(C_1, C_2, ..., C_t \)
 - output: max. # of simultaneously satisfiable constraints

NP \subseteq PCP[log n, polylog n]

- **algebraic version:** MAX-k-PCS
 - given:
 - variables \(x_1, x_2, ..., x_n \) taking values from field \(F_q \)
 - \(n = q^m \) for some integer \(m \)
 - \(k \)-ary constraints \(C_1, C_2, ..., C_t \)
 - assignment viewed as \(f(F_q)^m \rightarrow F_q \)
 - output: max. # of constraints simultaneously satisfiable by an assignment that has deg. \(\leq d \)
Lemma: for every constant $1 > \epsilon > 0$, the
MAX-k-PCS gap problem with
- $t = \text{poly}(n)$ k-ary constraints with $k = \text{polylog}(n)$
- field size $q = \text{polylog}(n)$
- $n = q^m$ variables with $m = O(\log n / \log \log n)$
- degree of assignments $d = \text{polylog}(n)$
- gap ϵ

is NP-hard.

Proof of Lemma
- reduce from 3-SAT
- 3-CNF $\varphi(x_1, x_2, \ldots, x_n)$
- can encode as $\psi':[n] \times [n] \times \{0,1\}^3 \rightarrow \{0,1\}$
 - $\psi'(i_1, i_2, i_3, b_1, b_2, b_3) = 1$ iff φ contains clause
 $(x_{i_1}^{b_1} \lor x_{i_2}^{b_2} \lor x_{i_3}^{b_3})$
 - e.g. $(x_3 \lor \neg x_1 \lor x_2) \Rightarrow \psi'(3,5,2,1,0,1) = 1$

NP \subseteq PCP[\log n, \text{polylog } n]

- pick $H \subseteq F_q$ with $0,1 \subseteq H$, $|H| = \text{polylog } n$
- pick $m = O(\log n / \log \log n)$ so $|H|^m = n$
- identify $[n]$ with H^m
- $\psi: H^m \times H^m \times H^m \times H^3 \rightarrow \{0,1\}$ encodes φ
- assignment $a: H^m \rightarrow \{0,1\}$
- Key: a satisfies φ iff $\forall i_1 i_2 i_3 b_1 b_2 b_3$
 - $\psi'(i_1, i_2, i_3, b_1, b_2, b_3) = 0$ or $a(i_1) = b_1$ or $a(i_2) = b_2$ or $a(i_3) = b_3$

NP \subseteq PCP[\log n, \text{polylog } n]

- $\psi': (F_q)^{3m+3} \rightarrow F_q$ encodes φ
 - $a': (F_q)^m \rightarrow F_q$ s.a. iff $\forall (i_1 i_2 i_3 b_1 b_2 b_3) \in H^{3m+3}$
 - $\psi'(i_1, i_2, i_3, b_1, b_2, b_3) = 0$ or $a'(i_1) = b_1$ or $a'(i_2) = b_2$ or $a'(i_3) = b_3$

 - define: $p_a: (F_q)^{3m+3} \rightarrow F_q$ from a' as follows
 - $p_a(i_1 i_2 i_3 b_1 b_2 b_3) = \psi'(i_1 i_2 i_3 b_1 b_2 b_3)(a'(i_1) - b_1)(a'(i_2) - b_2)(a'(i_3) - b_3)$
 - a' s.a. iff $\forall (i_1 i_2 i_3 b_1 b_2 b_3) \in H^{3m+3}$
 - $p_a(i_1 i_2 i_3 b_1 b_2 b_3) = 0$
NP \subseteq \text{PCP}[\log n, \text{polylog } n]

\psi' : (F_q)^{3m+3} \rightarrow F_q \text{ encodes } \varphi

a' : (F_q)^m \rightarrow F_q \text{ s.a. if } \forall (i_1, i_2, i_3, b_1, b_2, b_3) \in H^{3m+3}

p_{a}(i_1, i_2, i_3, b_1, b_2, b_3) = 0

– note: deg(p_a) \leq 2(3m+3)|H|

– start using Z as shorthand for \((i_1, i_2, i_3, b_1, b_2, b_3)\)

– another way to write \(a'\)'s a':

\[p_{a}(Z) = 0 \quad \forall Z \in (F_q)^{3m+3} \]

\[p_{a}(Z) = 0 \quad \forall Z \in H^{3m+3} \]

\(\text{Proof: same.}\)

\(\text{given:}\)

Focus on another way to write \((F_q)^{3m+3} \rightarrow F_q\) of degree \(\leq 2(3m+3)|H|\)

\(\bullet \) exists \(p_0(F_q)^{3m+3} \rightarrow F_q\) with degree \(\leq 2(3m+3)|H|\)

\(\bullet \) \(p_0(Z) = p_a(Z)\) \(\forall Z \in (F_q)^{3m+3}\)

\(\bullet \) \(p_0(Z) = 0\) \(\forall Z \in H^{3m+3}\)

NP \subseteq \text{PCP}[\log n, \text{polylog } n]

– Focus on \(p_0(Z) = 0 \forall Z \in H^{3m+3}\)

– given: \(p_0(F_q)^{3m+3} \rightarrow F_q\)

– define: \(p_1(x_1, x_2, x_3, \ldots, x_{3m+3}) = \Sigma_{h \in H} p_1(h, x_2, x_3, \ldots, x_{3m+3}) x_i^j\)

– Claim:

\(p_0(Z) = 0 \forall Z \in H^{3m+3} \iff p_1(Z) = 0 \forall Z \in (F_q)^2 \times H^{3m+3}\)

– Proof (\(\Rightarrow\)) for each \(x_2, x_3, \ldots, x_{3m+3} \in H^{3m+3}\), resulting univariate poly in \(x_1\) has all 0 coeffs.

NP \subseteq \text{PCP}[\log n, \text{polylog } n]

– given: \(p_1(F_q)^{3m+3} \rightarrow F_q\)

– define: \(p_2(x_1, x_2, x_3, \ldots, x_{3m+3}) = \Sigma_{h \in H} p_2(h, x_2, x_3, \ldots, x_{3m+3}) x_1^j\)

– Claim:

\(p_1(Z) = 0 \forall Z \in (F_q)^2 \times H^{3m+3}\)

\(\iff\)

\(p_2(Z) = 0 \forall Z \in F_q \times H^{3m+3}\)

– Proof: same.

NP \subseteq \text{PCP}[\log n, \text{polylog } n]

– given: \(p_i : (F_q)^{3m+3} \rightarrow F_q\)

– define: \(p_i(x_1, x_2, x_3, \ldots, x_{3m+3}) = \Sigma_{h \in H} p_i(h, x_2, x_3, \ldots, x_{3m+3}) x_i^j\)

– Claim:

\(p_i(Z) = 0 \forall Z \in (F_q)^{3m+3} \iff p_i(Z) = 0 \forall Z \in F_q \times H^{3m+3}\)

– Proof: same.

NP \subseteq \text{PCP}[\log n, \text{polylog } n]

– define degree \(3m+3+2\) poly, \(\delta_i: F_q \rightarrow F_q\) so that

\(\bullet \) \(\delta_i(v) = 1\) if \(v = i\)

\(\bullet \) \(\delta_j(v) = 0\) if \(0 \leq v \leq 3m+3+1\) and \(v \neq i\)

– define \(Q: F_q \times (F_q)^{3m+3} \rightarrow F_q\) by:

\(Q(v, Z) = \Sigma_{i=0, \ldots, 3m+3} \delta_i(v) p_i(Z) + \delta_{3m+3+1}(v) a^i(Z)\)

– note: degree of \(Q\) is at most \(3(3m+3)|H| + 3m + 3 + 2 < 10m|H|\)
NP \subseteq PCP[\log n, \text{polylog } n]

- Recall: MAX-k-PCS gap problem:
 - given:
 - variables x_1, x_2, \ldots, x_n taking values from field F_q
 - $n = q^m$ for some integer m
 - k-ary constraints C_1, C_2, \ldots, C_r
 - assignment viewed as $f(F_q)^n \rightarrow F_q$
 - YES: some degree d assignment satisfies all constraints
 - NO: no degree d assignment satisfies more than $(1-\epsilon)$ fraction of constraints

- Instance of MAX-k-PCS gap problem:
 - set $d = 10m|H|$
 - given assignment $Q: F_q \times (F_q)^{3m+3} \rightarrow F_q$
 - expect it to be formed in the way we have described from an assignment $a: H^n \rightarrow \{0,1\}$ to φ
 - note:
 - to access $a'(Z)$, evaluate $Q(3m+3+1, Z)$
 - $p_a(Z)$ formed from a' and ψ (formed from φ)
 - to access $p_a(Z)$, evaluate $Q(I, Z)$

- Proof of Lemma (summary):
 - reducing 3-SAT to MAX-k-PCS gap problem
 - $\varphi(x_1, x_2, \ldots, x_n)$ instance of 3-SAT
 - set $m = \Omega(\log n/\log \log n)$
 - $H \subseteq F_q$ such that $|H|^m = n$ ($|H| = \text{polylog } n, q = |H|^3$)
 - generate $(F_q)^{3m+3} = \text{poly}(n)$ constraints:
 - $C_2 = \bigwedge_{(x_1, \ldots, x_n) \in H^n} C_2$
 - each refers to assignment poly Q and φ (via p_a)
 - all polys $d = O(m|H|) = \text{polylog } n$
 - either all are satisfied or at most $d|q = o(1) \ll \epsilon$

- Key: all low-degree polys

- Schwartz-Zippel: if any one of these sets of constraints is violated at all then at least a $(1 - 12m|H|/q)$ fraction in the set are violated

- $O(\log n)$ random bits to pick a constraint
- query assignment in $O(\text{polylog}(n))$ locations to determine if constraint is satisfied
 - completeness 1
 - soundness $(1-\epsilon)$ if prover keeps promise to supply degree d polynomial
 - prover can cheat by not supplying proof in expected form
Definition: functions f, g are δ-close if
\[\Pr_{x}[f(x) \neq g(x)] \leq \delta \]

Lemma: $\exists \delta > 0$ and a randomized procedure that is given d, oracle access to $f: (\mathbb{F}_q)^m \rightarrow \mathbb{F}_q$
\[\text{-- runs in } \text{poly}(m, d) \text{ time} \]
\[\text{-- always accepts if } \deg(f) \leq d \]
\[\text{-- rejects with high probability if } \deg(f) > d \]

- too much to ask. Why?

Lemma: $\exists a$ randomized procedure that is given x, oracle access to $f: (\mathbb{F}_q)^m \rightarrow (\mathbb{F}_q)$ that is δ-close to a (unique) degree d polynomial g
\[\text{-- runs in } \text{poly}(m, d) \text{ time} \]
\[\text{-- uses } O(m \log |\mathbb{F}_q|) \text{ random bits} \]
\[\text{-- outputs } g(x) \text{ with high probability} \]

Lemma: $\exists a$ randomized procedure that is given x, oracle access to $f: (\mathbb{F}_q)^m \rightarrow (\mathbb{F}_q)$ that is δ-close to a (unique) degree d polynomial g
\[\text{-- runs in } \text{poly}(m, d) \text{ time} \]
\[\text{-- uses } O(m \log |\mathbb{F}_q|) \text{ random bits} \]
\[\text{-- outputs } g(x) \text{ with high probability} \]
NP ⊆ PCP[log n, polylog n]

- idea of proof:
 - restrict to random line \(L \) passing through \(x \)
 - query points along line
 - apply error correction

Putting it all together:
- given \(L \in NP \) and an instance \(x \), verifier computes reduction to MAX-\(k \)-PCS gap problem
- prover supplies proof in form
 \[f : (F_q)^m \rightarrow (F_q)^n \]
 (plus some other info used for low-degree testing)
- verifier runs low-degree test
 - rejects if \(f \) not close to some low degree function \(g \)
 - verifier picks random constraint \(C_i \); checks if sat. by \(g \)
 - uses self-correction to get values of \(g \) from \(f \)
 - accept if \(C_i \) satisfied; otherwise reject