• Recall: probabilistic Turing Machine
 – deterministic TM with extra tape for “coin flips”

• RL (Random Logspace)
 – \(L \in RL \) if there is a probabilistic logspace TM \(M \):
 \[
 x \in L \Rightarrow \Pr_y[M(x,y) \text{ accepts}] \geq \frac{1}{2}
 \]
 \[
 x \notin L \Rightarrow \Pr_y[M(x,y) \text{ rejects}] = 1
 \]
 – important detail #1: only allow one-way access to coin-flip tape
 – important detail #2: explicitly require to run in polynomial time

\[L \subseteq RL \subseteq NL \subseteq SPACE(\log^2 n) \]

• Theorem (SZ): \(RL \subseteq SPACE(\log^{3/2} n) \)

• Belief: \(L = RL \) (major open problem)

Natural problem:
Undirected STCONN: given an undirected graph \(G = (V, E) \), nodes \(s, t \), is there a path from \(s \rightarrow t \)?

Theorem: \(USTCONN \in RL \).

(Recall: STCONN is NL-complete)

Proof sketch: (in Papadimitriou)
– add self-loop to each vertex (technical reasons)
– start at \(s \), random walk \(2|V||E| \) steps, accept if see \(t \)
– Lemma: expected return time for any node \(i \) is \(2|E|/d_i \)
– suppose \(s=v_1, v_2, \ldots, v_n=t \) is a path
 – expected time from \(v_i \) to \(v_{i+1} \) is \((d_i/2)(2|E|/d_i) \)
 – expected time to reach \(v \), \(\leq |V||E| \)
 – \(\Pr \) fail reach \(t \) in \(2|V||E| \) steps \(\leq \frac{1}{2} \)

Reingold 2005: \(USTCONN \in L \)
A motivating question

- Central problem in logic synthesis:
 - Given Boolean circuit C, integer k
 - Is there a circuit C' of size at most k that computes the same function as C?

- Complexity of this problem?
 - NP-hard? in NP? in coNP? in PSPACE?
 - Complete for any of these classes?

$\vee x_1 \land x_2 \land \neg x_3 \land \ldots \land x_n$.

Oracle Turing Machines

- Oracle Turing Machine (OTM):
 - Multitape M with special "query" tape
 - Special states q_1, q_{yes}, q_{no}
 - On input x, with oracle language A
 - M^A runs as usual, except…
 - When M^A enters state q_1:
 - $y =$ contents of query tape
 - $y \in A \Rightarrow$ transition to q_{yes}
 - $y \notin A \Rightarrow$ transition to q_{no}

Oracle Turing Machines

- Nondeterministic OTM
 - Defined in the same way
 - (Transition relation, rather than function)
 - Oracle is like a subroutine, or function in your favorite programming language
 - But each call counts as single step
 - E.g.: given $\varphi_1, \varphi_2, \ldots, \varphi_n$ are even # satisfiable?
 - Poly-time OTM solves with SAT oracle

Oracle Turing Machines

Shorthand #1:
- Applying oracles to entire complexity classes:
 - Complexity class C
 - Language A
 - $C^A = \{ L \text{ decided by } OTM \text{ with oracle } A \text{ with } M \text{ "in" } C \}$
 - Example: P^{SAT}

Shorthand #2:
- Using complexity classes as oracles:
 - $OTM \text{ M}$
 - Complexity class C
 - M^A decides language L if for some language $A \in C$, M^A decides L
 - Both together: $C^P = \text{languages decided by OTM "in" } C \text{ with oracle language from } D$
 - Exercise: show $P^{SAT} = P^{NP}$

The Polynomial-Time Hierarchy

- Can define lots of complexity classes using oracles
 - The classes on the next slide stand out
 - They have natural complete problems
 - They have a natural interpretation in terms of alternating quantifiers
 - They help us state certain consequences and containments (more later)
The Polynomial-Time Hierarchy

\[\Sigma_0 = \Pi_0 = P \]
\[\Delta_1 = P^P \]
\[\Sigma_1 = NP \]
\[\Pi_1 = coNP \]
\[\Delta_2 = P^{NP} \]
\[\Sigma_2 = NP^{NP} \]
\[\Pi_2 = coNP^{NP} \]
\[\Delta_{i+1} = P^{\Sigma_i} \]
\[\Sigma_{i+1} = NP^{\Sigma_i} \]
\[\Pi_{i+1} = coNP^{\Sigma_i} \]

Polynomial Hierarchy \(PH = \bigcup_i \Sigma_i \)

\[\Sigma_0 = \Pi_0 = P \]
\[\Delta_1 = P^P \]
\[\Sigma_1 = NP \]
\[\Pi_1 = coNP \]
\[\Delta_2 = P^{NP} \]
\[\Sigma_2 = NP^{NP} \]
\[\Pi_2 = coNP^{NP} \]
\[\Delta_{i+1} = P^{\Sigma_i} \]
\[\Sigma_{i+1} = NP^{\Sigma_i} \]
\[\Pi_{i+1} = coNP^{\Sigma_i} \]

Example:

- **MIN CIRCUIT**: given Boolean circuit \(C \), integer \(k \); is there a circuit \(C' \) of size at most \(k \) that computes the same function \(C \) does?

 - **MIN CIRCUIT** \(\in \Sigma_2 \)

Example:

- **EXACT TSP**: given a weighted graph \(G \), and an integer \(k \); is the \(k \)-th bit of the length of the shortest TSP tour in \(G \) a 1?

 - **EXACT TSP** \(\in \Delta_2 \)

Useful characterization

- Recall: \(L \in NP \) iff expressible as
 \[L = \{ x \mid \exists y, |y| \leq |x|^k, (x, y) \in R \} \]
 where \(R \in P \).

 - **Theorem**: \(L \in \Sigma_i \) iff expressible as
 \[L = \{ x \mid \exists y, |y| \leq |x|^k, (x, y) \in R \} \]
 where \(R \in \Pi_{i+1} \).

- Corollary: \(L \in coNP \) iff expressible as
 \[L = \{ x \mid \forall y, |y| \leq |x|^k, (x, y) \in R \} \]
 where \(R \in P \).

 - Corollary: \(L \in \Pi_i \) iff expressible as
 \[L = \{ x \mid \forall y, |y| \leq |x|^k, (x, y) \in R \} \]
 where \(R \in \Sigma_{i+1} \).
Theorem: \(L \in \Sigma_i \) iff expressible as
\[
L = \{ x | \exists y \in \Sigma^*, (x, y) \in R \}, \text{ where } R \in \Pi_{i+1}.
\]

- Proof of Theorem:
 - induction on \(i \)
 - base case \((i = 1) \) on previous slide
 - we know \(\Sigma_1 = \text{NP}^{\oplus_1} = \text{NP}^{\Pi_1} \)
 - guess \(y \), ask oracle if \((x, y) \in R \)

Useful characterization

Nicer, more usable version:

- \(\text{Le} \Sigma_1 \) iff expressible as
 \[
 L = \{ x | \exists y_1 \forall y_2 \exists y_3 \ldots Q_1(x, y_1, y_2,
 \ldots, y_{i-1}) \in R \}
 \]
 where \(Q = \exists / \forall \) if \(i \) even/odd, and \(R \in \Sigma \)

- \(\text{Le} \Pi_1 \) iff expressible as
 \[
 L = \{ x | \forall y_1 \exists y_2 \forall y_3 \ldots Q_1(x, y_1, y_2, \ldots, y_{i-1}) \in R \}
 \]
 where \(Q = \exists / \forall \) if \(i \) even/odd, and \(R \in \Pi \)

Note: AND of polynomially many \(\Pi_1 \) predicates is in \(\Pi_1 \).

Alternating quantifiers

- \(\text{Le} \Pi_1 = \text{NP} \)
- \(\text{Le} \Pi_1 = \text{coNP} \)
- consider \(\text{Le} \Sigma_1 \):
 \[
 L = \{ x | \exists y_1 (x, y_1) \in R \}, \text{ for } R \in \Pi_{i+1}
 \]
 \[
 L = \{ x | \exists y_2 \forall y_3 \exists y_4 \ldots Q_1(x, y_1, y_2,
 \ldots, y_{i-1}) \in R \}
 \]
 \[
 L = \{ x | \exists y_1 \forall y_2 \exists y_3 \ldots Q_1(x, y_1, y_2, \ldots, y_{i-1}) \in R \}
 \]

- same argument for \(L \in \Pi_1 \)

- \(\text{Le} \Pi_1 = \Sigma_1 \)
- \(\text{Le} \Pi_1 = \Sigma_1 \)
- exercise.
Alternating quantifiers

Pleasing viewpoint:

Complete problems

- three variants of SAT:
 - QSAT$_i$: (i odd) =
 \begin{align*}
 &\{\text{3-CNFs } \phi(x_1, x_2, \ldots, x) \text{ for which} \\
 &\exists x_1 \forall x_2 \exists x_3 \ldots \exists x_i \phi(x_1, x_2, \ldots, x) = 1\} \\
 &\text{QSAT$_i$: (i even) =} \\
 &\{\text{3-DNFs } \phi(x_1, x_2, \ldots, x) \text{ for which} \\
 &\exists x_1 \forall x_2 \exists x_3 \ldots \forall x_i \phi(x_1, x_2, \ldots, x) = 1\} \\
 &\text{QSAT = (3-CNFs } \phi \text{ for which} \\
 &\exists x_1 \forall x_2 \exists x_3 \ldots \exists x_i \phi(x_1, x_2, \ldots, x_i) = 1\}
 \end{align*}

QSAT$_i$ is Σ_i-complete

Theorem: QSAT$_i$ is Σ_i-complete.

- Proof: (clearly in Σ_i)
 - assume i odd; given $L \in \Sigma_i$ in form
 \{ $x \mid \exists y_1 \forall y_2 \exists y_3 \ldots \exists y_i (x, y_1, y_2, \ldots, y) \in R$ \}
 - we get:
 \begin{align*}
 \exists y_1 \forall y_2 \exists y_3 \ldots \exists y_i \phi(x, y_1, y_2, \ldots, y_i) = 1 \iff x \in L \\
 \end{align*}

QSAT$_i$ is Σ_i-complete

Proof (continued)

- assume i even; given $L \in \Sigma_i$ in form
 \{ $x \mid \exists y_1 \forall y_2 \exists y_3 \ldots \forall y_i (x, y_1, y_2, \ldots, y) \in R$ \}
 \begin{align*}
 \exists y_1 \forall y_2 \exists y_3 \ldots \forall y_i \phi(x, y_1, y_2, \ldots, y_i) = 1 \iff x \in L \\
 \end{align*}

QSAT$_i$ is Σ_i-complete

Proof (continued)

- Problem set: can construct 3-CNF ϕ from C:
 \begin{align*}
 &\exists z \phi(x, y_1, \ldots, y_i, z) = 1 \iff C(x, y_1, \ldots, y_i) = 1 \\
 \end{align*}

- we get:
 \begin{align*}
 &\exists y_1 \forall y_2 \exists y_3 \ldots y_i \phi(x, y_1, \ldots, y_i, z) = 1 \\
 &\iff \exists y_1 \forall y_2 \exists y_3 \ldots \exists y_i C(x, y_1, \ldots, y_i) = 1 \iff x \in L \\
 \end{align*}
QSAT is \textbf{PSPACE}-complete

\textbf{Theorem:} QSAT is \textbf{PSPACE}-complete.

\textbf{Proof:}

- \(\forall x_1 \exists x_2 \forall x_3 \ldots Qx_n \varphi(x_1, x_2, \ldots, x_n) \)
 - \(\exists x_1 \): for each \(x_1 \), recursively solve \(\forall x_2 \exists x_3 \ldots Qx_n \varphi(x_1, x_2, \ldots, x_n) \)
 - if encounter “yes”, return “yes”
 - if encounter “no”, return “no”
 - base case: evaluating a 3-CNF expression
 - \(\text{poly}(n) \) recursion depth
 - \(\text{poly}(n) \) bits of state at each level

\begin{itemize}
 \item for \(i = 0, 1, \ldots, n \) produce quantified Boolean expressions \(\psi_i(A, B, W) \)
 \item convert \(\psi_i \) to 3-CNF \(\varphi \)
 \item add variables \(V \)
 \item hardware \(A = \text{START}, B = \text{ACCEPT} \)
 \item boolean expression of size \(O(n^k) \)
\end{itemize}

\begin{itemize}
 \item prove \(\exists y \in L \) \quad \text{by \textbf{PSPACE}-complete}\textbf{REACH}(A, B, i) \rightarrow \text{configuration } Y \text{ reachable from configuration } X \text{ in at most } 2^i \text{ steps.}
 \item key observation \#1:
 \begin{align*}
 \text{REACH}(A, B, i) \implies \text{configuration } Y \text{ reachable from configuration } X \text{ in at most } 2^i \text{ steps.}
 \end{align*}
\end{itemize}

- cannot define \(\psi_i(A, B) \) to be
 \begin{align*}
 \exists Z \left[\text{REACH}(A, Z, i) \land \text{REACH}(Z, B, i) \right]
 \end{align*}

(why?)
QSAT is PSPACE-complete

- Key idea #2: use quantifiers
- couldn’t do \(\psi_{i+1}(A, B) = \exists Z [\psi_i(A, Z) \land \psi_i(Z, B)] \)
- define \(\psi_{i+1}(A, B) \) to be
 \[\exists Z \forall X \forall Y [((X=A \land Y=Z) \lor (X=Z \land Y=B)) \Rightarrow \psi(X, Y)] \]
- total size of \(\psi_i \) is \(O(n^2) = \text{poly}(n) \)
- logspace reduction

PH collapse

- recall: \(L \in \Sigma_{i+1} \) iff expressible as
 \[L = \{ x \mid \exists y (x, y) \in R \} \]
 where \(R \in \Pi_i \)
- since \(\Pi_i = \Sigma_i \), \(R \) expressible as
 \[R = \{ (x, y) \mid \exists z (x, y, z) \in R' \} \]
 where \(R' \in \Pi_{i+1} \)
- together: \(L = \{ x \mid \exists (y, z) (x, (y, z)) \in R' \} \)
- conclude \(L \in \Sigma_i \)

Natural complete problems

- We now have versions of SAT complete for levels in PH, PSPACE
- Natural complete problems?
 - PSPACE: games
 - PH: almost all natural problems lie in the second and third level

Natural complete problems in PH

- MIN CIRCUIT
 - good candidate to be \(\Sigma_i \)-complete, still open
- MIN DNF: given DNF \(\varphi \), integer \(k \); is there a DNF \(\varphi' \) of size at most \(k \) computing same function \(\varphi \) does?

Theorem (U): MIN DNF is \(\Sigma_2 \)-complete.
Natural complete problems in PSPACE

- General phenomenon: many 2-player games are PSPACE-complete.
 - 2 players I, II
 - alternate picking edges
 - lose when no unvisited choice
- GEOGRAPHY = \{(G, s) : G is a directed graph and player I can win from node s\}

Theorem: GEOGRAPHY is PSPACE-complete.

Proof:
- in PSPACE
 - easily expressed with alternating quantifiers
- PSPACE-hard
 - reduction from QSAT

 alternately pick truth assignment

pick a clause

pick a true literal?