Arthur-Merlin Games

• Delimiting # of rounds:
 – \(\text{AM}[k] \) = Arthur-Merlin game with \(k \) rounds, Arthur (verifier) goes first
 – \(\text{MA}[k] \) = Arthur-Merlin game with \(k \) rounds, Merlin (prover) goes first

Theorem: \(\text{AM}[k] \) (\(\text{MA}[k] \)) equals \(\text{AM}[k] \) (\(\text{MA}[k] \)) with perfect completeness.
 – i.e., \(x \in L \) implies accept with probability 1
 – proof on problem set

MA and AM

• Two important classes:
 – \(\text{MA} = \text{MA}[2] \)
 – \(\text{AM} = \text{AM}[2] \)

• definitions without reference to interaction:
 – \(L \in \text{MA} \) iff \(\exists \) poly-time language \(R \)
 \(x \in L \Rightarrow \exists m \Pr[(x, m, r) \in R] = 1 \)
 \(x \notin L \Rightarrow \forall m \Pr[(x, m, r) \in R] \leq \varepsilon \)
 – \(L \in \text{AM} \) iff \(\exists \) poly-time language \(R \)
 \(x \in L \Rightarrow \Pr[(x, m, r) \in R] = 1 \)
 \(x \notin L \Rightarrow \Pr[(x, m, r) \in R] \leq \frac{1}{2} \)

• Relation to other complexity classes:
 – both contain \(\text{NP} \) (can elect to not use randomness)
 – both contained in \(\Pi_2 \)
 – so clear that \(\text{AM} \subseteq \Pi_2 \)
 – know that \(\text{MA} \subseteq \text{AM} \)
Theorem: \(\text{coNP} \subseteq \text{AM} \Rightarrow \text{PH} = \text{AM} \).

- Proof:
 - suffices to show \(\Sigma_2 \subseteq \text{AM} \) (and use \(\text{AM} \subseteq \Pi_2 \))
 - \(L \in \Sigma_2 \iff \exists \text{poly-time language } R \)
 \(x \in L \iff \exists y \forall z (x, y, z) \in R \)
 \(x \notin L \iff \forall y \exists z (x, y, z) \notin R \)
 - Merlin sends \(y \)
 - \(1 \) AM exchange decides \(\text{coNP} \) query: \(\forall z (x, y, z) \in R \) ?
 - \(3 \) rounds; in \(\text{AM} \)

Back to Graph Isomorphism

- The payoff:
 - not known if GI is \(\text{NP} \)-complete.
 - previous Theorems:
 - if GI is \(\text{NP} \)-complete then \(\text{PH} = \text{AM} \)
 - unlikely!
 - Proof: GI \(\text{NP} \)-complete \(\Rightarrow \) GNI \(\text{coNP} \)-complete \(\Rightarrow \) \(\text{coNP} \subseteq \text{AM} \Rightarrow \text{PH} = \text{AM} \)

MA and AM

- Two important classes:
 - \(\text{MA} = \text{MA}[2] \)
 - \(\text{AM} = \text{AM}[2] \)
- definitions without reference to interaction:
 - \(L \in \text{MA} \iff \exists \text{poly-time language } R \)
 \(x \in L \iff \exists m \Pr[(x, m, r) \in R] = 1 \)
 \(x \notin L \iff \forall m \Pr[(x, m, r) \in R] \leq \frac{1}{2} \)
 - \(L \in \text{AM} \iff \exists \text{poly-time language } R \)
 \(x \in L \iff \Pr[\exists m (x, m, r) \in R] = 1 \)
 \(x \notin L \iff \Pr[\exists m (x, m, r) \in R] \leq \frac{1}{2} \)
Derandomization revisited

- \(L \in \text{MA} \) iff \(\exists \) poly-time language \(R \)
 \[x \in L \Rightarrow \exists m \Pr[(x, m, r) \in R] = 1 \]
 \[x \notin L \Rightarrow \forall m \Pr[(x, m, r) \in R] \leq \frac{1}{2} \]

- Recall PRGs:
 - for all circuits \(C \) of size at most \(s \):
 \[|\Pr_y[C(y) = 1] - \Pr_z[C(G(z)) = 1]| \leq \varepsilon \]

Using PRGs for MA

- \(L \in \text{MA} \) iff \(\exists \) poly-time language \(R \)
 \[x \in L \Rightarrow \exists m \Pr[(x, m, r) \in R] = 1 \]
 \[x \notin L \Rightarrow \forall m \Pr[(x, m, r) \in R] \leq \frac{1}{2} \]

 • produce poly-size circuit \(C \) such that
 \[C(x, m, r) = 1 \iff (x, m, r) \in R \]

 • for each \(x, m \) can hardwire to get \(C_{x,m} \)
 \[\exists m \Pr_y[C_{x,m}(y) = 1] = 1 \quad \text{("yes")} \]
 \[\forall m \Pr_y[C_{x,m}(y) = 1] \leq \frac{1}{2} \quad \text{("no")} \]

Using PRGs for MA

- can compute \(\Pr_z[C_{x,m}(G(z)) = 1] \) exactly
 - evaluate \(C_{x,m}(G(z)) \) on every seed \(z \in \{0,1\}^t \)
 - running time \((O(|C_{x,m}|) + \text{time for } G)2^t \)
 \[x \in L \Rightarrow \exists m \Pr_z[C_{x,m}(G(z)) = 1] = 1 \]
 \[x \notin L \Rightarrow \forall m \Pr_z[C_{x,m}(G(z)) = 1] \leq \frac{1}{2} + \varepsilon \]

- \(L \in \text{NP} \) if PRG with \(t = O(\log n) \), \(\varepsilon < 1/2 \)

Theorem: \(E \) requires exponential size circuits \(\Rightarrow \text{MA} = \text{NP} \).

MA and AM

(under a hardness assumption)

- AM
- coAM
- MA
- coMA
- NP
- coNP
- P

What about AM, coAM?

- AM = NP
- coNP = coMA

Theorem (IW, STV): If \(E \) contains functions that require size \(2^{\Omega(n)} \) circuits, then \(E \) contains functions that are \(2^{\Omega(n)} \)-unapproximable by circuits.

Theorem (NW): if \(E \) contains \(2^{\Omega(n)} \)-unapproximable functions there are poly-time PRGs fooling poly(n)-size circuits, with seed length \(t = O(\log n \cdot \varepsilon) \), and error \(\varepsilon < 1/4 \).
Oracle circuits

- circuit C
 - directed acyclic graph
 - nodes: AND (\text{\&}); OR (\lor); NOT (\neg); variables \(x\)

- A-oracle circuit C
 - also allow “A-oracle gates”

Relativized versions

Theorem: If \(E\) contains functions that require size \(2^{\Omega(n)}\) A-oracle circuits, then \(E\) contains functions that are \(2^{\Omega(n)}\)-unapproximable by A-oracle circuits.

- Recall proof:
 - encode truth table to get hard function
 - if approximable by \(s(n)\)-size circuits, then use those circuits to compute original function by size \(s(n)\cdot n\) circuits. Contradiction.

Relativized versions

Theorem: if \(E\) contains \(2^{\Omega(n)}\)-unapproximable fns., there are poly-time PRGs fooling \(\text{poly}(n)\)-size A-oracle circuits, with seed length \(t = O(\log n)\), and error \(\epsilon < 1/4\).

- Recall proof:
 - PRG from hard function on \(O(\log n)\) bits
 - if doesn’t fool \(s\)-size circuits, then use those circuits to compute hard function by size \(s \cdot n\) circuits. Contradiction.
Using PRGs for AM

\[L \in \text{AM} \text{ iff } \exists \text{ poly-time language } R \]
\[x \in L \Rightarrow \Pr_{r} \left[\exists m (x, m, r) \in R \right] = 1 \]
\[x \notin L \Rightarrow \Pr_{r} \left[\exists m (x, m, r) \in R \right] \leq \frac{1}{2} \]

- produce poly-size SAT-oracle circuit \(C \) such that \(C(x, r) = 1 \text{ iff } \exists m (x, m, r) \in R \)
- for each \(x \), can hardwire to get \(C_x \)
\[\Pr_{r} [C_{x}(y) = 1] = 1 \text{ ("yes") } \]
\[\Pr_{r} [C_{x}(y) = 1] \leq \frac{1}{2} \text{ ("no") } \]

Relativized versions

Theorem: If \(E \) contains functions that require size \(2^{\Omega(n)} \)-A-oracle circuits, then \(E \) contains functions that are \(2^{\Omega(n)} \)-unapproximable by A-oracle circuits.

Theorem: if \(E \) contains \(2^{\Omega(n)} \)-unapproximable functions there are PRGs fooling poly(n)-size A-oracle circuits, with seed length \(t = O(\log n) \), and error \(\epsilon < \frac{1}{2} \).

Theorem: \(E \) requires exponential size SAT-oracle circuits \(\Rightarrow \text{AM} = \text{NP} \).

MA and AM

(under a hardness assumption)

\[\Pi_2 \]
\[\Sigma_2 \]
\[\text{AM} \]
\[\text{coAM} \]
\[\text{MA} = \text{NP} \]
\[\text{coNP} = \text{coMA} \]

New topic(s)

Optimization problems, Approximation Algorithms, and Probabilistically Checkable Proofs
Optimization Problems

- many hard problems (especially \(\text{NP}\)-hard) are optimization problems
 - e.g. find shortest TSP tour
 - e.g. find smallest vertex cover
 - e.g. find largest clique
- may be minimization or maximization problem
- "opt" = value of optimal solution

Approximation Algorithms

- often happy with approximately optimal solution
 - warning: lots of heuristics
 - we want approximation algorithm with guaranteed approximation ratio of \(r\)
 - meaning: on every input \(x\), output is guaranteed to have value
 at most \(r \times \text{opt}\) for minimization
 at least \(\text{opt}/r\) for maximization

Approximation Algorithms

- Example approximation algorithm:
 - Recall:
 - Vertex Cover (VC): given a graph \(G\), what is the smallest subset of vertices that touch every edge?
 - \(\text{NP}\)-complete

Approximation Algorithms

- Approximation algorithm for VC:
 - pick an edge \((x, y)\), add vertices \(x\) and \(y\) to VC
 - discard edges incident to \(x\) or \(y\); repeat.
- Claim: approximation ratio is 2.
- Proof:
 - an optimal VC must include at least one endpoint of each edge considered
 - therefore \(2 \times \text{opt} \geq \text{actual}\)

Approximation Algorithms

- diverse array of ratios achievable
- some examples:
 - (min) Vertex Cover: 2
 - MAX-3-SAT (find assignment satisfying largest \# clauses): \(8/7\)
 - (min) Set Cover: \(\ln n\)
 - (max) Clique: \(n/\log^2 n\)
 - (max) Knapsack: \((1 + \epsilon)\) for any \(\epsilon > 0\)

Approximation Algorithms

- \((\text{max})\) Knapsack: \((1 + \epsilon)\) for any \(\epsilon > 0\)
- called Polynomial Time Approximation Scheme (PTAS)
 - algorithm runs in poly time for every fixed \(\epsilon>0\)
 - poor dependence on \(\epsilon\) allowed
- If all \(\text{NP}\) optimization problems had a PTAS, almost like \(\text{P} = \text{NP}\) (!)
Approximation Algorithms

- A job for complexity: How to explain failure to do better than ratios on previous slide?
 - just like: how to explain failure to find poly-time algorithm for SAT...
 - first guess: probably NP-hard
 - what is needed to show this?
- "gap-producing" reduction from NP-complete problem L_1 to L_2

Gap producing reductions

- r-gap-producing reduction:
 - f computable in poly time
 - $x \in L_1 \Rightarrow \text{opt}(f(x)) \leq k$
 - $x \notin L_1 \Rightarrow \text{opt}(f(x)) > rk$
 - for max. problems use "$\geq k$" and "$< k/r$"
- Note: target problem is not a language
 - promise problem ($\text{yes} \cup \text{no}$ not all strings)
 - "promise": instances always from ($\text{yes} \cup \text{no}$)

Gap preserving reductions

- gap-producing reduction difficult (more later)
- but gap-preserving reductions easier

Example gap-preserving reduction:
 - reduce MAX-k-SAT with gap ϵ
 - to MAX-3-SAT with gap ϵ
 - "MAX-k-SAT is NP-hard to approx. within ϵ \Rightarrow MAX-3-SAT is NP-hard to approx. within ϵ"
- MAXSNP (PY) -- a class of problems reducible to each other in this way
 - PTAS for MAXSNP-complete problem iff PTAS for all problems in MAXSNP
MAX-k-SAT

• Missing link: first gap-producing reduction
 – history’s guide
 it should have something to do with SAT
• Definition: MAX-k-SAT with gap ε
 – instance: k-CNF φ
 – YES: some assignment satisfies all clauses
 – NO: no assignment satisfies more than (1 – ε) fraction of clauses

Proof systems viewpoint

• k-SAT NP-hard ⇒ for any language L ∈ NP
 proof system of form:
 – given x, compute reduction to k-SAT: φₙₓ
 – expected proof is satisfying assignment for φₙₓ
 – verifier picks random clause (“local test”) and checks that it is satisfied by the assignment
 \[x ∈ L \implies \Pr[\text{verifier accepts}] = 1 \]
 \[x ∉ L \implies \Pr[\text{verifier accepts}] < 1 \]

• MAX-k-SAT with gap ε NP-hard ⇒ for any language L ∈ NP
 proof system of form:
 – given x, compute reduction to MAX-k-SAT: φₙₓ
 – expected proof is satisfying assignment for φₙₓ
 – verifier picks random clause (“local test”) and checks that it is satisfied by the assignment
 \[x ∈ L \implies \Pr[\text{verifier accepts}] = 1 \]
 \[x ∉ L \implies \Pr[\text{verifier accepts}] ≤ (1 – ε) \]
 – can repeat O(1/ε) times for error < ½

Proof systems viewpoint

• can think of reduction showing k-SAT NP-hard
 as designing a proof system for NP in which:
 – verifier only performs local tests

• can think of reduction showing “MAX-k-SAT with gap ε” NP-hard as designing a proof system for NP in which:
 – verifier only performs local tests
 – invalidity of proof* evident all over: “holographic proof” and an ε fraction of tests notice such invalidity

*