QSAT is PSPACE-complete

Theorem: QSAT is PSPACE-complete.

- Proof:
 - in PSPACE:
 - \(3x_1 \exists x_2 \exists x_3 \ldots \exists x_n \varphi(x_1, x_2, \ldots, x_n)?\)
 - "3x_1": for each \(x_1\), recursively solve
 \(\exists x_2 \exists x_3 \ldots \exists x_n \varphi(x_1, x_2, \ldots, x_n)?\)
 - if encounter "yes", return "yes"
 - "\(\forall x_1\)": for each \(x_1\), recursively solve
 \(\exists x_2 \exists x_3 \ldots \exists x_n \varphi(x_1, x_2, \ldots, x_n)?\)
 - if encounter "no", return "no"
 - base case: evaluating a 3-CNF expression
 - poly(n) recursion depth
 - poly(n) bits of state at each level
QSAT is **PSPACE**-complete

- Key observation #1:

 \[
 \exists Z [\text{REACH}(A, Z, i) \land \text{REACH}(Z, B, i)]
 \]

 - cannot define \(\psi_{i+1}(A, B) \) to be
 \[
 \exists Z [\psi_i(A, Z) \land \psi_i(Z, B)]
 \]
 (why?)

QSAT is **PSPACE**-complete

- Key idea #2: use quantifiers

 - couldn't do \(\psi_{i+1}(A, B) = \exists Z [\psi_i(A, Z) \land \psi_i(Z, B)] \)
 - define \(\psi_{i+1}(A, B) \) to be
 \[
 \exists Z \exists X \exists Y [(X=A \land Y=Z) \lor (X=Z \land Y=B)] \psi_i(X, Y)
 \]
 - \(\psi_i(X, Y) \) is preceded by quantifiers
 - move to front (they don’t involve \(X,Y,Z,A,B \))

\[\psi_0(A, B) = \text{true iff } A = B \text{ or } A \text{ yields } B \text{ in 1 step} \]

\[\psi_{i+1}(A, B) = \exists Z [\psi_i(A, Z) \land \psi_i(Z, B)] \]

 - total size of \(\psi_{i+n} \) is \(O(n^k) \)
 - logspace reduction

PH collapse

Theorem: if \(\Sigma_i = \Pi_i \) then for all \(j > i \)

\[\Sigma_j = \Pi_j = \Delta_j = \Sigma_i \]

“the polynomial hierarchy collapses to the i-th level”

- Proof:
 - sufficient to show \(\Sigma_i = \Sigma_{i+1} \)
 - then \(\Sigma_{i+1} = \Pi_i = \Pi_{i+1} \); apply theorem again

Oracles vs. Algorithms

A point to ponder:

- given poly-time algorithm for SAT
 - can you solve MIN CIRCUIT efficiently?
 - what other problems? Entire complexity classes?

- given SAT oracle
 - same input/output behavior
 - can you solve MIN CIRCUIT efficiently?
Natural complete problems

• We now have versions of SAT complete for levels in PH, PSPACE

• Natural complete problems?
 – PSPACE: games
 – PH: almost all natural problems lie in the second and third level

Natural complete problems in PH

– MIN CIRCUIT
 • good candidate to be Σ_2-complete, still open

– MIN DNF: given DNF ϕ, integer k; is there a DNF ϕ' of size at most k computing same function ϕ does?

Theorem (U): MIN DNF is Σ_2-complete.

Natural complete problems in PSPACE

• General phenomenon: many 2-player games are PSPACE-complete.
 – 2 players I, II
 – alternate picking edges
 – lose when no unvisited choice

 GEOGRAPHY = {(G, s) : G is a directed graph and player I can win from node s}

Theorem: GEOGRAPHY is PSPACE-complete.

Proof:
 – in PSPACE
 • easily expressed with alternating quantifiers
 – PSPACE-hard
 • reduction from QSAT

Natural complete problems in PSPACE

• 9×1

 \[
 \begin{array}{ccc}
 \text{true} & \text{false} & \text{true} \\
 \text{true} & \text{false} & \text{false} \\
 \text{true} & \text{true} & \text{false} \\
 \text{true} & \text{false} & \text{true} \\
 \end{array}
 \]

Karp-Lipton

• we know that $P = NP$ implies SAT has polynomial-size circuits.
 – (showing SAT does not have poly-size circuits is one route to proving $P \neq NP$)

• suppose SAT has poly-size circuits
 – any consequences?
 – might hope: SAT $\in P/poly \Rightarrow$ PH collapses to P, same as if SAT $\in P$
Karp-Lipton

Theorem (KL): if SAT has poly-size circuits then \(\text{PH} \) collapses to the second level.

- **Proof:**
 - suffices to show \(\Pi_2 \subseteq \Sigma_2 \)
 - \(L \in \Pi_2 \) implies \(L \) expressible as:
 \[
 L = \{ x : \forall y \exists z (x, y, z) \in R \}
 \]
 with \(R \in \text{P} \).

Karp-Lipton

\[
L = \{ x : \forall y \exists z (x, y, z) \in R \}
\]

\[
\{ x : \exists C \forall y \ [\text{use } C \text{ repeatedly to find some } z \text{ for which } (x, y, z) \in R; \text{ accept iff } (x, y, z) \in R] \}
\]

BPP \(\subseteq \) PH

- **Recall:** don’t know BPP different from EXP

Theorem (S,L,GZ): \(\text{BPP} \subseteq (\Pi_2 \setminus \Sigma_2) \)

- don’t know \(\Pi_2 \setminus \Sigma_2 \) different from EXP but believe much weaker

BPP \(\subseteq \) PH

- **Proof:**
 - BPP language \(L \): p.p.t. TM M:
 \[
 x \in L \Rightarrow \Pr_y[M(x,y) \text{ accepts}] \geq \frac{2}{3}
 \]
 \[
 x \notin L \Rightarrow \Pr_y[M(x,y) \text{ rejects}] \geq \frac{2}{3}
 \]
 - strong error reduction: p.p.t. TM \(M' \)
 - use \(n \) random bits \(\{y\} = n \)
 - \# strings \(y' \) for which \(M'(x, y') \) incorrect is at most \(2^{-\frac{3}{2}} \)
 - (can’t achieve with naïve amplification)

BPP \(\subseteq \) PH

- view \(y' = (w, z) \), each of length \(n/2 \)
- consider output of \(M'(x, (w, z)) \):
 - view \(y' = (w, z) \), each of length \(n/2 \)
 - consider output of \(M'(x, (w, z)) \):
 - view \(y' = (w, z) \), each of length \(n/2 \)
 - consider output of \(M'(x, (w, z)) \):
BPP \subseteq \text{PH}

• proof (continued):
 – strong error reduction: \# bad \ y' < 2^{n/3}
 – \ y' = (w, z) with \ |w| = |z| = n/2
 – Claim: \ L = \{x : \exists w \forall z \ M'(x, (w, z)) = 1 \}
 – \ x \in L: \text{ suppose } \forall w \exists z \ M'(x, (w, z)) = 0
 • implies \ 2^{\Omega(n)} \text{ 0's; contradiction}
 – \ x \notin L: \text{ suppose } \exists w \forall z \ M'(x, (w, z)) = 1
 • implies \ 2^{\Omega(n)} \text{ 1's; contradiction}

\text{BPP} \subseteq \text{PH}

– given \text{BPP} language \ L: \text{p.p.t. TM } M:
 \ x \in L \Rightarrow \Pr_y[M(x,y) \text{ accepts}] \geq 2/3
 \ x \notin L \Rightarrow \Pr_y[M(x,y) \text{ rejects}] \geq 2/3
– showed \ L = \{x : \exists w \forall z M'(x, (w, z)) = 1 \}
– thus \text{BPP} \subseteq \Sigma_2
– \text{BPP} closed under complement \Rightarrow \text{BPP} \subseteq \Pi_2
– conclude: \text{BPP} \subseteq (\Pi_2 \cap \Sigma_2)

New Topic

The complexity of \text{counting}

Counting problems

• So far, we have ignored \text{function problems}
 – given \ x, compute \(f(x) \)

• important class of \text{function problems}:
 \text{counting problems}

 – e.g. given 3-CNF \(\phi \) how many satisfying assignments are there?

Counting problems

• \#P is the class of functional problems expressible as:
 \begin{align*}
 \text{input } x & : f(x) = |\{y : (x, y) \in R\}| \\
 \text{where } R & \in \text{P}.
 \end{align*}

• compare to \textbf{NP} (decision problem)
 \begin{align*}
 \text{input } x & : f(x) = \exists y : (x, y) \in R ? \\
 \text{where } R & \in \text{P}.
 \end{align*}

Counting problems

• examples
 – \#\text{SAT}: given 3-CNF \(\phi \) how many satisfying assignments are there?

 – \#\text{CLIQUE}: given \((G, k) \) how many cliques of size at least \(k \) are there?
Reductions

- Reduction from function problem \(f_1 \) to function problem \(f_2 \)
 - two efficiently computable functions \(Q, A \)

\[
\begin{array}{c}
\text{(prob. 1)} \\
f_1(x)
\end{array}
\begin{array}{c}
Q
\end{array}
\begin{array}{c}
\text{(prob. 2)}
\end{array}
\begin{array}{c}
f_2(y)
\end{array}
\begin{array}{c}
f_2(f_1(x))
\end{array}
\begin{array}{c}
f_1(x)
\end{array}
\begin{array}{c}
A
\end{array}
\begin{array}{c}
f_2(y)
\end{array}
\]

- Problem \(f \) is \(\#P \)-complete if
 - \(f \) is in \(\#P \)
 - every problem in \(\#P \) reduces to \(f \)

- "parsimonious reduction": \(A \) is identity
 - many standard \(NP \)-completeness reductions are parsimonious
 - therefore: if \(\#SAT \) is \(\#P \)-complete we get lots of \(\#P \)-complete problems

\#SAT

\#SAT: given 3-CNF \(\varphi \) how many satisfying assignments are there?

Theorem: \#SAT is \#P-complete.

- Proof:
 - clearly in \(\#P \): \(\langle \varphi, A \rangle \in R \iff A \text{ satisfies } \varphi \)
 - take any \(f \in \#P \) defined by \(R \in P \)

\#SAT

\[f(x) = \lvert \{ y : (x, y) \in R \} \rvert \]

1 iff \((x, y) \in R \)

- add new variables \(z \), produce \(\varphi \) such that
 - \(\exists z \varphi(x, y, z) = 1 \iff C(x, y) = 1 \)
 - for \((x, y) \) such that \(C(x, y) = 1 \) this \(z \) is **unique**
 - hardwire \(x \)
 - \# satisfying assignments = \(\lvert \{ y : (x, y) \in R \} \rvert \)

Relationship to other classes

- To compare to classes of decision problems, usually consider \(P^{\#P} \)
 - which is a decision class
- easy: \(NP, coNP \subseteq P^{\#P} \)
- easy: \(P^{\#P} \subseteq \text{PSPACE} \)

Toda's Theorem (homework): \(PH \subseteq P^{\#P} \).
Bipartite Matchings

- **Definition:**
 - \(G = (U, V, E) \) bipartite graph with \(|U| = |V| \)
 - a **perfect matching** in \(G \) is a subset \(M \subseteq E \) that touches every node, and no two edges in \(M \) share an endpoint

Bipartite Matchings

- **#MATCHING:** given a bipartite graph \(G = (U, V, E) \) how many perfect matchings does it have?

Theorem: #MATCHING is #P-complete.
- But... can find a perfect matching in polynomial time!
 - counting itself must be difficult

Cycle Covers

- **Claim:** 1-1 correspondence between cycle covers in \(G' \) and perfect matchings in \(G \)
 - #MATCHING and #CYCLE-COVER parsimoniously reducible to each other

Theorem: #CYCLE-COVER is #P-complete.
- implies #MATCHING is #P-complete
Cycle Cover is #P-complete

- clause gadget corresponding to \((A \lor B \lor C)\) has "xor" gadget between outer 3 edges and \(A, B, C\)

- xor gadget ensures that exactly one of two edges can be in cover

Cycle Cover is #P-complete

- Proof outline (reduce from #SAT)
 \(\neg x_1 \lor x_2 \lor \neg x_3 \land \neg x_2 \lor x_1 \lor \neg x_3 \land \ldots \land \neg x_3 \lor x_1 \lor \neg x_2\)

- N.B. must avoid reducing SAT to MATCHING!

Cycle Cover is #P-complete

- Introduce edge weights
 - cycle cover weight is product of weights of its edges

- "implement" xor gadget by
 - weight of cycle cover that "obeys" xor multiplied by 4 \((\text{mod } N)\)
 - weight of cycle cover that "violates" xor multiplied by \(N\)

- weighted xor gadget:
 - weight of cycle cover that "obeys" xor multiplied by 4 \((\text{mod } N)\)
 - weight of cycle cover that "violates" xor multiplied by \(N\)

- variable gadgets
- clause gadgets
- xor gadgets (exactly 1 of two edges is in cover)
Cycle Cover is \#P-complete

- Simulating positive edge weights
 - need to handle 2, 3, 4, 5, ..., N-1

\begin{align*}
 &\text{variable gadgets: } x_1, x_2, \ldots, x_n \\
 &\text{xor gadget (exactly 1 of two edges is in cover)} \\
 &\text{clause gadget (exactly 1 of clauses is satisfied)}
\end{align*}

\[(-x_1 \lor x_2 \lor \ldots \lor x_n) \land (-x_2 \lor x_1) \land \ldots \land (x_n \lor -x_1) \]

- \(m = \# \text{ xor gadgets} \); \(n = \# \text{ variables} \); \(N > 4^m 2^n \)
- \(\# \text{ covers (mod } N) = (4^m) (\# \text{ sat. assignments}) \)