Arthur-Merlin Games

- Clearly $\text{Arthur-Merlin} \subseteq \text{IP}$
 - "private coins are at least as powerful as public coins"

- Proof that $\text{IP} = \text{PSPACE}$ actually shows $\text{PSPACE} \subseteq \text{Arthur-Merlin} \subseteq \text{IP} \subseteq \text{PSPACE}$
 - "public coins are at least as powerful as private coins"!

- Delimiting # of rounds:
 - $\text{AM}[k] = \text{Arthur-Merlin game with } k \text{ rounds, Arthur (verifier) goes first}$
 - $\text{MA}[k] = \text{Arthur-Merlin game with } k \text{ rounds, Merlin (prover) goes first}$

Theorem: $\text{AM}[k]$ ($\text{MA}[k]$) equals $\text{AM}[k]$ ($\text{MA}[k]$) with perfect completeness.
 - i.e., $x \in L$ implies accept with probability 1
 - proof on problem set

Theorem: for all constant $k \geq 2$

$\text{AM}[k] = \text{AM}[2]$.

- Proof:
 - we show $\text{MA}[2] \subseteq \text{AM}[2]$
 - implies can move all of Arthur’s messages to beginning of interaction:
 $\text{AMAMAM...AM} = \text{AAMMAM...AM} = \text{AAA...AMMM...M}$

- Proof (continued):
 - given $L \in \text{MA}[2]$
 \[x \in L \Rightarrow \exists m \Pr_r[(x, m, r) \in R] = 1 \]
 - implies can make error $\epsilon < 2^{-t}$
 \[\Pr_r[\exists m \text{ such that } (x, m, r) \in R] \leq \epsilon \]
 - by repeating t times with independent random strings r, can make error $\epsilon < 2^{-t}$
 - set $t = m + 1$ to get $2^m \epsilon < \frac{1}{2}$.
MA and AM

- Two important classes:
 - **MA = MA[2]**
 - **AM = AM[2]**

- Definitions without reference to interaction:
 - \(L \in MA \iff \exists \text{poly-time language } R \)
 \(x \in L \Rightarrow \exists m \Pr_{[x, m, r]}[(x, m, r) \in R] = 1 \)
 \(x \notin L \Rightarrow \forall m \Pr_{[x, m, r]}[(x, m, r) \in R] \leq \frac{1}{2} \)
 - \(L \in AM \iff \exists \text{poly-time language } R \)
 \(x \in L \Rightarrow \Pr_{[x, m, r]}[(x, m, r) \in R] = 1 \)
 \(x \notin L \Rightarrow \Pr_{[x, m, r]}[(x, m, r) \in R] \leq \frac{1}{2} \)

MA and AM

- **Theorem**: \(coNP \subseteq AM \implies PH = AM \).

- **Proof**:
 - suffices to show \(\Sigma_2 \subseteq AM \) (and use \(AM \subseteq \Pi_2 \))
 - \(L \in \Sigma_2 \iff \exists \text{poly-time language } R \)
 \(x \in L \Rightarrow \exists y \forall z (x, y, z) \in R \)
 \(x \notin L \Rightarrow \forall y \exists z (x, y, z) \in R \)
 - Merlin sends \(y \)
 - 1 AM exchange decides \(coNP \) query: \(\forall z (x, y, z) \in R \)?
 - 3 rounds; in \(AM \)

Back to Graph Isomorphism

- The payoff:
 - not known if GI is \(NP \)-complete.
 - previous theorems:
 - if GI is \(NP \)-complete then \(PH = AM \)
 - unlikely!
 - proof: GI \(NP \)-complete \(\Rightarrow GNI \) \(coNP \)-complete \(\Rightarrow coNP \subseteq AM \Rightarrow PH = AM \)
Derandomization revisited

- \(L \in \text{MA} \iff \exists \text{poly-time language } R \)
 - \(x \in L \Rightarrow \exists m \Pr_r[(x, m, r) \in R] = 1 \)
 - \(x \notin L \Rightarrow \forall m \Pr_r[(x, m, r) \in R] \leq 1/2 \)
- Recall PRGs:
 - for all circuits \(C \) of size at most \(s \):
 - \(\Pr[y \mid C(y) = 1] - \Pr[z \mid C(G(z)) = 1] \leq \epsilon \)

Using PRGs for MA

- \(L \in \text{MA} \iff \exists \text{poly-time language } R \)
 - \(x \in L \Rightarrow \exists m \Pr_r[(x, m, r) \in R] = 1 \)
 - \(x \notin L \Rightarrow \forall m \Pr_r[(x, m, r) \in R] \leq 1/2 \)
- produce poly-size circuit \(C \) such that
 - \(C(x, m, r) = 1 \) if \((x, m, r) \in R \)
 - for each \(x, m \) can hardwire to get \(C_{x,m} \)
- \(\Pr_y[C_{x,m}(y) = 1] = 1 \) ("yes")
- \(\forall m \Pr_y[C_{x,m}(y) = 1] \leq 1/2 \) ("no")

Using PRGs for MA

- can compute \(\Pr_z[C_{x,m}(G(z)) = 1] \) exactly
 - evaluate \(C_x(G(z)) \) on every seed \(z \in \{0,1\}^t \)
 - running time \(O(|C_x| + (\text{time for } G))2^t \)
 - \(x \in L \Rightarrow \exists m \Pr_r[C_{x,m}(G(z)) = 1] = 1 \)
 - \(x \notin L \Rightarrow \forall m \Pr_r[C_{x,m}(G(z)) = 1] \leq 1/2 + \epsilon \)
- \(L \in \text{NP} \) if PRG with \(t = O(\log n) \), \(\epsilon < 1/4 \)

Theorem: \(E \) requires exponential size circuits \(\Rightarrow \text{MA} = \text{NP} \).

MA and AM

(under a hardness assumption)

Theorem (IW, STV): If \(E \) contains functions that require size \(2^{\Omega(n)} \) circuits, then \(E \) contains functions that are \(2^{\Omega(n)} \)-unapproximable by circuits.

Theorem (NW): if \(E \) contains \(2^{\Omega(n)} \)-unapproximable functions there are poly-time PRGs fooling poly(n)-size circuits, with seed length \(t = O(\log n) \), and error \(\epsilon < 1/4 \).

What about AM, coAM?
Oracle circuits

- circuit C
 - directed acyclic graph
 - nodes: AND (\(\wedge\)); OR (\(\vee\)); NOT (\(\neg\)); variables \(x_1, x_2, x_3, \ldots, x_n\)

- A-oracle circuit C
 - also allow “A-oracle gates”

Relativized versions

Theorem: If \(E\) contains functions that require size \(2^{\Omega(n)}\) A-oracle circuits, then \(E\) contains functions that are \(2^{\Omega(n)}\)-unapproximable by A-oracle circuits.

- Recall proof:
 - encode truth table to get hard function
 - if approximable by \(s(n)\)-size circuits, then use those circuits to compute original function by size \(s(n)^{1/x}\)-size circuits. Contradiction.

Relativized versions

Theorem: if \(E\) contains \(2^{\Omega(n)}\)-unapproximable fns., there are poly-time PRGs fooling \(poly(n)\)-size A-oracle circuits, with seed length \(t = O(\log n)\), and error \(\epsilon < 1/4\).

- Recall proof:
 - PRG from hard function on \(O(\log n)\) bits
 - if doesn’t fool \(s\)-size circuits, then use those circuits to compute hard function by size \(s' n^t\)-size circuits. Contradiction.
Using PRGs for AM

- \(L \in \text{AM} \) iff \(\exists \) poly-time language \(R \)
 - \(x \in L \Rightarrow Pr[\exists m (x, m, r) \in R] = 1 \)
 - \(x \notin L \Rightarrow Pr[\exists m (x, m, r) \in R] \leq \frac{1}{2} \)
- produce poly-size SAT-oracle circuit \(C \)
 such that \(C(x, r) = 1 \iff \exists m (x,m,r) \in R \)
 - for each \(x \), can hardwire to get \(C_x \)
 - \(Pr[C_x(y) = 1] = 1 \) ("yes")
 - \(Pr[C_x(y) = 1] \leq \frac{1}{2} \) ("no")

Relativized versions

Theorem: If \(E \) contains functions that require size \(2^{O(n)} \) \(A \)-oracle circuits, then \(E \) contains functions that are \(2^{O(n)} \)-unapproximable by \(A \)-oracle circuits.

Theorem: if \(E \) contains \(2^{O(n)} \)-unapproximable functions there are PRGs fooling \(\text{poly}(n) \)-size \(A \)-oracle circuits, with seed length \(t = O(\log n) \), and error \(\epsilon < \frac{1}{2} \).

Theorem: \(E \) requires exponential size SAT-oracle circuits \(\Rightarrow \text{AM} = \text{NP} \).

MA and AM

(under a hardness assumption)

\[\text{AM} = \text{coAM} \]

\[\text{MA} = \text{NP} = \text{coNP} = \text{coMA} = \text{coAM} \]

New topic(s)

Optimization problems, Approximation Algorithms, and Probabilistically Checkable Proofs
Optimization Problems

- many hard problems (especially \textbf{NP}-hard) are optimization problems
 - e.g. find shortest TSP tour
 - e.g. find smallest vertex cover
 - e.g. find largest clique

- may be minimization or maximization problem
- "opt" = value of optimal solution

Approximation Algorithms

- often happy with approximately optimal solution
 - warning: lots of heuristics
 - we want approximation algorithm with guaranteed approximation ratio of \(r \)
 - meaning: on every input \(x \), output is guaranteed to have value
 at most \(r \cdot \text{opt} \) for minimization
 at least \(\text{opt} / r \) for maximization

Approximation Algorithms

- Example approximation algorithm:
 - Recall:
 Vertex Cover (VC): given a graph \(G \), what is the smallest subset of vertices that touch every edge?
 - \textbf{NP}-complete

Approximation Algorithms

- diverse array of ratios achievable
- some examples:
 - (min) Vertex Cover: 2
 - MAX-3-SAT (find assignment satisfying largest \# clauses): 8/7
 - (min) Set Cover: \(\ln n \)
 - (max) Clique: \(n / \log^2 n \)
 - (max) Knapsack: \((1 + \epsilon) \) for any \(\epsilon > 0 \)

Approximation Algorithms

- called \textbf{Polynomial Time Approximation Scheme} (PTAS)
 - algorithm runs in poly time for every fixed \(\epsilon > 0 \)
 - poor dependence on \(\epsilon \) allowed
 - If all \textbf{NP} optimization problems had a PTAS, almost like \(\mathbf{P} = \mathbf{NP} \) (!)
Approximation Algorithms

- A job for complexity: How to explain failure to do better than ratios on previous slide?
 - just like: how to explain failure to find poly-time algorithm for SAT...
 - first guess: probably NP-hard
 - what is needed to show this?
- “gap-producing” reduction from NP-complete problem L_1 to L_2

May 13, 2015

37

Gap producing reductions

- r-gap-producing reduction:
 - f computable in poly time
 - $x \in L_1 \Rightarrow \text{opt}(f(x)) \leq k$
 - $x \notin L_1 \Rightarrow \text{opt}(f(x)) > rk$
 - for max. problems use \(\geq k \) and \(< k/r \)
- Note: target problem is not a language
 - promise problem (yes \(\cup \) no not all strings)
 - “promise”: instances always from (yes \(\cup \) no)

May 13, 2015

39

Gap preserving reductions

- gap-producing reduction difficult (more later)
- but gap-preserving reductions easier

Warning: many reductions not gap-preserving

May 13, 2015

41

Gap preserving reductions

- Example gap-preserving reduction:
 - reduce MAX-k-SAT with gap ϵ to MAX-3-SAT with gap ϵ'
 - “MAX-k-SAT is NP-hard to approx. within ϵ \(\Rightarrow \) MAX-3-SAT is NP-hard to approx. within ϵ' ”
- MAXSNP (PY) – a class of problems reducible to each other in this way
 - PTAS for MAXSNP-complete problem iff PTAS for all problems in MAXSNP

May 13, 2015

42
MAX-k-SAT

• Missing link: first gap-producing reduction
 – history’s guide
 it should have something to do with SAT

• Definition: MAX-k-SAT with gap \(\epsilon \)
 – instance: k-CNF \(\varphi \)
 – YES: some assignment satisfies all clauses
 – NO: no assignment satisfies more than \((1 - \epsilon)\) fraction of clauses

Proof systems viewpoint

• k-SAT NP-hard \(\Rightarrow \) for any language \(L \in \text{NP} \) proof system of form:
 – given \(x \), compute reduction to k-SAT: \(\varphi_x \)
 – expected proof is satisfying assignment for \(\varphi_x \)
 – verifier picks random clause ("local test") and checks that it is satisfied by the assignment
 \(x \in L \Rightarrow \Pr[\text{verifier accepts}] = 1 \)
 \(x \notin L \Rightarrow \Pr[\text{verifier accepts}] < 1 \)

• MAX-k-SAT with gap \(\epsilon \) NP-hard \(\Rightarrow \) for any language \(L \in \text{NP} \) proof system of form:
 – given \(x \), compute reduction to MAX-k-SAT: \(\varphi_x \)
 – expected proof is satisfying assignment for \(\varphi_x \)
 – verifier picks random clause ("local test") and checks that it is satisfied by the assignment
 \(x \in L \Rightarrow \Pr[\text{verifier accepts}] = 1 \)
 \(x \notin L \Rightarrow \Pr[\text{verifier accepts}] \leq (1 - \epsilon) \)
 – can repeat \(O(1/\epsilon) \) times for error < \(1/2 \)

Proof systems viewpoint

• can think of reduction showing k-SAT NP-hard as designing a proof system for NP in which:
 – verifier only performs local tests

• can think of reduction showing MAX-k-SAT with gap \(\epsilon \) NP-hard as designing a proof system for NP in which:
 – verifier only performs local tests
 – invalidity of proof* evident all over: "holographic proof" and an \(\epsilon \) fraction of tests notice such invalidity

PCP

• Probabilistically Checkable Proof (PCP) permits novel way of verifying proof:
 – pick random local test
 – query proof in specified k locations
 – accept iff passes test

• fancy name for a NP-hardness reduction

PCP

• \(\text{PCP}[r(n), q(n)] \): set of languages \(L \) with p.p.t. verifier \(V \) that has \((r, q)\)-restricted access to a string "proof"
 – \(V \) tosses \(O(r(n)) \) coins
 – \(V \) accesses proof in \(O(q(n)) \) locations
 – (completeness) \(x \in L \Rightarrow \exists \text{ proof such that} \)
 \(\Pr[V(x, \text{ proof}) \text{ accepts}] = 1 \)
 – (soundness) \(x \notin L \Rightarrow \forall \text{ proof*} \)
 \(\Pr[V(x, \text{ proof*}) \text{ accepts}] \leq 1/2 \)
PCP

- Two observations:
 - $\text{PCP}[1, \text{poly} \ n] = \text{NP}$
 - $\text{PCP}[\log \ n, 1] \subseteq \text{NP}$

The PCP Theorem (AS, ALMSS):

$$\text{PCP}[\log \ n, 1] = \text{NP}.$$

Corollary: MAX-k-SAT is \textbf{NP}-hard to approximate to within some constant ε.

- using PCP[log n, 1] protocol for, say, VC
- enumerate all $2^{O(\log n)} = \text{poly}(n)$ sets of queries
- construct a k-CNF ϕ_i for verifier’s test on each
 - note: k-CNF since function on only k bits
- “YES” VC instance \Rightarrow all clauses satisfiable
- “NO” VC instance \Rightarrow every assignment fails to satisfy at least $\frac{1}{2}$ of the ϕ_i \Rightarrow fails to satisfy an $\varepsilon = (\frac{1}{2})2^{-k}$ fraction of clauses.