New topic(s)

Optimization problems,
Approximation Algorithms,
and
Probabilistically Checkable Proofs
Optimization Problems

- many hard problems (especially \textbf{NP}-hard) are optimization problems
 - e.g. find shortest TSP tour
 - e.g. find smallest vertex cover
 - e.g. find largest clique

- may be minimization or maximization problem
- “opt” = value of optimal solution
Approximation Algorithms

- often happy with *approximately optimal solution*
 - warning: lots of heuristics
 - we want *approximation algorithm* with guaranteed *approximation ratio* of r
 - meaning: on every input x, output is guaranteed to have value
 - at most $r \cdot \text{opt}$ for minimization
 - at least $\frac{\text{opt}}{r}$ for maximization
Approximation Algorithms

- Example approximation algorithm:
 - Recall:

 Vertex Cover (VC): given a graph G, what is the *smallest* subset of vertices that touch every edge?

 - **NP-complete**
Approximation Algorithms

• Approximation algorithm for VC:
 – pick an edge \((x, y)\), add vertices \(x\) and \(y\) to VC
 – discard edges incident to \(x\) or \(y\); repeat.

• Claim: **approximation ratio is 2.**

• Proof:
 – an optimal VC must include at least one endpoint of each edge considered
 – therefore \(2 \times \text{opt} \geq \text{actual}\)
Approximation Algorithms

• diverse array of ratios achievable

• some examples:
 – (min) Vertex Cover: 2
 – MAX-3-SAT (find assignment satisfying largest # clauses): 8/7
 – (min) Set Cover: \(\ln n\)
 – (max) Clique: \(n/\log^2 n\)
 – (max) Knapsack: \((1 + \varepsilon)\) for any \(\varepsilon > 0\)
Approximation Algorithms

(max) Knapsack: \((1 + \varepsilon)\) for any \(\varepsilon > 0\)

• called Polynomial Time Approximation Scheme (PTAS)
 – algorithm runs in poly time for every fixed \(\varepsilon > 0\)
 – poor dependence on \(\varepsilon\) allowed

• If all \(\mathbf{NP}\) optimization problems had a PTAS, almost like \(\mathbf{P} = \mathbf{NP}\) (!)
Approximation Algorithms

• A job for complexity: How to explain failure to do better than ratios on previous slide?
 – just like: how to explain failure to find poly-time algorithm for SAT...
 – first guess: probably NP-hard
 – what is needed to show this?

• “gap-producing” reduction from NP-complete problem L_1 to L_2
Approximation Algorithms

• “gap-producing” reduction from \textbf{NP}-complete problem L_1 to L_2

![Diagram showing reduction from L_1 to L_2]

May 22, 2017
Gap producing reductions

- r-gap-producing reduction:
 - f computable in poly time
 - $x \in L_1 \Rightarrow \text{opt}(f(x)) \leq k$
 - $x \notin L_1 \Rightarrow \text{opt}(f(x)) > rk$
 - for max. problems use “$\geq k$” and “$< k/r$”

- Note: target problem is not a language
 - promise problem (yes \cup no not all strings)
 - “promise”: instances always from (yes \cup no)

May 22, 2017
Gap producing reductions

- Main purpose:
 - r-approximation algorithm for L₂ distinguishes between f(yes) and f(no); can use to decide L₁
 - “NP-hard to approximate to within r”
Gap preserving reductions

• gap-producing reduction difficult (more later)
• but gap-preserving reductions easier

Warning: many reductions not gap-preserving
Gap preserving reductions

• Example gap-preserving reduction:
 – reduce MAX-k-SAT with gap ϵ
 – to MAX-3-SAT with gap ϵ'
 – “MAX-k-SAT is NP-hard to approx. within $\epsilon \Rightarrow$
 MAX-3-SAT is NP-hard to approx. within ϵ'”

• MAXSNP (PY) – a class of problems reducible to each other in this way
 – PTAS for MAXSNP-complete problem iff
 PTAS for all problems in MAXSNP
MAX-k-SAT

• Missing link: first gap-producing reduction
 – history’s guide
 it should have something to do with SAT

• Definition: MAX-k-SAT with gap ε
 – instance: k-CNF φ
 – YES: some assignment satisfies all clauses
 – NO: no assignment satisfies more than $(1 - \varepsilon)$ fraction of clauses

May 22, 2017
Proof systems viewpoint

• k-SAT \textsc{NP}-hard \implies \text{for any language } L \in \textsc{NP} \text{ proof system of form:}

 – given \(x \), compute reduction to k-SAT: \(\varphi_x \)

 – expected proof is \textit{satisfying assignment for} \(\varphi_x \)

 – verifier picks \textit{random clause} ("local test") and checks that it is satisfied by the assignment

 \(x \in L \implies \Pr[\text{verifier accepts}] = 1 \)

 \(x \notin L \implies \Pr[\text{verifier accepts}] < 1 \)
Proof systems viewpoint

- MAX-k-SAT with gap ε \textbf{NP}-hard \implies for any language $L \in \text{NP}$ proof system of form:
 - given x, compute reduction to MAX-k-SAT: φ_x
 - expected proof is \textit{satisfying assignment} for φ_x
 - verifier picks \textit{random clause} ("local test") and checks that it is satisfied by the assignment
 \begin{align*}
x \in L & \implies \Pr[\text{verifier accepts}] = 1 \\
x \notin L & \implies \Pr[\text{verifier accepts}] \leq (1 - \varepsilon)
\end{align*}
 - can repeat $O(1/\varepsilon)$ times for error $< \frac{1}{2}$
Proof systems viewpoint

- can think of reduction showing k-SAT NP-hard as designing a proof system for NP in which:
 - verifier only performs local tests

- can think of reduction showing MAX-k-SAT with gap ε NP-hard as designing a proof system for NP in which:
 - verifier only performs local tests
 - invalidity of proof* evident all over: “holographic proof” and an ε fraction of tests notice such invalidity
PCP

• Probabilistically Checkable Proof (PCP) permits novel way of verifying proof:
 – pick random local test
 – query proof in specified k locations
 – accept iff passes test

• fancy name for a NP-hardness reduction
PCP

- **PCP**[r(n),q(n)]: set of languages L with p.p.t. verifier V that has \((r, q)\)-restricted access to a string “proof”
 - V tosses \(O(r(n))\) coins
 - V accesses proof in \(O(q(n))\) locations
 - (completeness) \(x \in L \Rightarrow \exists\) proof such that \(\Pr[V(x, \text{proof}) \text{ accepts}] = 1\)
 - (soundness) \(x \notin L \Rightarrow \forall\) proof* \(\Pr[V(x, \text{proof}^*) \text{ accepts}] \leq \frac{1}{2}\)
PCP

• Two observations:
 – \(\text{PCP}[1, \text{poly } n] = \text{NP}\) proof?
 – \(\text{PCP}[\log n, 1] \subseteq \text{NP}\) proof?

The PCP Theorem (AS, ALMSS):
\[\text{PCP}[\log n, 1] = \text{NP}.\]
Corollary: MAX-k-SAT is \textbf{NP}-hard to approximate to within some constant ε.

- using PCP[$\log n, 1$] protocol for, say, VC
- enumerate all $2^{O(\log n)} = \text{poly}(n)$ sets of queries
- construct a k-CNF φ_i for verifier’s test on each
 - note: k-CNF since function on only k bits
- “YES” VC instance \Rightarrow all clauses satisfiable
- “NO” VC instance \Rightarrow every assignment fails to satisfy at least $\frac{1}{2}$ of the φ_i \Rightarrow fails to satisfy an $\varepsilon = (\frac{1}{2})2^{-k}$ fraction of clauses.
The PCP Theorem

Elements of proof:
- arithmetization of 3-SAT
 - we will do this
- low-degree test
 - we will state but not prove this
- self-correction of low-degree polynomials
 - we will state but not prove this
- proof composition
 - we will describe the idea
The PCP Theorem

• Two major components:

 – \(\text{NP} \subseteq \text{PCP}[\log n, \text{polylog } n] \) (“outer verifier”)
 • we will prove this from scratch, assuming low-degree test, and self-correction of low-degree polynomials

 – \(\text{NP} \subseteq \text{PCP}[n^3, 1] \) (“inner verifier”)
 • we will not prove
Proof Composition (idea)

\[\text{NP} \subseteq \text{PCP}[\log n, \text{polylog } n] \] ("outer verifier")
\[\text{NP} \subseteq \text{PCP}[n^3, 1] \] ("inner verifier")

- **composition** of verifiers:
 - reformulate “outer” so that it uses O(log n) random bits to make 1 query to each of 3 provers
 - replies \(r_1, r_2, r_3 \) have length polylog n
 - Key: accept/reject decision computable from \(r_1, r_2, r_3 \) by small circuit C
Proof Composition (idea)

\[\text{NP} \subseteq \text{PCP}[\log n, \text{polylog } n] \] ("outer verifier")
\[\text{NP} \subseteq \text{PCP}[n^3, 1] \] ("inner verifier")

- composition of verifiers (continued):
 - final proof contains \text{proof} that \(C(r_1, r_2, r_3) = 1 \)
 for inner verifier’s use
 - use inner verifier to verify that \(C(r_1,r_2,r_3) = 1 \)
 - \(O(\log n) + \text{polylog } n \) randomness
 - \(O(1) \) queries
 - tricky issue: consistency

May 22, 2017
Proof Composition (idea)

- $NP \subseteq \text{PCP}[\log n, 1]$ comes from
 - repeated composition
 - $\text{PCP}[\log n, \text{polylog } n]$ with $\text{PCP}[\log n, \text{polylog } n]$ yields $\text{PCP}[\log n, \text{polyloglog } n]$
 - $\text{PCP}[\log n, \text{polyloglog } n]$ with $\text{PCP}[n^3, 1]$ yields $\text{PCP}[\log n, 1]$
- many details omitted…
The inner verifier

Theorem: $\text{NP} \subset \text{PCP}[n^2, 1]$

Proof (first steps):

1. **Quadratic Equations** is NP-hard
2. PCP for QE:

 proof = *all quadratic functions* of a soln. x

 verification = check that a *random linear combination* of equations is satisfied by x

 (if prover keeps promise to supply all quadratic fns of x)
Quadratic Equations

• quadratic equation over F_2:
 $$\sum_{i<j} a_{i,j} X_i X_j + \sum_i b_i X_i + c = 0$$

• language **QUADRATIC EQUATIONS (QE)**
 $$= \{ \text{systems of quadratic equations over } F_2 \text{ that have a solution (assignment to the } X \text{ variables)} \}$$
Quadratic Equations

Lemma: QE is NP-complete.

Proof: clearly in NP; reduce from CIRCUIT SAT
- circuit C an instance of CIRCUIT SAT
- QE variables = variables + gate variables

\[\neg g_i \]
\[z \]
\[\land g_i \]
\[z_1 \]
\[z_2 \]
\[\lor g_i \]
\[z_1 \]
\[z_2 \]

\[g_i - z = 1 \]
\[g_i - z_1 z_2 = 0 \]
\[g_i - (1-z_1)(1-z_2) = 1 \]

... and \(g_{\text{out}} = 1 \)

May 22, 2017
Quadratic Functions Code

• intended proof:
 – F the field with 2 elements
 – given $x \in F^n$, a solution to instance of QE
 – $f_x : F^n \rightarrow F_2$ all linear functions of x
 $$f_x(a) = \sum_i a_i x_i$$
 – $g_x : F^{n \times n} \rightarrow F_2$ includes all quadratic fns of x
 $$g_x(A) = \sum_{i,j} A[i,j] x_i x_j$$
 – KEY: can evaluate any quadratic function of x
 with a single evaluation of f_x and g_x
PCP for QE

If prover keeps promise to supply all quadratic fns of x, a solution of QE instance...

• Verifier’s action:
 – query a *random linear combination* R of the equations of the QE instance
 – **Completeness**: obvious
 – **Soundness**: x fails to satisfy some equation; imagine picking coeff. for this one last
 \[
 \Pr[\text{x satisfies } R] = \frac{1}{2}
 \]
PCP for QE

To “enforce promise”, verifier needs to perform:

- **linearity test**: verify f, g are (close to) linear
- **self-correction**: access the linear f', g' that are close to f, g

 \[f'_x(a) = \sum_i a_i x_i \quad \text{Had}(x) \]

 \[g'_x(A) = \sum_{i,j} A[i,j] x_i x_j \quad \text{Had}(x \otimes x) \]

- **consistency check**: verify $V = u \otimes u$

May 22, 2017
PCP for QE

- Linearity test: given access to $h:F^m \rightarrow F$
 - pick random a,b; check if $h(a) + h(b) = h(a+b)$; repeat $O(1)$ times
 - do this for functions f and g supplied by prover

Theorem [BLR]: h linear \Rightarrow prob. success $= 1$; prob. success $\geq 1 - \delta \Rightarrow \exists$ linear h' s.t.

$$\Pr_a [h'(a) = h(a)] \geq 1 - O(\delta)$$
PCP for QE

$x \in F^n$ soln

\[f_x(a) = \sum_i a_i x_i \quad \text{Had}(x) \]

\[g_x(A) = \sum_{i,j} A[i,j] x_i x_j \quad \text{Had}(x \otimes x) \]

• Self-correction:
 – given access to $h: F^m \rightarrow F$ close to linear h'; i.e.,
 \[\Pr_a [h'(a) = h(a)] \geq 1 - O(\delta) \]
 – to access $h'(a)$, pick random b; compute
 \[h(b) + h(a+b) \]
 – with prob. at least $1 - 2 \cdot O(\delta)$, $h(b) = h'(b)$ and $h(a+b) = h'(a+b)$; hence we compute $h'(a)$

May 22, 2017
PCP for QE

- **Consistency check**: given access to linear functions $f' = \text{Had}(u)$ and $g' = \text{Had}(V)$
 - pick random $a, b \in F^n$; check that
 $f'(a)f'(b) = g'(ab^T)$
 - completeness: if $V = u \otimes u$
 $f'(a)f'(b) = (\sum_i a_i u_i)(\sum_i b_i u_i) = \sum_{i,j} a_i b_j V[i,j] = g'(ab^T)$

\[
\begin{array}{l}
x \in F^n \text{ soln } \quad f_x(a) = \sum_i a_i x_i \quad \text{Had}(x) \\
g_x(A) = \sum_{i,j} A[i,j] x_i x_j \quad \text{Had}(x \otimes x)
\end{array}
\]

May 22, 2017
PCP for QE

- Consistency check: given access to linear functions $f' = \text{Had}(u)$ and $g' = \text{Had}(V)$

 - soundness: claim that if $V \neq u$

 $\Pr[(\Sigma a_i u_i)(\Sigma b_i u_i) = \Sigma a_i b_i u_i u_i] = \frac{1}{4}$

 $\Pr[(u u^T)b \neq Vb] \geq \frac{1}{2} \cdot \frac{1}{2} = \frac{1}{4}$

 $\exists i, j \text{ s.t. } uu^T \text{ and } V \text{ differ in entry } i; \text{ pick } a_i \text{ last}$

 $\exists i \text{ s.t. } (uu^T)b \text{ and } Vb \text{ differ in entry } i; \text{ pick } a_i \text{ last}$

\[x \in F^n \text{ soln } f(x) = \sum_i a_i x_i \quad \text{Had}(x) \]
\[g_x(A) = \sum_{i,j} A[i,j]x_i x_j \quad \text{Had}(x \otimes x) \]

May 22, 2017