Two important classes:
- $\text{MA} = \text{MA}[2]$
- $\text{AM} = \text{AM}[2]$

Definitions without reference to interaction:
- $L \in \text{MA}$ iff \exists poly-time language R such that:
 - $x \in L \Rightarrow \exists m \Pr_r[(x, m, r) \in R] = 1$
 - $x \notin L \Rightarrow \forall m \Pr_r[(x, m, r) \in R] \leq \frac{1}{2}$
- $L \in \text{AM}$ iff \exists poly-time language R such that:
 - $x \in L \Rightarrow \Pr_r[\exists m (x, m, r) \in R] = 1$
 - $x \notin L \Rightarrow \Pr_r[\exists m (x, m, r) \in R] \leq \frac{1}{2}$

Using PRGs for MA
- $L \in \text{MA}$ iff \exists poly-time language R such that:
 - $x \in L \Rightarrow \exists m \Pr_r[(x, m, r) \in R] = 1$
 - $x \notin L \Rightarrow \forall m \Pr_r[(x, m, r) \in R] \leq \frac{1}{2}$
- Produce poly-size circuit C such that $C(x, m, r) = 1 \iff (x, m, r) \in R$.
- For each x, m can hardwire to get $C_{x,m}$:
 - $\exists m \Pr_r[C_{x,m}(y) = 1] = 1$ ("yes")
 - $\forall m \Pr_r[C_{x,m}(y) = 1] \leq \frac{1}{2}$ ("no")

Derandomization revisited
- $L \in \text{MA}$ iff \exists poly-time language R such that:
 - $x \in L \Rightarrow \exists m \Pr_r[(x, m, r) \in R] = 1$
 - $x \notin L \Rightarrow \forall m \Pr_r[(x, m, r) \in R] \leq \frac{1}{2}$
- Recall PRGs:
 - $|\Pr_y[C(y) = 1] - \Pr_z[C(G(z)) = 1]| \leq \epsilon$
- For each circuit C of size at most s:
 - $|\Pr_y[C(x, m, r) = 1] - \Pr_z[C(x, m, r) = 1]| \leq \epsilon$

Using PRGs for MA
- Can compute $\Pr_r[C_{x,m}(G(z)) = 1]$ exactly:
 - Evaluate $C_{x,m}(G(z))$ on every seed $z \in \{0,1\}^t$
 - Running time $O(|C_{x,m}| + \text{time for } G)2^t$
- $L \in \text{NP}$ if PRG with $t = O(\log n)$, $\epsilon < 1/2$

Theorem: E requires exponential size circuits $\Rightarrow \text{MA} = \text{NP}$.
May 18, 2021 CS151 Lecture 15

MA and AM

(under a hardness assumption)

\[\Pi_2 \quad \Sigma_2 \quad \Pi_2 \quad \Sigma_2 \]

\[\text{AM} \quad \text{coAM} \quad \text{MA} \quad \text{coMA} \]

\[\text{NP} \quad \text{coNP} \quad \text{P} \]

May 18, 2021 CS151 Lecture 15

MA and AM

(under a hardness assumption)

\[\Pi_2 \quad \Sigma_2 \quad \Pi_2 \quad \Sigma_2 \]

\[\text{AM} \quad \text{coAM} \quad \text{MA} \quad \text{coMA} \]

\[\text{NP} \quad \text{coNP} = \text{coMA} \]

What about AM, coAM?

May 18, 2021 CS151 Lecture 15

Derandomization revisited

Theorem (IW, STV): If \(E \) contains functions that require size \(2^{\Omega(n)} \) circuits, then \(E \) contains functions that are \(2^{\Omega(n)} \)-unapproximable by circuits.

Theorem (NW): if \(E \) contains \(2^{\Omega(n)} \)-unapproximable functions there are poly-time PRGs fooling poly(\(n \))-size circuits, with seed length \(t = O(\log n) \), and error \(\epsilon < 1/4 \).

May 18, 2021 CS151 Lecture 15

Oracle circuits

- **circuit** \(C \)
 - directed acyclic graph
 - nodes: AND (\(\land \)); OR (\(\lor \)); NOT (\(\neg \)); variables \(x_i \)

- **A-oracle circuit** \(C \)
 - also allow “A-oracle gates”

May 18, 2021 CS151 Lecture 15

Relativized versions

Theorem: If \(E \) contains functions that require size \(2^{\Omega(n)} \) A-oracle circuits, then \(E \) contains functions that are \(2^{\Omega(n)} \)-unapproximable by A-oracle circuits.

- Recall proof:
 - encode truth table to get hard function
 - if approximable by \(s(n) \)-size circuits, then use those circuits to compute original function by size \(s(n)^{\Omega(n)} \)-size circuits. Contradiction.

May 18, 2021 CS151 Lecture 15

Relativized versions

- \(f : \{0,1\}^{\log k} \rightarrow \{0,1\} \)
 - small A-oracle circuit \(C \) approximating \(f \)

- \(\text{Decoding procedure} \)
 - \(i \in \{0,1\}^{\log k} \)
 - small A-oracle circuit computing \(f \) exactly

May 18, 2021 CS151 Lecture 15
Relativized versions

Theorem: if \(E \) contains \(2^{\Omega(n)} \)-unapproximable functions, there are poly-time PRGs fooling poly(n)-size A-oracle circuits, with seed length \(t = O(\log n) \), and error \(\epsilon < 1/4 \).

- Recall proof:
 - PRG from hard function on \(O(\log n) \) bits
 - if doesn’t fool \(A \)-oracle circuits, then use those circuits to compute hard function by size \(s \cdot n^k \) size circuits. Contradiction.

Using PRGs for AM

Theorem: If \(E \) contains functions that require size \(2^{\Omega(n)} \)-A-oracle circuits, then \(E \) contains functions that are \(2^{\Omega(n)} \)-unapproximable by A-oracle circuits.

Theorem: If \(E \) contains \(2^{\Omega(n)} \)-unapproximable functions there are PRGs fooling poly(n)-size A-oracle circuits, with seed length \(t = O(\log n) \), and error \(\epsilon < 1/2 \).

Theorem: \(E \) requires exponential size SAT-oracle circuits \(\Rightarrow AM = NP \).
MA and AM
(under a hardness assumption)

\[
\begin{array}{c}
\Sigma_2 \\
\Pi_2 \\
AM = NP \\
\text{coNP} = \text{coMA} \\
\end{array}
\]

MA = NP = coMA

Optimization Problems

• many hard problems (especially NP-hard) are optimization problems
 – e.g. find shortest TSP tour
 – e.g. find smallest vertex cover
 – e.g. find largest clique

– may be minimization or maximization problem
– ”opt” = value of optimal solution

New topic(s)

Optimization problems, Approximation Algorithms, and Probabilistically Checkable Proofs

Approximation Algorithms

• often happy with approximately optimal solution
 – warning: lots of heuristics
 – we want approximation algorithm with guaranteed approximation ratio of \(r \)
 – meaning: on every input \(x \), output is guaranteed to have value

 at most \(r \cdot \text{opt} \) for minimization
 at least \(\text{opt}/r \) for maximization

Example approximation algorithm:
 – Recall:

 Vertex Cover (VC): given a graph \(G \), what is the smallest subset of vertices that touch every edge?

 – NP-complete
Approximation Algorithms

• Approximation algorithm for VC:
 – pick an edge \((x, y)\), add vertices \(x\) and \(y\) to VC
 – discard edges incident to \(x\) or \(y\); repeat.

• Claim: approximation ratio is 2.
• Proof:
 – an optimal VC must include at least one endpoint of each edge considered
 – therefore \(2 \ast \text{opt} \geq \text{actual}\)

Approximation Algorithms

• diverse array of ratios achievable
• some examples:
 – (min) Vertex Cover: 2
 – MAX-3-SAT (find assignment satisfying largest # clauses): 8/7
 – (min) Set Cover: \(\ln n\)
 – (max) Clique: \(\frac{n}{\log^2 n}\)
 – (max) Knapsack: \((1 + \epsilon)\) for any \(\epsilon > 0\)

Approximation Algorithms

• (max) Knapsack: \((1 + \epsilon)\) for any \(\epsilon > 0\)

• called Polynomial Time Approximation Scheme (PTAS)
 – algorithm runs in poly time for every fixed \(\epsilon > 0\)
 – poor dependence on \(\epsilon\) allowed

• If all NP optimization problems had a PTAS, almost like \(P = NP\) (!)

Approximation Algorithms

• A job for complexity: How to explain failure to do better than ratios on previous slide?
 – just like: how to explain failure to find poly-time algorithm for SAT...
 – first guess: probably NP-hard
 – what is needed to show this?

• “gap-producing” reduction from NP-complete problem \(L_1\) to \(L_2\)

Gap producing reductions

• r-gap-producing reduction:
 – \(f\) computable in poly time
 – \(x \in L_1 \Rightarrow \text{opt}(f(x)) \leq k\)
 – \(x \notin L_1 \Rightarrow \text{opt}(f(x)) > rk\)
 – for max. problems use \(\geq k\) and \(< k/r\)

• Note: target problem is not a language
 – promise problem (yes \& no not all strings)
 – “promise”: instances always from (yes \& no)
Gap producing reductions

- Main purpose:
 - r-approximation algorithm for L_2 distinguishes between $f(\text{yes})$ and $f(\text{no})$; can use to decide L_1
 - "NP-hard to approximate to within r".

Gap preserving reductions

- gap-producing reduction difficult (more later)
- but gap-preserving reductions easier

Example gap-preserving reduction:
- reduce MAX-k-SAT with gap ϵ to MAX-3-SAT with gap $\epsilon' = \frac{1}{3}$
- "MAX-k-SAT is NP-hard to approx. within $\epsilon \Rightarrow$ MAX-3-SAT is NP-hard to approx. within ϵ'".

MAXSNP (PY) - a class of problems reducible to each other in this way
- PTAS for MAXSNP-complete problem iff PTAS for all problems in MAXSNP

Proof systems viewpoint

- k-SAT NP-hard \Rightarrow for any language $L \in$ NP proof system of form:
 - given x, compute reduction to k-SAT: ϕ_x
 - expected proof is satisfying assignment for ϕ_x
 - verifier picks random clause ("local test") and checks that it is satisfied by the assignment
 - $x \in L \Rightarrow \Pr[\text{verifier accepts}] = 1$
 - $x \notin L \Rightarrow \Pr[\text{verifier accepts}] < 1$

Proof systems viewpoint

- MAX-k-SAT with gap ϵ NP-hard \Rightarrow for any language $L \in$ NP proof system of form:
 - given x, compute reduction to MAX-k-SAT: ϕ_x
 - expected proof is satisfying assignment for ϕ_x
 - verifier picks random clause ("local test") and checks that it is satisfied by the assignment
 - $x \in L \Rightarrow \Pr[\text{verifier accepts}] = 1$
 - $x \notin L \Rightarrow \Pr[\text{verifier accepts}] \leq (1 - \epsilon)$
 - can repeat $O(1/\epsilon)$ times for error $< \frac{1}{2}$.
Proof systems viewpoint

- can think of reduction showing k-SAT NP-hard as designing a proof system for NP in which:
 - verifier only performs local tests

- can think of reduction showing "MAX-k-SAT with gap \(\varepsilon \)" NP-hard as designing a proof system for NP in which:
 - verifier only performs local tests
 - invalidity of proof evident all over: "holographic proof" and an \(\varepsilon \) fraction of tests notice such invalidity

PCP

- Probabilistically Checkable Proof (PCP) permits novel way of verifying proof:
 - pick random local test
 - query proof in specified k locations
 - accept iff passes test

- fancy name for a NP-hardness reduction

PCP

- PCP\([r(n), q(n)]\): set of languages L with p.p.t. verifier V that has \((r, q)\)-restricted access to a string "proof"
 - V tosses \(O(r(n))\) coins
 - V accesses proof in \(O(q(n))\) locations
 - (completeness) \(x \in L \Rightarrow \exists \) proof such that
 \[\Pr[V(x, \text{proof}) \text{ accepts}] = 1 \]
 - (soundness) \(x \notin L \Rightarrow \forall \text{ proof*} \)
 \[\Pr[V(x, \text{proof*}) \text{ accepts}] \leq \frac{1}{2} \]

The PCP Theorem (AS, ALMSS):

PCP[log n, 1] = NP.

Corollary: MAX-k-SAT is NP-hard to approximate to within some constant \(\varepsilon \).

- using PCP[log n, 1] protocol for, say, VC
- enumerate all \(2^{O(\log n)} = \text{poly}(n)\) sets of queries
- construct a k-CNF \(\varphi \) for verifier's test on each
 - note: k-CNF since function on only k bits
- "YES" VC instance \(\Rightarrow \) all clauses satisfiable
- "NO" VC instance \(\Rightarrow \) every assignment fails to satisfy at least \(\frac{1}{2} \) of the \(\varphi \) \(\Rightarrow \) fails to satisfy an \(\varepsilon = (\frac{1}{2})2^{k} \) fraction of clauses.

The PCP Theorem

- Elements of proof:
 - arithmetization of 3-SAT
 - we will do this
 - low-degree test
 - we will state but not prove this
 - self-correction of low-degree polynomials
 - we will state but not prove this
 - proof composition
 - we will describe the idea