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Karp-Lipton

• we know that P = NP implies SAT has 
polynomial-size circuits.
– (showing SAT does not have poly-size circuits 

is one route to proving P ≠ NP)
• suppose SAT has poly-size circuits

– any consequences?
– might hope: SAT ∈P/poly ⇒ PH collapses to 

P, same as if SAT ∈ P
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Karp-Lipton

Theorem (KL): if SAT has poly-size circuits 
then PH collapses to the second level. 

• Proof:  
– suffices to show  Π2 ⊆ Σ2

– L ∈ Π2 implies L expressible as:
L = { x : ∀y ∃z (x, y, z) ∈ R}

with R ∈ P.
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Karp-Lipton

L = { x : ∀y ∃z (x, y, z) ∈ R}
– given (x, y), “∃z (x, y, z) ∈ R?” is in NP
– pretend C solves SAT, use self-reducibility
– Claim: if SAT ∈ P/poly, then L = 

{ x : ∃C ∀y 
[use C repeatedly to find some z for 
which (x, y, z) ∈ R; accept iff
(x, y, z) ∈ R] }

poly time

CS151 Lecture 13

4

May 16, 2023

Karp-Lipton

L = { x : ∀y ∃z (x, y, z) ∈ R}

{x : ∃C ∀y [use C repeatedly to find some z for 
which (x,y,z) ∈ R; accept iff (x,y,z) ∈ R] }

– x ∈ L: 
• some C decides SAT ⇒∃C ∀y […] accepts

– x ∉ L: 
• ∃y ∀z (x, y, z) ∉ R ⇒∀C ∃y […] rejects
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BPP ⊆ PH
• Recall: donʼt know BPP different from EXP

Theorem (S,L,GZ): BPP⊆ (Π2∩Σ2)

• donʼt know Π2∩Σ2 different from EXP but 
believe much weaker

CS151 Lecture 13

6



2

May 16, 2023

BPP ⊆ PH
• Proof: 

– BPP language L: p.p.t. TM M: 
x ∈ L ⇒ Pry[M(x,y) accepts] ≥ 2/3

x ∉ L ⇒ Pry[M(x,y) rejects] ≥ 2/3
– strong error reduction: p.p.t. TM M’

• use n random bits (|y’| = n)
• # strings y’ for which M’(x, y’) incorrect is at 

most 2n/3
• (can’t achieve with naïve amplification)
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BPP ⊆ PH
• view yʼ = (w, z), each of length n/2
• consider output of Mʼ(x, (w, z)):
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w = 000…00 000…01 000…10 …       111…11

…

…

x∈L

x∉L

so many 
ones, 

some disk 
is all ones

so few 
ones, not 

enough for 
whole disk
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BPP ⊆ PH

• proof (continued):
– strong error reduction: # bad y’ < 2n/3
– y’ = (w, z) with |w| = |z| = n/2
– Claim: L = {x : ∃w ∀z M’(x, (w, z)) = 1 }
– x∈L: suppose ∀w∃z M’(x, (w, z)) = 0

• implies ≥ 2n/2 0’s; contradiction
– x∉L: suppose ∃w∀z M’(x, (w, z)) = 1

• implies ≥ 2n/2 1’s; contradiction
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BPP ⊆ PH
– given BPP language L: p.p.t. TM M: 

x ∈ L ⇒ Pry[M(x,y) accepts] ≥ 2/3
x ∉ L ⇒ Pry[M(x,y) rejects] ≥ 2/3

– showed L = {x : ∃w ∀z M’(x, (w, z)) = 1}

– thus BPP ⊆ Σ2

– BPP closed under complement ⇒ BPP ⊆ Π2

– conclude: BPP⊆ (Π2∩Σ2)
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New Topic

The complexity of 
counting
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Counting problems

• So far, we have ignored function problems
– given x, compute f(x)

• important class of function problems:
counting problems

– e.g. given 3-CNF φ how many satisfying 
assignments are there? 
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Counting problems

• #P is the class of function problems 
expressible as:

input x        f(x) = |{y : (x, y) ∈ R}|
where R ∈ P.

• compare to NP (decision problem)
input x        f(x) = ∃y : (x, y) ∈ R ?

where R ∈ P.
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Counting problems

• examples
– #SAT: given 3-CNF φ how many satisfying 

assignments are there?

– #CLIQUE: given (G, k) how many cliques of 
size at least k are there?
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Reductions

• Reduction from function problem f1 to 
function problem f2
– two efficiently computable functions Q, A

x
(prob. 1)

y
(prob. 2)

f2(y)f1(x)

Q

A

f2f1
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Reductions
• problem f is #P-complete if

– f is in #P
– every problem in #P                                

reduces to f

• “parsimonious reduction”: A is identity 
– many standard NP-completeness reductions 

are parsimonious
– therefore: if #SAT is #P-complete we get lots 

of #P-complete problems 

x
(prob. 1)

y
(prob. 2)

f2(y)f1(x)

Q

A
f2f1
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#SAT

#SAT: given 3-CNF φ how many satisfying 
assignments are there?

Theorem: #SAT is #P-complete.

• Proof:
– clearly in #P: (φ, A) ∈ R ⇔A satisfies φ
– take any f ∈ #P defined by R ∈ P
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#SAT

– add new variables z, produce φ such that 
∃z φ(x, y, z) = 1 ⇔ C(x, y) = 1

– for (x, y) such that C(x, y) = 1 this z is unique
– hardwire x
– # satisfying assignments = |{y : (x, y) ∈ R}|

…x…                        …y…
C

CVAL reduction 
for R1 iff (x, y) ∈ R 

f(x) = 
|{y : (x, y) ∈ R}|
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Relationship to other classes

• To compare to classes of decision 
problems, usually consider

P#P

which is a decision class…
• easy: NP, coNP ⊆ P#P

• easy: P#P ⊆ PSPACE

Todaʼs Theorem (homework): PH ⊆ P#P.

CS151 Lecture 13

19

May 16, 2023

Relationship to other classes

Question: is #P hard because it entails 
finding NP witnesses?

…or is counting difficult by itself?
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Bipartite Matchings

• Definition: 
– G = (U, V, E) bipartite graph with |U| = |V|
– a perfect matching in G is a subset M ⊆ E 

that touches every node, and no two edges in 
M share an endpoint 
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Bipartite Matchings

• Definition: 
– G = (U, V, E) bipartite graph with |U| = |V|
– a perfect matching in G is a subset M ⊆ E 

that touches every node, and no two edges in 
M share an endpoint 
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Bipartite Matchings

• #MATCHING: given a bipartite graph        
G = (U, V, E)  how many perfect 
matchings does it have?

Theorem: #MATCHING is #P-complete.
• But… can find a perfect matching in 

polynomial time!
– counting itself must be difficult
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Cycle Covers

• Claim: 1-1 correspondence between cycle 
covers in Gʼ and perfect matchings in G
– #MATCHING and #CYCLE-COVER 

parsimoniously reducible to each other

1 2 3 4 5

1 2 3 4 5
1

2
3

4

5
G = (U, V, E) Gʼ = (V, Eʼ)
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Cycle Covers

• cycle cover: collection of node-disjoint 
directed cycles that touch every node

• #CYCLE-COVER: given directed graph G 
= (V, E)  how many cycle covers does it 
have?

Theorem: #CYCLE-COVER is #P-complete.
– implies #MATCHING is #P-complete
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Cycle Cover is #P-complete

• variable gadget: every cycle cover 
includes left cycle or right cycle

xi ¬xi

•clause gadget: cycle 
cover cannot use all three 
outer edges

– and each of 7 ways to 
exclude at least one gives 
exactly 1 cover using 
those external edges
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Cycle Cover is #P-complete
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Cycle Cover is #P-complete
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Cycle Cover is #P-complete

• clause gadget corresponding to  (A∨B∨C) 
has “xor” gadget between outer 3 edges 
and A, B, C

B ¬B
A

¬A

C ¬C
xor gadget ensures that 
exactly one of two 
edges can be in cover 

u v

uʼvʼ
xor
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Cycle Cover is #P-complete

• Proof outline (reduce from #SAT)
(¬x1∨x2∨¬x3)∧(¬x3∨x1)∧ … ∧(x3∨¬ x2)

x1 ¬x1 x2 ¬x2 x3 ¬x3

. . . clause 
gadgets

variable gadgets

xor gadgets 
(exactly 1 of 
two edges is in 
cover)

N.B. must avoid reducing 
SAT to MATCHING!
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Cycle Cover is #P-complete

• Introduce edge weights
– cycle cover weight is product of weights of its 

edges
• “implement” xor gadget by

– weight of cycle cover that “obeys” xor 
multiplied by 4 (mod N)

– weight of cycle cover that “violates” xor 
multiplied by N

large integer
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Cycle Cover is #P-complete

• Weighted xor gadget:

– weight of cycle cover that “obeys” xor 
multiplied by 4 (mod N)

– weight of cycle cover that “violates” xor 
multiplied by N

u v

uʼvʼ
xor

u

vʼ

v

uʼ

N-1

N-1
N-1

2
3(unlabeled weights are 1)
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Cycle Cover is #P-complete

• Simulating positive edge weights
– need to handle 2, 3, 4, 5, …, N-1

3

2

2k

k times
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Cycle Cover is #P-complete

(¬x1∨x2∨¬x3)∧(¬x3∨x1)∧ … ∧(x3∨¬ x2)

– m = # xor gadgets; n = # variables; N > 4m2n
– # covers (mod N) = (4m)⋅(#sat. assignments)

x1 ¬x1 x2 ¬x2 x3 ¬x3

. . . clause 
gadget

variable gadgets:

xor gadget 
(exactly 1 of 
two edges is in 
cover)
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New Topic

• proof systems

• interactive proofs and their power

• Arthur-Merlin games
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Proof systems

L = { (A, 1k) : A is a true mathematical assertion 
with a proof of length k}

What is a “proof”?

complexity insight: meaningless unless can be 
efficiently verified
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Proof systems

• given language L, goal is to prove x ∈ L

• proof system for L is a verification algorithm V 
– completeness: x ∈ L ⇒∃ proof, V accepts (x, proof)

“true assertions have proofs”
– soundness: x ∉ L ⇒∀ proof*, V rejects (x, proof*)

“false assertions have no proofs”
– efficiency:  ∀ x, proof:  V(x, proof) runs in polynomial 

time in |x|
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Classical Proofs

• previous definition:
“classical” proof system

• recall:
L ∈ NP iff expressible as

L = { x | ∃y, |y| < |x|k, (x, y) ∈ R } and R ∈ P.
• NP is the set of languages with classical 

proof systems (R is the verifier)
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Interactive Proofs

• Two new ingredients:
– randomness: verifier tosses coins, errs with 

some small probability 
– interaction: rather than “reading” proof, 

verifier interacts with computationally 
unbounded prover

• NP proof systems lie in this framework: prover 
sends proof, verifier does not use randomness
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Interactive Proofs

• interactive proof system for L is an 
interactive protocol (P, V)

Prover Verifier 

. 

. 

.

common input: x

accept/
reject

# rounds = 
poly(|x|)
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Interactive Proofs

• interactive proof system for L is an 
interactive protocol (P, V)
– completeness: x ∈ L ⇒

Pr[V accepts in (P, V)(x)] ≥ 2/3
– soundness: x ∉ L ⇒ ∀ P*

Pr[V accepts in (P*, V)(x)] ≤ 1/3 
– efficiency: V is p.p.t. machine

• repetition: can reduce error to any ε
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Interactive Proofs

IP = {L : L has an interactive proof 
system}

• Observations/questions:
– philosophically interesting: captures more 

broadly what it means to be convinced a 
statement is true

– clearly NP ⊆ IP. Potentially larger. How much 
larger?

– if larger, randomness is essential (why?)

CS151 Lecture 13

42


