Lecture 13
May 16, 2023

Karp-Lipton

» we know that P = NP implies SAT has
polynomial-size circuits.

— (showing SAT does not have poly-size circuits
is one route to proving P # NP)

» suppose SAT has poly-size circuits
—any consequences?

— might hope: SAT € P/poly = PH collapses to
P, same as if SAT € P

May 16, 2023 CS151 Lecture 13

Karp-Lipton

Theorem (KL): if SAT has poly-size circuits
then PH collapses to the second level.

* Proof:
— suffices to show M, < X,
—L €N, implies L expressible as:
L={x:vy3z(x,y,z) ER}
with R e P.

May 16, 2023 CS151 Lecture 13

Karp-Lipton

L={x:vy3z(x,y,z) eER}
—given (X, y), “3z (X, ¥, z) € R?” isin NP
— pretend C solves SAT, use self-reducibility
— Claim: if SAT € P/poly, then L =

{x:3Cvy /

[use C repeatedly to find some z for
which (x, y, z) € R; accept iff

(x,y,2) €R]}

May 16, 2023 CS151 Lecture 13

Karp-Lipton
L={x:vy3z(x,y,z)€ER}

{x : 3C Vy [use C repeatedly to find some z for
which (x,y,z) € R; accept iff (x,y,z) € R] }

—-Xx€L:

» some C decides SAT = 3C vy [...] accepts
-Xx€&L:

e JyVvz(x,vy,z) € R=VvC3y|..]rejects

May 16, 2023 CS151 Lecture 13

BPP c PH

* Recall: don't know BPP different from EXP

Theorem (S,L,GZ): BPP< (MzNZ>)

» don’t know M2NZ, different from EXP but
believe much weaker

May 16, 2023 CS151 Lecture 13

BPP < PH

* Proof:
—BPP language L: p.p.t. TM M:
x € L = Pr,[M(x,y) accepts] = 2/3

x & L = Pr,[M(x,y) rejects] = 2/3
— strong error reduction: p.p.t. TM M’
« use n random bits (Jy’| = n)
* # strings y’ for which M’(x, y’) incorrect is at
most 23
« (can’t achieve with naive amplification)

May 16, 2023 CS151 Lecture 13

BPP c PH
so few
* view y' = (w, z), each of length n ones, not
A , enough for
« consider output of M’(x, (w, z)); whole disk
|
w= 000.00 000..01 000.. 11.11
x€EL 1,100 0,11.1 1,111
1 1 0
1:.1010)(14,101,0 (1971100
11,50t ol 511 11511

xeL

May 16, 2023 CS151 Lecture 13

BPP < PH

proof (continued):
— strong error reduction: # bad y’ < 2n3
-y =(w, z) with |w| = |z| =n/2
—Claim: L={x:3w vz M'(x, (w, z)) =1}
— XEL: suppose vYw3az M'(x, (w, z)) =0

« implies > 272 0’s; contradiction
— Xx€L: suppose Iwvz M'(x, (w, z)) =1

« implies > 272 1’s; contradiction

May 16, 2023

CS151 Lecture 13

7
BPP c PH
—given BPP language L: p.p.t. TM M:
x € L = Pr,[M(x,y) accepts] = 2/3
x & L = Pr,[M(x,y) rejects] = 2/3
—showed L = {x: 3w vz M’(x, (w, z)) = 1}
—thus BPP c %,
— BPP closed under complement = BPP c I,
— conclude: BPP c (M>nZ;)
May 16, 2023 CS151 Lecture 13
10

New Topic

The complexity of
counting

May 16, 2023 CS151 Lecture 13

Counting problems

+ So far, we have ignored function problems
— given x, compute f(x)

« important class of function problems:
counting problems

—e.g. given 3-CNF ¢ how many satisfying
assignments are there?

May 16, 2023 CS151 Lecture 13

11

12

Counting problems

* #P is the class of function problems
expressible as:

input x
where R € P.

fx)=Hy: (x,y) eR}

» compare to NP (decision problem)

input x f(x)=3y:(x,y)ER?
where R € P.
May 16, 2023 CS151 Lecture 13
13
Reductions
* problem f is #P-complete if
—fisin #P x Q y
—every problem in#P (prob. 1) (prob. 2)
reduces to f 1 le
fi(x) fay)

* “parsimonious reduction”: A is identity
— many standard NP-completeness reductions
are parsimonious
—therefore: if #SAT is #P-complete we get lots
of #P-complete problems

May 16, 2023 CS151 Lecture 13

Counting problems
* examples

— #SAT: given 3-CNF @ how many satisfying
assignments are there?

—#CLIQUE: given (G, k) how many cliques of

Reductions

* Reduction from function problem f; to
function problem f;

— two efficiently computable functions Q, A

X

Y
size at least k are there? (prob. 1) (prob. 2)
[fl Ifz
A
fix) —— fuy)
May 16, 2023 CS151 Lecture 13 May 16, 2023 CS151 Lecture 13
14 15
#SAT #SAT
#SAT: given 3-CNF @ how many satisfying f(x) = ‘ X i g
assignments are there? @
° 1y : (% y) € RY
. . CVAL reduction
Theorem: #SAT is #P-complete. Liff (x,y) €R forR

16

* Proof:
—clearly in #P: (9, A) € R © A satisfies ¢
—take any f € #P defined by R € P

May 16, 2023 CS151 Lecture 13

—add new variables z, produce ¢ such that
zox,y,2) =1 Cxy) =1

—for (x, y) such that C(x, y) = 1 this z is unique

— hardwire x

— # satisfying assignments = |{y : (X, y) € R}|

May 16, 2023 CS151 Lecture 13

17

18

Relationship to other classes

» To compare to classes of decision
problems, usually consider

p#P
which is a decision class...
+ easy: NP, coNP c P#*
+ easy: P** c PSPACE

Toda’s Theorem (homework): PH € P#?,

May 16, 2023 CS151 Lecture 13

Relationship to other classes

Question: is #P hard because it entails
finding NP witnesses?

...or is counting difficult by itself?

May 16, 2023 CS151 Lecture 13

Bipartite Matchings

* Definition:
-G = (U, V, E) bipartite graph with |U| = |V|
— a perfect matching in Gis a subset M c E

that touches every node, and no two edges in
M share an endpoint

May 16, 2023 CS151 Lecture 13

19

20

21

Bipartite Matchings

* Definition:
-G =(U,V, E) bipartite graph with |U| = |V|
—a perfect matching in Gis a subset M E

that touches every node, and no two edges in
M share an endpoint

May 16, 2023 CS151 Lecture 13

Bipartite Matchings

* #MATCHING: given a bipartite graph
G = (U, V, E) how many perfect
matchings does it have?

Theorem: #MATCHING is #P-complete.
 But... can find a perfect matching in
polynomial time!
— counting itself must be difficult

May 16, 2023 CS151 Lecture 13

22

Cycle Covers

 Claim: 1-1 correspondence between cycle
covers in G’ and perfect matchings in G

—#MATCHING and #CYCLE-COVER
parsimoniously reducible to each other

1 2 3 4 5
6=(U,V,E) 6 =(V,E)

May 16, 2023 CS151 Lecture 13

23

24

Cycle Covers

« cycle cover: collection of node-disjoint
directed cycles that touch every node
#CYCLE-COVER: given directed graph G
= (V, E) how many cycle covers does it
have?

— implies #MATCHING is #P-complete

May 16, 2023 CS151 Lecture 13

Theorem: #CYCLE-COVER is #P-complete.

Cycle Cover is #P-complete

* variable gadget: every cycle cover
includes left cycle or right cycle
X; X
eclause gadget: cycle
cover cannot use all three
outer edges
—and each of 7 ways to
exclude at least one gives
exactly 1 cover using
those external edges

May 16, 2023 CS151 Lecture 13

Cycle Cover is #P-complete

May 16, 2023 CS151 Lecture 13

25

Cycle Cover is #P-complete

May 16, 2023 CS151 Lecture 13

28

26

27

Cycle Cover is #P-complete

* clause gadget corresponding to (AvBvC)
has “xor” gadget between outer 3 edges

and A, B, C
. @ AR B @ 8

xor gadget ensures that
exactly one of two
edges can be in cover

May 16, 2023 CS151 Lecture 13

Cycle Cover is #P-complete

* Proof outline (reduce from #SAT)
(=X1VX2V =X3)A(=X3VX1)A ... A(X3V =1 X2)

xor gadgets
(exactly 1 of

two edges is in
cover)

N.B. must avoid reducing variable gadgets

SAT to MATCHING!

May 16, 2023 CS151 Lecture 13

29

30

Cycle Cover is #P-complete

Introduce edge weights

— cycle cover weight is product of weights of its
edges

“implement” xor gadget by

—weight of cycle cover that “obeys” xor
multiplied by 4 (mod N)

—weight of cycle cover that “violates” xor

multiplied by N —
large integer

May 16, 2023 CS151 Lecture 13

31
Cycle Cover is #P-complete
(—|X1VX2V —|X3)/\(—|X3VX1)/\ /\(X3V - Xz)
dget
z(ei';c%ﬂ/ 19 :f . clause
two edges is in gadget
cover)

variable gadgets: X1

—m = # xor gadgets; n = # variables; N > 4m2n
—# covers (mod N) = (4m)-(#sat. assignments)

May 16, 2023 CS151 Lecture 13

Cycle Cover is #P-complete

» Weighted xor gadget: N
Uuo———ov u v
xort

vo——o u Vo u'

— weight of cycle cover that “obeys” xor
multiplied by 4 (mod N)

— weight of cycle cover that “violates” xor

Cycle Cover is #P-complete

+ Simulating positive edge weights
—need tohandle 2, 3,4, 5, ..., N-1

kDO

34

multiplied by N
May 16, 2023 CS151 Lecture 13 May 16, 2023 CS151 Lecture 13
32 33
New Topic Proof systems
* proof systems L ={(A, 1) : Ais a true mathematical assertion
with a proof of length k}
* interactive proofs and their power
] What is a “proof”’?
* Arthur-Merlin games
complexity insight: meaningless unless can be
efficiently verified
May 16, 2023 CS151 Lecture 13 May 16, 2023 CS151 Lecture 13
35

36

Proof systems
« given language L, goal is to prove x € L

+ proof system for L is a verification algorithm V
— completeness: x € L = 3 proof, V accepts (x, proof)
“true assertions have proofs”
— soundness: x & L = V proof*, V rejects (x, proof*)
“false assertions have no proofs”

— efficiency: V x, proof: V(x, proof) runs in polynomial
time in ||

May 16, 2023 CS151 Lecture 13

37

Interactive Proofs

* interactive proof system for L is an
interactive protocol (P, V)

—— common input: x —
Prover «— Verifier
e —

S —
e
" # rounds =

~ poly(Ix])

— . accept/

reject
May 16, 2023 CS151 Lecture 13

40

Classical Proofs

* previous definition:
“classical” proof system
* recall:
L € NP iff expressible as
L={x]|3y, |yl <|x (x,y)eR}and R € P.

* NP is the set of languages with classical
proof systems (R is the verifier)

May 16, 2023 CS151 Lecture 13

Interactive Proofs

» Two new ingredients:
—randomness: verifier tosses coins, errs with
some small probability
— interaction: rather than “reading” proof,

verifier interacts with computationally
unbounded prover

* NP proof systems lie in this framework: prover
sends proof, verifier does not use randomness

May 16, 2023 CS151 Lecture 13

38

39

Interactive Proofs

* interactive proof system for L is an
interactive protocol (P, V)

—completeness: x e L =
Pr[V accepts in (P, V)(x)] = 2/3
—soundness: x € L = v P*
Pr[V accepts in (P*, V)(x)] < 1/3
— efficiency: V is p.p.t. machine
* repetition: can reduce error to any ¢

May 16, 2023 CS151 Lecture 13

Interactive Proofs

IP ={L : L has an interactive proof
system}
» Observations/questions:

— philosophically interesting: captures more
broadly what it means to be convinced a
statement is true

—clearly NP c IP. Potentially larger. How much
larger?

—if larger, randomness is essential (why?)

May 16, 2023 CS151 Lecture 13

41

42

