MAX-k-SAT

- Missing link: first gap-producing reduction
 - history’s guide
 It should have something to do with SAT
- Definition: MAX-k-SAT with gap ε
 - instance: k-CNF ϕ
 - YES: some assignment satisfies all clauses
 - NO: no assignment satisfies more than $(1 - \varepsilon)$ fraction of clauses

Proof systems viewpoint

- MAX-k-SAT with gap ε NP-hard \Rightarrow for any language $L \in$ NP proof system of form:
 - given x, compute reduction to MAX-k-SAT: ϕ_x
 - expected proof is satisfying assignment for ϕ_x
 - verifier picks random clause (“local test”) and checks that it is satisfied by the assignment
 $x \in L \Rightarrow \Pr[\text{verifier accepts}] = 1$
 $x \notin L \Rightarrow \Pr[\text{verifier accepts}] \leq (1 - \varepsilon)$
 - can repeat $O(1/\varepsilon)$ times for error $< \frac{1}{2}$

PCP

- Probabilistically Checkable Proof (PCP) permits novel way of verifying proof:
 - pick random local test
 - query proof in specified k locations
 - accept iff passes test

- fancy name for a NP-hardness reduction

PCP

- PCP[r(n),q(n)]: set of languages L with p.p.t. verifier V that has (r, q)-restricted access to a string “proof”
 - V tosses $O(r(n))$ coins
 - V accesses proof in $O(q(n))$ locations
 - (completeness) $x \in L \Rightarrow \exists$ proof such that
 $\Pr[V(x, \text{proof}) \text{ accepts}] = 1$
 - (soundness) $x \notin L \Rightarrow \forall$ proof*
 $\Pr[V(x, \text{proof}*) \text{ accepts}] \leq \frac{1}{2}$
PCP

- Two observations:
 - $\text{PCP}[1, \text{poly } n] = \text{NP}$ proof?
 - $\text{PCP}[\log n, 1] \subseteq \text{NP}$ proof?

The PCP Theorem (AS, ALMSS):

$\text{PCP}[\log n, 1] = \text{NP}$.

Corollary: MAX-k-SAT is NP-hard to approximate to within some constant ϵ.

- using PCP[log n, 1] protocol for, say, VC
- enumerate all $2^{O(\log n)} = \text{poly}(n)$ sets of queries
- construct a k-CNF ϕ_i for verifier’s test on each
 - note: k-CNF since function on only k bits
- "YES" VC instance \Rightarrow all clauses satisfiable
- "NO" VC instance \Rightarrow every assignment fails to satisfy at least $\frac{1}{2}$ of the ϕ_i \Rightarrow fails to satisfy an $\epsilon = (\frac{1}{2})^{2^k}$ fraction of clauses.

The PCP Theorem

- Elements of proof:
 - arithmetization of 3-SAT
 - we will do this
 - low-degree test
 - we will state but not prove this
 - self-correction of low-degree polynomials
 - we will state but not prove this
 - proof composition
 - we will describe the idea

Proof Composition (idea)

1. composition of verifiers:
 - reformulate "outer" so that it uses $O(\log n)$ random bits to make 1 query to each of 3 provers
 - replies r_1, r_2, r_3 have length polylog n
 - Key: accept/reject decision computable from r_1, r_2, r_3 by small circuit C

2. composition of verifiers (continued):
 - final proof contains proof that $C(r_1, r_2, r_3) = 1$ for inner verifier’s use
 - use inner verifier to verify that $C(r_1, r_2, r_3) = 1$
 - $O(\log n) \cdot \text{polylog } n$ randomness
 - $O(1)$ queries
 - tricky issue: consistency
Proof Composition (idea)

- \(\text{NP} \subseteq \text{PCP}[^{\log n}, 1] \) comes from
 - repeated composition
 - \(\text{PCP}[^{\log n}, \text{polylog} n] \) with \(\text{PCP}[^{\log n}, \text{polylog} n] \) yields \(\text{PCP}[^{\log n}, \text{polylog} n] \)
 - \(\text{PCP}[^{\log n}, \text{polylog} n] \) with \(\text{PCP}[^{\log n}, 1] \) yields \(\text{PCP}[^{\log n}, 1] \)
- details omitted…

The inner verifier

Theorem: \(\text{NP} \subseteq \text{PCP}[n^2, 1] \)

Proof (first steps):
1. Quadratic Equations is NP-hard
2. PCP for QE:
 - proof = all quadratic functions of a soln. \(x \)
 - verification = check that a random linear combination of equations is satisfied by \(x \)
 (if prover keeps promise to supply all quadratic fns of \(x \))

Quadratic Equations

Lemma: QE is NP-complete.

Proof: clearly in NP; reduce from CIRCUIT SAT
- circuit \(C \) an instance of CIRCUIT SAT
- QE variables = variables + gate variables

Quadratic Functions Code

- intended proof:
 - \(F \) the field with 2 elements
 - given \(x \in F_n \), a solution to instance of QE
 - \(f_i : F^n \rightarrow F_2 \) all linear functions of \(x \)
 - \(f_i = \sum_i a_i x_i \)
 - \(g_i : F_n \times F_n \rightarrow F_2 \) includes all quadratic fns of \(x \)
 - KEY: can evaluate any quadratic function of \(x \) with a single evaluation of \(f_i \) and \(g_i \)

PCP for QE

- quadratic equation over \(F_2 \):
 \[\sum_{i \leq j} a_{ij} x_i x_j + \sum b_i x_i + c = 0 \]
- language QUADRATIC EQUATIONS (QE) = \{ systems of quadratic equations over \(F_2 \) that have a solution (assignment to the X variables) \}
Theorem: NP \subseteq PCP[\log n, \text{polylog } n]

Proof (first steps):
- define: Polynomial Constraint Satisfaction (PCS) problem
- prove: PCS gap problem is NP-hard

To "enforce promise", verifier needs to perform:
- linearity test: verify \(f, g \) are (close to) linear
- self-correction: access the linear \(f', g' \) that are close to \(f, g \)
[so \(f = \text{Had}(u) \) and \(g' = \text{Had}(V) \)]
- consistency check: verify \(V = u \otimes u \)

\begin{align*}
\text{PCP for QE} \\
x \in F^n \; \text{s.t.} \\
f(a) = \sum a x \quad & \text{Had}(x) \\
g(A) = \sum A[i,j]x_i x_j \quad & \text{Had}(x \otimes x)
\end{align*}

\begin{align*}
\text{PCP for QE} \\
x \in F^n \; \text{s.t.} \\
f(a) = \sum a x \quad & \text{Had}(x) \\
g(A) = \sum A[i,j]x_i x_j \quad & \text{Had}(x \otimes x)
\end{align*}

\begin{align*}
\text{PCP for QE} \\
x \in F^n \; \text{s.t.} \\
f(a) = \sum a x \quad & \text{Had}(x) \\
g(A) = \sum A[i,j]x_i x_j \quad & \text{Had}(x \otimes x)
\end{align*}

\begin{align*}
\text{PCP for QE} \\
x \in F^n \; \text{s.t.} \\
f(a) = \sum a x \quad & \text{Had}(x) \\
g(A) = \sum A[i,j]x_i x_j \quad & \text{Had}(x \otimes x)
\end{align*}

\begin{align*}
\text{PCP for QE} \\
x \in F^n \; \text{s.t.} \\
f(a) = \sum a x \quad & \text{Had}(x) \\
g(A) = \sum A[i,j]x_i x_j \quad & \text{Had}(x \otimes x)
\end{align*}

\begin{align*}
\text{PCP for QE} \\
x \in F^n \; \text{s.t.} \\
f(a) = \sum a x \quad & \text{Had}(x) \\
g(A) = \sum A[i,j]x_i x_j \quad & \text{Had}(x \otimes x)
\end{align*}
NP \subseteq \text{PCP}[^{\log n}, \text{polylog } n]

- **MAX-\(k\)-SAT**
 - given: \(k\)-CNF \(\phi\)
 - output: max. \# of simultaneously satisfiable clauses
- **generalization: MAX-\(k\)-CSP**
 - given:
 - variables \(x_1, x_2, \ldots, x_n\) taking values from set \(S\)
 - \(k\)-ary constraints \(C_1, C_2, \ldots, C_t\)
 - output: max. \# of simultaneously satisfiable constraints

NP \subseteq \text{PCP}[^{\log n}, \text{polylog } n]

- algebraic version: MAX-\(k\)-PCS
 - given:
 - variables \(x_1, x_2, \ldots, x_n\) taking values from field \(F_q\)
 - \(n = q^m\) for some integer \(m\)
 - \(k\)-ary constraints \(C_1, C_2, \ldots, C_t\)
 - assignment viewed as \(f: (F_q)^m \rightarrow F_q\)
 - output: max. \# of constraints simultaneously satisfiable by an assignment that has deg. \(\leq d\)

Lemma: for every constant \(1 > \varepsilon > 0\), the MAX-\(k\)-PCS gap problem with
\[
t = \text{poly}(n) \quad \text{k-ary constraints with } k = \text{polylog}(n)
\]
field size \(q = \text{polylog}(n)\)
\[
n = q^m \quad \text{variables with } m = O(\log n / \log \log n)
\]
degree of assignments \(d = \text{polylog}(n)\)

- check: headed in right direction
 - \(O(\log n)\) random bits to pick a constraint
 - query assignment in \(O(\text{polylog}(n))\) locations to determine if it is satisfied
 - completeness \(1\); soundness \(1-\varepsilon\)
 (if prover keeps promise to supply degree \(d\) polynomial)

NP \subseteq \text{PCP}[^{\log n}, \text{polylog } n]

- **MAX-\(k\)-PCS gap problem:**
 - given:
 - variables \(x_1, x_2, \ldots, x_n\) taking values from field \(F_q\)
 - \(n = q^m\) for some integer \(m\)
 - \(k\)-ary constraints \(C_1, C_2, \ldots, C_t\)
 - assignment viewed as \(f: (F_q)^n \rightarrow F_q\)
 - **YES:** some degree \(d\) assignment satisfies all constraints
 - **NO:** no degree \(d\) assignment satisfies more than \((1-\varepsilon)\) fraction of constraints

Proof of Lemma
- reduce from 3-SAT
- 3-CNF \(\phi(x_1, x_2, \ldots, x_n)\)
- can encode as \(\psi: [n] \times [n] \times (0,1)^3 \rightarrow (0,1)\)
- \(\psi((i_1, b_1), (i_2, b_2), (i_3, b_3)) = 1\) iff \(\phi\) contains clause \((x_{i_1}^{b_1} \lor x_{i_2}^{b_2} \lor x_{i_3}^{b_3})\)
- e.g. \((x_5 \lor \neg x_5 \lor x_3) \Rightarrow \psi(3, 5, 2, 1, 0, 1) = 1\)
NP ⊆ PCP[log n, polylog n]
- pick \(H \subseteq F_q \) with \(\{0,1\} \subseteq H, |H| = \text{polylog } n \)
- pick \(m = O(\text{log nloglog } n) \) so \(|H|^m = n \)
- identify \(n \) with \(H_m \)
- \(\psi: H^m \times H^m \times H^m \times H^3 \to \{0,1\} \) encodes \(\varphi \)
- a satisfies \(\varphi \) iff \(\forall i_1, i_2, i_3, b_1, b_2, b_3 \)
 \[\psi(i_1, i_2, i_3, b_1, b_2, b_3) = 0 \] or \(a(i_1) = b_1 \) or \(a(i_2) = b_2 \) or \(a(i_3) = b_3 \)
- extend \(\psi \) to a function \(\psi': (F_q)^{3m+3} \to F_q \) with degree at most \(|H| \) in each variable
- can extend any assignment \(a: H^m \to \{0,1\} \) to \(a': (F_q)^m \to F_q \) with degree \(|H| \) in each variable

\[\psi': (F_q)^{3m+3} \to F_q \] encodes \(\varphi \)
\(a': (F_q)^m \to F_q \) s.a. iff \(\forall (i_1, i_2, i_3, b_1, b_2, b_3) \in H^{3m+3} \)
\[\psi'(i_1, i_2, i_3, b_1, b_2, b_3) = 0 \] or \(a'(i_1) = b_1 \) or \(a'(i_2) = b_2 \) or \(a'(i_3) = b_3 \)
- define: \(p_a: (F_q)^{3m+3} \to F_q \) from \(a' \) as follows
 \[p_a(i_1, i_2, i_3, b_1, b_2, b_3) = \psi'(i_1, i_2, i_3, b_1, b_2, b_3)(a'(i_1) - b_1)(a'(i_2) - b_2)(a'(i_3) - b_3) \] or \(\psi'(i_1, i_2, i_3, b_1, b_2, b_3) = 0 \)
- \(a' \) s.a. iff \(\forall (i_1, i_2, i_3, b_1, b_2, b_3) \in H^{3m+3} \)
 \[p_a(i_1, i_2, i_3, b_1, b_2, b_3) = 0 \]