Lecture 12
May 11, 2023

RL

* Recall: probabilistic Turing Machine
— deterministic TM with extra tape for “coin flips”
* RL (Random Logspace)
— L € RL if there is a probabilistic logspace TM M:
x € L = Pry[M(x,y) accepts] = 2
x & L = Pr,[M(x,y) rejects] = 1
— important detail #1: only allow one-way access to
coin-flip tape
— important detail #2: explicitly require to run in

polynomial time
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RL

« L € RL c NL € SPACE(log? n)
» Theorem (SZ) : RL € SPACE(log®? n)

* Belief: L = RL (major open problem)
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RL

LS RLCSNL
* Natural problem:

Undirected STCONN: given an undirected
graph G = (V, E), nodes s, t, is there a path
froms - t?

Theorem: USTCONN € RL.
(Recall: STCONN is NL-complete)
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Undirected STCONN

* Proof sketch: (in Papadimitriou)
— add self-loop to each vertex (technical reasons)
— start at s, random walk 2|V||E| steps, accept if see t
— Lemma: expected return time for any node i is 2|E|/d;

— SUPPOSE S=Vy, Vy, ..., V,=t is a path
— expected time from v; to vi,, is (d/2)(2|E|/d) = |E|
— expected time to reach v, < |V||E|
— Prfail reach tin 2|V||E| steps] < /2

» Reingold 2005: USTCONN € L
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A motivating question

 Central problem in logic synthesis:

« given Boolean circuit C, integer k

« is there a circuit C’ of size at most

k that computes the same function | "~~~
C does?

P NN

X; Xz Xz .. Xn
» Complexity of this problem?

— NP-hard? inNP? incoNP? in PSPACE?
— complete for any of these classes?
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Oracle Turing Machines

Shorthand #1:
applying oracles to entire complexity
classes:
— complexity class C
—language A
C* ={L decided by OTM M with oracle A with M “in” C}

—example: PSAT
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Oracle Turing Machines

* Oracle Turing Machine (OTM):
— multitape TM M with special “query” tape
— special states g, Qyes, Gno

—on input x, with oracle language A
—MA runs as usual, except...
—when MA enters state q-:

« y = contents of query tape

*y € A = transition to qyes

*y & A = transition to gno
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Oracle Turing Machines

* Nondeterministic OTM
— defined in the same way
— (transition relation, rather than function)
« oracle is like a subroutine, or function in
your favorite programming language
— but each call counts as single step

e.g.. given @1, @, ..., @, are even # satisfiable?
— poly-time OTM solves with SAT oracle
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Oracle Turing Machines The Polynomial-Time Hierarchy
Shorthand #2: + can define lots of complexity classes using
* using complexity classes as oracles:

-O0TM M
— complexity class C

— M€ decides language L if for some language
A € C, MAdecides L

Both together: CP = languages decided by
OTM “in” C with oracle language from D
exercise: show PSAT = pPNP
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oracles

+ the classes on the next slide stand out
— they have natural complete problems

—they have a natural interpretation in terms of
alternating quantifiers

—they help us state certain consequences and
containments (more later)

May 11, 2023 CS151 Lecture 12

11

12




The Polynomial-Time Hierarchy

Zo = no =P
A4=PP Z,;=NP  Mi=coNP
A,=P\P Z,=NP"? M,=coNP\?
Aisq=PH Zi,=NP* MMi+1=coNP*

Polynomial Hierarchy PH = u; Z;
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2o=Mo=P
Ai1=P%  Z;;;=NP* [Mj+1=coNP

* Example:
— MIN CIRCUIT: given Boolean circuit C,

—MIN CIRCUIT € Z;
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The Polynomial-Time Hierarchy

integer k; is there a circuit C’ of size at most k
that computes the same function C does?

The Polynomial-Time Hierarchy

Zo = no =P
Ai1=P*  Zi=NP% Mis1=coNP™

* Example:
— EXACT TSP: given a weighted graph G, and

an integer k; is the k-th bit of the length of the
shortest TSP tour in Ga 1?

—EXACT TSP € A,
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BXP
The PH pslnce
PSPACE: generalized PH
geography, 2-person s T
games... | | ‘\&/‘
3rd level: V-C dimension... R
2nd level: MIN CIRCUIT, Z T2
BPP... ‘\AZ/ ‘
1st level: SAT, UNSAT, T~
factoring, etc... e cohP
\ /
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Useful characterization

» Recall: L € NP iff expressible as
L={x|3y lylsX (x,y)eR}
where R € P.

» Corollary: L € coNP iff expressible as
L={x|Vy, Iyl=x (x,y) R}

where R € P.

May 11, 2023 CS151 Lecture 12

16

Useful characterization

Theorem: L € %; iff expressible as
L={x]3y,lyl=Ixk (x,y) eR}
where R € M.q.

* Corollary: L € ; iff expressible as
L={x|Vvy, lylsIx (x,y) eR}

where R € Zj.q.
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Useful characterization

Theorem: L € %; iff expressible as

L={x|3y, Iyl Ixl (x y) €R}, where R € ;1.

* Proof of Theorem:
—induction on i
— base case (i =1) on previous slide
(=)
—we know Z; = NP*-1 = NP1
—qguessy, ask oracle if (x,y) ER
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Useful characterization

Theorem: L € Z; iff expressible as
L={x]|3y, lyls|x (x,y) R}, where R € M;.4.
—single language R in M4 :
xy)€R
=3
all “no” z;are notin A and
all “yes” z; have (z;, w)) € R" and
y is a path leading to Qaccept-

— Note: AND of polynomially-many Ii-1 predicates is in Mi-1.
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Useful characterization

Theorem: L € Z; iff expressible as

L={x|3y IyI<Ix (x. y) € R} where R € Mi1.

=)

—given L € Z;= NP*-1 decided by ONTM M
running in time nk

—try: R={(x, y) : y describes valid path of M’s
computation leading t0 Qaccept }

— but how to recognize valid computation path
when it depends on result of oracle queries?
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Useful characterization
Theorem: L € %; iff expressible as
L={x|3y, Iyl Ix (x,y) € R}, where R € ;4.

—try: R={(x, y) : y describes valid path of M's
computation leading to Qaccept }

— valid path = step-by-step description including correct
yes/no answer for each A-oracle query z; (A€ Zi,4)
— verify “no” queries in M;.4:
e.9: ZIEANZEA N ... N ZgEA

— for each “yes” query z;: 3w, |wj <|z[*with (z, w) € R’
for some R’ € ., by induction.

— for each “yes” query z; put w; in description of path y
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Alternating quantifiers

Nicer, more usable version:
» LeZ; iff expressible as
L={x]| 3y:vy2 3ys...Qyi (X, y1,y2,....¥)ER }
where Q= v/3if i even/odd, and REP

» Len; iff expressible as
L ={x]| Vys 3y2 Vys...Qyi (X, y1,Y2,...,Yi)ER }
where Q= 3/v if i even/odd, and REP
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Alternating quantifiers

* Proof:
—(=)induction on i
— base case: true for Z;=NP and My=coNP
— consider LEZ;:
L ={x|3y1 (x, y1) €ER}, for R" € M;.q
L={x|3ys Vy23ys...Qyi((X, y1), Y2,...,Vi)ER}
L={x|3ys Vy23ys...Qyi (X, y1,y2,...¥)ER}
—same argument for L € I;

— (&) exercise.
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Alternating quantifiers

Pleasing viewpoint:

alternations

{3vavava.."PSPACE

|
Aa poly(n) PH
Ta e
HHV ZZ uvan 'I'I'Z
~ “Iva " Zivav T
A,
T “3y3" 23 “VHV””S
«3n NP “y"coNP SR
P
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QSAT,; is Zj-complete

‘ X Y Yo Y3

T o]
c
1iff (X, yr.yz,..y;)) €R CVAL reduction
forR

— Problem set: can construct 3-CNF ¢ from C:
3Z O(X,Y1,..Yi, Z2) = 1 & C(X,Y1,...,Yi) = 1
—we get:
Ay Vyo... AYi3Z O(X,Y1,...,Yi, Z) = 1
& 3y Vyo... AyiCX,y1,...,yi)) =1 & X EL
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Complete problems

« three variants of SAT:
— QSAT; (i odd) =

{3-CNFs @(x4, X2, ..., X;) for which
AX1VXo X ... I O(X1, X, ..., Xi) = 1}
— QSAT; (i even) =
{3-DNFs @(x1, X2, ..., X;) for which
X1 VX2 IX3 ... VX O(X1, X, ..., Xi) = 1}
— QSAT = {3-CNFs ¢ for which
3Xy VX2 3Xz ... Qxn Q(X1, X2, ..., Xn) = 1}
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QSAT,; is Z;-complete

Theorem: QSAT; is Zi-complete.
* Proof: (clearly in Zj)
—assume i odd; given L € Z; in form
{x|3y1 vy2 3ys... Ayi(X, y1,¥2,...y) ER}

‘ X Y Y2 Y Y ‘

\C/é
CVAL reduction

Liff (X, v1ye,-¥) ER - forR
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QSAT; is Zi-complete

* Proof (continued)
—assume i even; given L € Z; in form
{x|3y1 Vy2 Ays ... WYi(X, Y1,¥2,....Yi) ER }

‘x Y Y2 Y3 Yo ‘

xc/é
CVAL reduction

Liff (X, y1.y2.-¥) E R forR
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QSAT,; is Zi-complete

‘ X oY Yo Y3

T ]
c
1iff (X, yryz,..y:) €R CVAL reduction
~— forR

— Problem set: can construct 3-DNF ¢ from C:
VZ Q(X,Y1,-.Yis 2) = 1 & CXy1,...,y1) = 1
—we get:
Ay Vyo... Vi VZ @(X,Y1,Y2,...,Yi, Z) = 1
© 3y Vyo... VY C(Xy1,Y2,....y) = 1T & xEL
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QSAT is PSPACE-complete

Theorem: QSAT is PSPACE-complete.
« Proof: VXy 3%, VX3 ... Q%o @(X1, Xa, ...y Xo)?
—in PSPACE: [3x; VX, 3X3 ... QX, ®(X4, X, ..., X1)?
— “3x,": for each x4, recursively solve
VX 3X3 ... QX P(X4, Xz, vy Xa)?
« if encounter “yes”, return “yes”
— “vx,": for each x4, recursively solve
A%y VX3 ... QX @(X1, Xa, -y Xn)?
« if encounter “no”, return “no”
— base case: evaluating a 3-CNF expression
— poly(n) recursion depth
— poly(n) bits of state at each level
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QSAT is PSPACE-complete

—given TM M deciding L € PSPACE; input x
—onf possible configurations

—single START configuration

— assume single ACCEPT configuration

—define:
REACH(X, Y, i) & configuration Y reachable from
configuration X in at most 2 steps.
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QSAT is PSPACE-complete

REACH(X, Y, i) & configuration Y reachable from
configuration X in at most 2 steps.

— Goal: produce 3-CNF @(w1,wz,Ws3,...,Wn) such
that

3wy YWa... QW @(W1,...,Win)
REACH(START, ACCEPT, nk)
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QSAT is PSPACE-complete

—fori=0, 1, ... nk produce quantified Boolean
expressions yi(A, B, W)

Jwg Ywa... Wi(A, B, W) & REACH(A, B, i)
— convert ynk to 3-CNF ¢

* add variables VV

3w, YW,... 3V @(A, B, W, V) & REACH(A, B, n¥)
—hardwire A = START, B = ACCEPT

awy Yw,... 3V (W, V) © xelL
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QSAT is PSPACE-complete

~Wo(A, B) = true iff Boolean expression
*A=Bor of size O(n*)
« Avyields B in one step of M

‘mm‘mm‘um‘m ‘HHHK?"f‘Q-

STEP STEP STEP STEP
POV T [HAREN
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QSAT is PSPACE-complete

— Key observation #1:
REACH(A, B, i+1)
=

37 [REACH(A, Z, i) A REACH(Z, B, i)]

— cannot define yi.1(A, B) to be

3Z [w(A, 2) Awi(Z, B)]
(why?)
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QSAT is PSPACE-complete

—Key idea #2: use quantifiers

—couldn’t do wi4(A, B) = 3Z [wi(A, Z)Awi(Z, B)]

—define yi+1(A, B) to be

3ZvXVY [(X=AAY=Z)V(X=ZAY=B)) = yi(X, Y)]
— (X, Y) is preceded by quantifiers

—move to front (they don’t involve X,Y,Z,A,B)
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QSAT is PSPACE-complete

Wo(A, B) = true iff A=B or Ayields B in 1 step
me(A, B) =
IZYXVY[((X=AAY=Z)V(X=ZAY=B)) = wi(X, Y)]

= |wol = O(nk)
= |wie1] = O(nk) + |wi

— total size of wykis O(nk)2 = poly(n)
— logspace reduction
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PH collapse "
s

Theorem: if Z;= IM;then for all j > i 22/\112
Zj=nj=Aj=zi ‘\Az/‘
P

“ - NP coNP
the polynomial hierarchy collapses ~
P

to the i-th level”
* Proof:
— sufficient to show Z; = ;44
—then Zi4=Z;= N, =M.4; apply theorem again
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PH collapse

—recall: L € Z;44 iff expressible as
L={x[3y(xy)e R}
where R e I,
—since ;= Z;, R expressible as
R={(xy)|3z((xy),2)eR}
where R’ € ;.4
—together: L={x|3(y,z) (x,(y,z)€R}
—conclude L € Z;
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Natural complete problems

* We now have versions of SAT complete
for levels in PH, PSPACE

» Natural complete problems?
— PSPACE: games

— PH: almost all natural problems lie in the
second and third level
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Natural complete problems in PH

—MIN CIRCUIT
« good candidate to be X,-complete, still open

— MIN DNF: given DNF @, integer k; is there a
DNF ¢’ of size at most k computing same
function ¢ does?

Theorem (U): MIN DNF is Z>-complete.
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Natural complete problems in
PSPACE

» General phenomenon: many 2-player
games are PSPACE-complete.

_ pasadena
2 players I,. 1] auckiand .
— alternate pick-
ing edges san davis
—lose whenno ™% “gakiand

unvisited choice

*+ GEOGRAPHY ={(G, s) : G is a directed
graph and player | can win from node s}
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Natural complete problems in

43

Natural complete problems in

PSPACE PSPACE
. AX1VXp3X3. .. (X1 VX2V =X3)A(=X3 VX4 )A. . A(X4V =X
Theorem: GEOGRAPHY is PSPACE- BaVXAG. . (XVXV XKV XA. AV )
complete. T frue ,6, false alternately pick truth
I - assignment
Q
Proof: I—i -'@- false
—in PSPACE o 9
« easily expressed with alternating quantifiers T é )
— PSPACE-hard I frue po D false h picka
« reduction from QSAT I & '/ . 0
=" pick a true
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