
1

Lecture11
May 9, 2023

1

May 9, 2023

Codes and Hardness

0 1 0 01 0 1 0m:

0 1 0 01 0 1 0Enc(m): 0 00 1 0

0 1 1 00 0 1 0R: 0 10 0 0

D
C

f:{0,1}log k → {0,1}

f ’:{0,1}log n → {0,1}

small circuit C 
approximating f’

decoding 
procedure

i ∈ {0,1}log k

small circuit 
that computes 
f exactly

f(i)
2CS151 Lecture 11

2

May 9, 2023

Encoding

• use a (variant of) Reed-Muller code 
concatenated with the Hadamard code
– q (field size), t (dimension), h (degree) 

• encoding procedure:
– message m ∈ {0,1}k

– subset S ⊆ Fq of size h

– efficient 1-1 function Emb: [k] → St

– find coeffs of degree h polynomial pm:Fqt → Fq
for which pm(Emb(i)) = mi for all i (linear algebra)

so, need ht ≥ k 

3CS151 Lecture 11

3

May 9, 2023

Encoding

• encoding procedure (continued):
– Hadamard code Had:{0,1}log q → {0,1}q

• = Reed-Muller with field size 2, dim. log q, deg. 1
• distance ½ by Schwartz-Zippel

– final codeword:  (Had(pm(x)))x ∈ Fqt

• evaluate pm at all points, and encode each 
evaluation with the Hadamard code

4CS151 Lecture 11

4

May 9, 2023

Encoding
0 1 0 01 0 1 0m:

Emb: [k] → St

St

Fq
t

pm degree h 
polynomial with 
pm(Emb(i)) = mi

5 7 2 92 1 0 3 8 36

0 1 0 0 1 0 1 0 . . . . . . 

evaluate at 
all x ∈ Fq

t

encode each symbol 
with 
Had:{0,1}log q→{0,1}q

5CS151 Lecture 11

5

May 9, 2023

Decoding

• small circuit C computing R, agreement ½ + 𝛿
• Decoding step 1

– produce circuit C’ from C
• given x ∈ Fq

t outputs “guess” for pm(x)
• C’ computes {z : Had(z) has agreement ½ + 𝛿/2

with x-th block}, outputs random z in this set

0 1 0 01 0 1 0Enc(m): 0 00 1

0 1 1 00 0 1 0R: 0 10 0

6CS151 Lecture 11

6



2

May 9, 2023

Decoding

• Decoding step 1 (continued):
– for at least 𝛿/2 of blocks, agreement in block 

is at least ½ + 𝛿/2
– Johnson Bound: when this happens, list size 

is S = O(1/𝛿2), so probability C’ correct is 1/S
– altogether:

• Prx[C’(x) = pm(x)] ≥ Ω(𝛿3)
• C’makes q queries to C
• C’ runs in time poly(q)

7CS151 Lecture 11

7

May 9, 2023

Decoding

• small circuit C’ computing R’, agreement 𝛿’ = Ω(𝛿3)
• Decoding step 2

– produce circuit C’’ from C’
• given x ∈ emb(1,2,…,k) outputs pm(x) 
• idea: restrict pm to a random curve; apply efficient 

R-S list-decoding; fix “good” random choices

5 7 2 92 1 0 3 8 36pm:

5 7 6 99 1 0 3R’: 8 16

8CS151 Lecture 11

8

May 9, 2023

Restricting to a curve

– points x=𝛼1, 𝛼2, 𝛼3, …, 𝛼r ∈ Fqt specify a 
degree r curve L : Fq → Fqt

• w1, w2, …, wr are distinct 
elements of Fq

• for each i,  Li :Fq → Fq

is the degree r poly for which
Li(wj) = (𝛼j)i for all j

• Write pm(L(z)) to mean 
pm(L1(z), L2(z), …, Lt(z))

• pm(L(w1)) = pm(x)
degree r⋅h⋅t univariate poly

x=𝛼1

𝛼2

𝛼3

𝛼r

9CS151 Lecture 11

9

May 9, 2023

Restricting to a curve

• Example:
– pm(x1, x2) = x12x22 + x2

– w1 = 1, w2 = 0

– L1(z) = 2z + 1(1-z) = z + 1
– L2(z) = 1z + 0(1-z) = z
– pm(L(z)) = (z+1)2z2 + z = z4 + 2z3 + z2 + z

Fq
t

𝛼1 = (2,1) 
𝛼2 = (1,0)

10CS151 Lecture 11

10

May 9, 2023

Decoding

• small circuit C’ computing R’, agreement 𝛿’ = Ω(𝛿3)
• Decoding step 2 (continued):

– pick random w1, w2, …, wr; 𝛼2, 𝛼3, …, 𝛼r to determine 
curve L

– points on L are (r-1)-wise independent
– random variable: Agr = |{z : C’(L(z)) = pm(L(z))}|
– E[Agr] = 𝛿’q and Pr[Agr < (𝛿’q)/2] < O(1/(𝛿’q))(r-1)/2

5 7 2 92 1 0 3 8 36pm:

5 7 6 99 1 0 3R’: 8 16

11CS151 Lecture 11

11

May 9, 2023

Decoding

• small circuit C’ computing R’, agreement 𝛿’ = Ω(𝛿3)
• Decoding step 2 (continued):

– agr = |{z : C’(L(z)) = pm(L(z))}| is ≥ (𝛿’q)/2 with very 
high probability

– compute using Reed-Solomon list-decoding:
{q(z) : deg(q) ≤ r⋅h⋅t, Prz[C’(L(z)) = q(z)] ≥ (𝛿’q)/2}

– if agr ≥ (𝛿’q)/2 then pm(L(⋅)) is in this set!

5 7 2 92 1 0 3 8 36pm:

5 7 6 99 1 0 3R’: 8 16

12CS151 Lecture 11

12



3

May 9, 2023

Decoding

• Decoding step 2 (continued):
– assuming (𝛿’q)/2 > (2r⋅h⋅t⋅q)1/2

– Reed-Solomon list-decoding step:
• running time = poly(q)
• list size S ≤ 4/𝛿’

– probability list fails to contain pm(L(⋅)) is 
O(1/(𝛿q))(r-1)/2

13CS151 Lecture 11

13

May 9, 2023

Decoding

• Decoding step 2 (continued):
– Tricky:

• functions in list are determined by the set L(⋅), 
independent of parameterization of the curve

• Regard w2,w3, …, wr as random points on curve L
• for q ≠ pm(L(⋅)) 

Pr[q(wi) = pm(L(wi))] ≤ (rht)/q
Pr[∀ i, q(wi) = pm(L(wi))] ≤ [(rht)/q]r-1

Pr[∃ q in list s.t. ∀ i q(wi) = pm(L(wi))] ≤(4/𝛿’)[(rht)/q]r-1
14CS151 Lecture 11

14

May 9, 2023

Decoding

• Decoding step 2 (continued):
– with probability ≥ 1 - O(1/(𝛿q))(r-1)/2 - (4/𝛿’)[(rht)/q]r-1

• list contains q* = pm(L(⋅))
• q* is the unique q in the list for which

q(wi) = pm(L(wi)) ( =pm(𝛼i) ) for i = 2,3,…,r
– circuit C’’: 

• hardwire w1, w2, …, wr; 𝛼2, 𝛼3, …, 𝛼r so that 
∀x ∈ emb(1,2,…,k) both events occur

• hardwire pm(𝛼i) for i = 2,…r
• on input x, find q*, output q*(w1)  ( = pm(x) )

15CS151 Lecture 11

15

May 9, 2023

Decoding

• Putting it all together:
– C approximating f’ used to construct C’

• C’makes q queries to C
• C’ runs in time poly(q)

– C’ used to construct C’’ computing f exactly
• C’’makes q queries to C’
• C’’ has r-1 elts of Fq

t and 2r-1 elts of Fq hardwired

• C’’ runs in time poly(q)
– C’’ has size poly(q, r, t, size of C)

16CS151 Lecture 11

16

May 9, 2023

Picking parameters
• k truth table size of f, hard for circuits of size s
• q field size, h R-M degree, t R-M dimension
• r degree of curve used in decoding 

– ht ≥ k (to accomodate message of length k)
– 𝛿6q2 > Ω(rhtq) (for R-S list-decoding)
– k[O(1/(𝛿q))(r-1)/2 + (4/𝛿’)[(rht)/q]r-1] < 1

(so there is a “good” fixing of random bits)
– Pick: h = s, t = (log k)/(log s)
– Pick: r = Θ(log k), q = Θ(rht𝛿-6)

17CS151 Lecture 11

17

May 9, 2023

Picking parameters
• k truth table size of f, hard for circuits of size s
• q field size, h R-M degree, t R-M dimension
• r degree of curve used in decoding 
• h = s, t = (log k)/(log s)
• r = Θ(log k), q = Θ(rht𝛿-6)

Claim: truth table of f’ computable in time poly(k) 
(so f’ ∈ E if f ∈ E).
– poly(qt) for R-M encoding
– poly(q)⋅qt for Hadamard encoding
– q ≤ poly(s), so qt ≤ poly(s)t = poly(h)t = poly(k) 

log k, 𝛿-1 < s

18CS151 Lecture 11

18



4

May 9, 2023

Picking parameters
• k truth table size of f, hard for circuits of size s
• q field size, h R-M degree, t R-M dimension
• r degree of curve used in decoding 
• h = s, t = (log k)/(log s)
• r = Θ(log k), q = Θ(rht𝛿-6)

Claim: f’ s’-approximable by C implies f 
computable exactly in size s by C’’, for s’ = sΩ(1)

– C has size s’ and agreement 𝛿=1/s’ with f’
– C’’ has size poly(q, r, t, size of C) = s

log k, 𝛿-1 < s

19CS151 Lecture 11

19

May 9, 2023

Putting it all together

Theorem 1 (IW, STV): If E contains functions 
that require size 2Ω(n) circuits, then E
contains 2Ω(n) -unapproximable functions.

(proof on next slide)
Theorem (NW): if E contains 2Ω(n)-unapp-

roximable functions then BPP = P. 
Theorem (IW): E requires exponential size 

circuits ⇒ BPP = P. 

20CS151 Lecture 11

20

May 9, 2023

Putting it all together

• Proof of Theorem 1:
– let f = {fn} be hard for size s(n) = 2δn circuits
– define f’ = {fn’} to be just-described encoding 

of (the truth tables of) f = {fn} 
– two claims we just showed:

• f’ is in E since f is.
• if f ’ is s’(n) = 2δ’n-approximable, then f is 

computable exactly by size s(n) = 2δn circuits.
– contradiction.

21CS151 Lecture 11

21

May 9, 2023

Extractors

• PRGs: can remove randomness from 
algorithms
– based on unproven assumption
– polynomial slow-down
– not applicable in other settings

• Question: can we use “real” randomness?
– physical source
– imperfect – biased, correlated

22CS151 Lecture 11

22

May 9, 2023

Extractors

• “Hardware” side 
– what physical source?
– ask the physicists…

• “Software” side
– what is the minimum we need from the 

physical source?

23CS151 Lecture 11

23

May 9, 2023

Extractors
• imperfect sources:

– “stuck bits”:
– “correlation”:
– “more insidious correlation”:

• there are specific ways to get 
independent unbiased random bits from 
specific imperfect physical sources

111111

“ “ “ “ “ “

perfect squares

24CS151 Lecture 11

24



5

May 9, 2023

Extractors

• want to assume we don’t know details of 
physical source

• general model capturing all of these? 
– yes: “min-entropy”

• universal procedure for all imperfect 
sources? 
– yes: “extractors”

25CS151 Lecture 11

25

May 9, 2023

Min-entropy

• General model of physical source w/ k < n 
bits of hidden randomness

Definition: random variable X on {0,1}n has 
min-entropy minx –log(Pr[X = x])
– min-entropy k implies no string has weight 

more than 2-k

{0,1}n

2k stringsstring sampled uniformly 
from this set

26CS151 Lecture 11

26

May 9, 2023

Extractor

• Extractor: universal procedure for 
“purifying” imperfect source:

– E is efficiently computable
– truly random seed as “catalyst”

seed

source string
near-uniform

{0,1}n

2k strings E

t bits
m bits

27CS151 Lecture 11

27

May 9, 2023

Extractor

“(k, ε)-extractor”⇒ for all X with min-entropy k:
– output fools all circuits C:

|Prz[C(z) = 1] - Pry, x←X[C(E(x, y)) = 1]| ≤ ε
– distributions E(X, Ut), Um “ε-close” (L1 dist ≤ 2ε)

• Notice similarity to PRGs
– output of PRG fools all efficient tests
– output of extractor fools all tests

28CS151 Lecture 11

28

May 9, 2023

Extractors

• Using extractors
– use output in place of randomness in any application
– alters probability of any outcome by at most ε

• Main motivating application:
– use output in place of randomness in algorithm
– how to get truly random seed?
– enumerate all seeds, take majority 

29CS151 Lecture 11

29

May 9, 2023

Extractors

• Goals: good: best:
short seed O(log n)  log n+O(1)
long output m = kΩ(1) m = k+t–O(1)
many k’s k = nΩ(1) any k = k(n)

seed

source string
near-uniform

{0,1}n

2k strings E

t bits
m bits

30CS151 Lecture 11

30



6

May 9, 2023

Extractors

• random function for E achieves best !
– but we need explicit constructions
– many known; often complex + technical 
– optimal extractors still open

• Trevisan Extractor:
– insight: use NW generator with source string 

in place of hard function
– this works (!!)
– proof slightly different than NW, easier

31CS151 Lecture 11

31

May 9, 2023

Trevisan Extractor

• Ingredients: (𝛿 > 0, m are parameters)
– error-correcting code

C:{0,1}n → {0,1}n’

distance (½ - ¼m-4)n’ blocklength n’ = poly(n)
– (log n’, a = δlog n/3) design:                       

S1,S2,…,Sm ∈ {1…t = O(log n’)} 

E(x, y)=C(x)[y|S1]◦C(x)[y|S2]◦…◦C(x)[y|Sm]

32CS151 Lecture 11

32

May 9, 2023

Trevisan Extractor
E(x, y)=C(x)[y|S1]◦C(x)[y|S2]◦…◦C(x)[y|Sm]

Theorem (T): E is an extractor for min-entropy      
k = nδ, with 
– output length m = k1/3

– seed length t = O(log n)
– error ε ≤ 1/m

010100101111101010111001010C(x):

seed y

33CS151 Lecture 11

33

May 9, 2023

Trevisan Extractor

• Proof: 
– given X ⊆ {0,1}n of size 2k

– assume E fails to ε-pass statistical test C 
|Prz[C(z) = 1] – Prx←X, y[C(E(x, y)) = 1]| > ε

– distinguisher C ⇒ predictor P:
Prx←X, y[P(E(x, y)1…i-1)=E(x, y)i] > ½ + ε/m

34CS151 Lecture 11

34

May 9, 2023

Trevisan Extractor

• Proof (continued):
– for at least ε/2 of x ∈ X we have:

Pry[P(E(x, y)1…i-1)=E(x, y)i] > ½ + ε/(2m)

– fix bits 𝛼,𝛽 outside of Si to preserve advantage
Pry’[P(E(x; 𝛼y’𝛽)1…i-1)=C(x)[y’] ] >½ + ε/(2m)

– as vary y’, for j ≠ i, j-th bit of E(x; 𝛼y’𝛽) varies 
over only 2a values

– (m-1) tables of 2a values supply E(x;𝛼y’𝛽)1…i-1

35CS151 Lecture 11

35

May 9, 2023

Trevisan Extractor

P

output     
C(x)[y’] w.p. 
½ + ε/(2m) 

y’

Y’ ∈ {0,1}log n’

36CS151 Lecture 11

36



7

May 9, 2023

Trevisan Extractor

• Proof (continued):
– (m-1) tables of size 2a constitute a 

description of a string that has ½ + ε/(2m) 
agreement with C(x)

– # of strings x with such a description?
• exp((m-1)2a)  = exp(nδ2/3) = exp(k2/3) strings
• Johnson Bound: each string accounts for at 

most O(m4) x’s
• total #: O(m4)exp(k2/3) << 2k(ε/2)
• contradiction

37CS151 Lecture 11

37

May 9, 2023

Extractors

• (k, 𝜖)- extractor:

– E is efficiently computable
– ∀ X with minentropy k, E fools all circuits C:

|Prz[C(z) = 1] - Pry, x←X[C(E(x, y)) = 1]| ≤ ε

seed

source string
near-uniform

{0,1}n

2k strings E

t bits
m bits

Trevisan: 
k = n𝛿 t = O(log n)
m = k1/3 𝜖 = 1/m

38CS151 Lecture 11

38

May 9, 2023

Strong error reduction 

• L ∈ BPP if there is a p.p.t. TM M: 
x ∈ L ⇒ Pry[M(x,y) accepts] ≥ 2/3
x ∀ L ⇒ Pry[M(x,y) rejects] ≥ 2/3

• Want: 
x ∈ L ⇒ Pry[M(x,y) accepts] ≥ 1 - 2-k

x ∉ L ⇒ Pry[M(x,y) rejects] ≥ 1 - 2-k

• We saw: repeat O(k) times
– n = O(k)·|y| random bits; 2n-k bad strings

Want to 
spend n = 
poly(|y|) 
random 
bits; 
achieve << 
2n/3 bad 
strings

39CS151 Lecture 11

39

May 9, 2023

Strong error reduction

• Better: 
– E extractor for minentropy k=|y|3=nδ,  ε < 1/6
– pick random w ∈ {0,1}n, run M(x, E(w, z)) for 

all z ∈ {0,1}t, take majority
– call w “bad” if majzM(x, E(w, z)) incorrect

|Prz[M(x,E(w,z))=b] - Pry[M(x,y)=b]| ≥ 1/6

– extractor property: at most 2k bad w
– n random bits; 2nδ bad strings

40CS151 Lecture 11

40


