Worst-case vs. Average-case

Theorem (Impagliazzo-Wigderson, Sudan-Trevisan-Vadhan)

If E contains functions that require size $2^{\Omega(n)}$ circuits, then E contains $2^{\Omega(n)}$–unapproximable functions.

• Proof:
 – main tool: error correcting code
Error-correcting codes

- Error Correcting Code (ECC):
 \[C: \Sigma^k \rightarrow \Sigma^n \]

- message \(m \in \Sigma^k \)

- received word \(R \)
 - \(C(m) \) with some positions corrupted

- if not too many errors, can decode: \(D(R) = m \)

- parameters of interest:
 - rate: \(k/n \)
 - distance:
 \[d = \min_{m \neq m'} \Delta(C(m), C(m')) \]
Distance and error correction

• C is an ECC with distance d
• can **uniquely** decode from up to $[d/2]$ errors
Distance and error correction

• can find short list of messages (one correct) after closer to d errors!

Theorem (Johnson): a binary code with distance $(\frac{1}{2} - \delta^2)n$ has at most $O(1/\delta^2)$ codewords in any ball of radius $(\frac{1}{2} - \delta)n$.
Example: Reed-Solomon

- alphabet $\Sigma = \mathbb{F}_q$: field with q elements
- message $m \in \Sigma^k$
- polynomial of degree at most $k-1$

 $$p_m(x) = \sum_{i=0}^{k-1} m_i x^i$$
- codeword $C(m) = (p_m(x))_{x \in \mathbb{F}_q}$
- rate $= k/q$
Example: Reed-Solomon

- **Claim:** distance $d = q - k + 1$
 - suppose $\Delta(C(m), C(m')) < q - k + 1$
 - then there exist polynomials $p_m(x)$ and $p_{m'}(x)$ that agree on *more than* $k-1$ points in \mathbb{F}_q
 - polynomial $p(x) = p_m(x) - p_{m'}(x)$ has more than $k-1$ zeros
 - but degree at most $k-1$...
 - contradiction.
Example: Reed-Muller

- Parameters: \(t \) (dimension), \(h \) (degree)
- alphabet \(\Sigma = \mathbb{F}_q \): field with \(q \) elements
- message \(m \in \Sigma^k \)
- multivariate polynomial of total degree at most \(h \):

 \[p_m(x) = \sum_{i=0}^{k-1} m_i M_i \]

\(\{M_i\} \) are all monomials of degree \(\leq h \)
Example: Reed-Muller

- M_i is monomial of total degree h
 - e.g. $x_1^2x_2x_4^3$
 - need # monomials $(h+t \text{ choose } t) > k$
- codeword $C(m) = (p_m(x))_{x \in (F_q)^t}$
- rate $= k/q^t$
- Claim: distance $d = (1 - h/q)q^t$
 - proof: Schwartz-Zippel: polynomial of degree h can have at most h/q fraction of zeros
Codes and hardness

• Reed-Solomon (RS) and Reed-Muller (RM) codes are efficiently encodable

• efficient unique decoding?
 – yes (classic result)

• efficient list-decoding?
 – yes (RS on problem set)
Codes and Hardness

• Use for worst-case to average case:

 truth table of $f: \{0,1\}^{\log k} \rightarrow \{0,1\}$
 (worst-case hard)

 $$m: \begin{array}{cccccccc}
 0 & 1 & 1 & 0 & 0 & 0 & 1 & 0 \\
 \end{array}$$

 truth table of $f': \{0,1\}^{\log n} \rightarrow \{0,1\}$
 (average-case hard)

 $\text{Enc}(m): \begin{array}{cccccccccccc}
 0 & 1 & 1 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 1 & 0 \\
 \end{array}$
Codes and Hardness

• if $n = \text{poly}(k)$ then

 $f \in E$ implies $f' \in E$

• Want to be able to prove:

 if f' is s'-approximable,
 then f is computable by a
 size $s = \text{poly}(s')$ circuit
Codes and Hardness

• Key: circuit C that approximates f' implicitly gives received word R

 R: 0 0 1 0 1 0 1 0 0 0 1 0 0

 $\text{Enc}(m)$: 0 1 1 0 0 0 1 0 0 0 0 1 0

• Decoding procedure D “computes” f exactly

 $\text{Requires special notion of efficient decoding}$
Codes and Hardness

\[m: \begin{array}{cccccccc}
0 & 1 & 1 & 0 & 0 & 0 & 0 & 1 & 0 \\
\end{array} \]

\[\text{Enc}(m): \begin{array}{cccccccc}
0 & 1 & 1 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 1 & 0 \\
\end{array} \]

\[R: \begin{array}{cccccccc}
0 & 0 & 1 & 0 & 1 & 0 & 1 & 0 & 0 & 0 & 1 & 0 & 0 \\
\end{array} \]

\[f: \{0,1\}^{\log k} \rightarrow \{0,1\} \]

\[f': \{0,1\}^{\log n} \rightarrow \{0,1\} \]

small circuit \(C \) approximating \(f' \)

small circuit that computes \(f \) exactly

\[i \in \{0,1\}^{\log k} \]

\[f(i) \]
Encoding

• use a (variant of) Reed-Muller code \textit{concatenated} with the Hadamard code
 – q (field size), t (dimension), h (degree)

• encoding procedure:
 – message \(m \in \{0,1\}^k \)
 – subset \(S \subseteq F_q \) of size \(h \)
 – efficient 1-1 function \(\text{Emb}: [k] \rightarrow S^t \)
 – find coeffs of degree \(h \) polynomial \(p_m : F_q^t \rightarrow F_q \)
 for which \(p_m(\text{Emb}(i)) = m_i \) for all \(i \) (linear algebra)

so, need \(h^t \geq k \)
Encoding

- **encoding procedure** (continued):
 - Hadamard code $\text{Had} : \{0,1\}^{\log q} \rightarrow \{0,1\}^q$
 - = Reed-Muller with field size 2, dim. $\log q$, deg. 1
 - distance $\frac{1}{2}$ by Schwartz-Zippel
 - final codeword: $(\text{Had}(p_m(x)))_{x \in F_q^t}$
 - evaluate p_m at all points, and encode each evaluation with the Hadamard code
Encoding

m: 0 1 1 0 0 0 1 0

$\text{Emb}: [k] \rightarrow S^t$

F_q^t

p_m degree h polynomial with $p_m(\text{Emb}(i)) = m_i$

evaluate at all $x \in F_q^t$

encode each symbol with $\text{Had}: \{0,1\}^{\log q} \rightarrow \{0,1\}^q$
Decoding

Enc(m):

0 1 1 0 0 0 1 0 0 0 1

R:

0 0 1 0 1 0 0 1 0 0 1 0

• small circuit C computing R, agreement $\frac{1}{2} + \delta$

• Decoding step 1
 – produce circuit C’ from C
 • given $x \in F_q^t$ outputs “guess” for $p_m(x)$
 • C’ computes $\{z : \text{Had}(z) \text{ has agreement } \frac{1}{2} + \delta/2 \text{ with } x\text{-th block}\}$, outputs random z in this set
Decoding

• Decoding step 1 (continued):
 – for at least $\delta/2$ of blocks, agreement in block is at least $\frac{1}{2} + \delta/2$
 – Johnson Bound: when this happens, list size is $S = O\left(1/\delta^2\right)$, so probability C' correct is $1/S$
 – altogether:
 • $\Pr_x[C'(x) = p_m(x)] \geq \Omega(\delta^3)$
 • C' makes q queries to C
 • C' runs in time $\text{poly}(q)$
Decoding

\[\delta' = \Omega(\delta^3) \]

- small circuit \(C' \) computing \(R' \), agreement \(\delta' = \Omega(\delta^3) \)

- **Decoding step 2**
 - produce circuit \(C'' \) from \(C' \)
 - given \(x \in \text{emb}(1,2,\ldots,k) \) outputs \(p_m(x) \)
 - idea: restrict \(p_m \) to a random curve; apply efficient R-S list-decoding; fix “good” random choices
Restricting to a curve

- points \(x = \alpha_1, \alpha_2, \alpha_3, \ldots, \alpha_r \in F_q^t \) specify a degree \(r \) curve \(L : F_q \rightarrow F_q^t \)

- \(w_1, w_2, \ldots, w_r \) are distinct elements of \(F_q \)

- for each \(i \), \(L_i : F_q \rightarrow F_q \)

is the degree \(r \) poly for which \(L_i(w_j) = (\alpha_j)_i \) for all \(j \)

- Write \(p_m(L(z)) \) to mean \(p_m(L_1(z), L_2(z), \ldots, L_t(z)) \)

- \(p_m(L(w_1)) = p_m(x) \)

degree \(r \cdot h \cdot t \) univariate poly
Restricting to a curve

• Example:
 - \(p_m(x_1, x_2) = x_1^2x_2^2 + x_2 \)
 - \(w_1 = 1, w_2 = 0 \)
 - \(\alpha_1 = (2,1) \)
 - \(\alpha_2 = (1,0) \)
 - \(L_1(z) = 2z + 1(1-z) = z + 1 \)
 - \(L_2(z) = 1z + 0(1-z) = z \)
 - \(p_m(L(z)) = (z+1)^2z^2 + z = z^4 + 2z^3 + z^2 + z \)
Decoding

- small circuit C' computing R', agreement $\delta' = \Omega(\delta^3)$
- Decoding step 2 (continued):
 - pick random $w_1, w_2, \ldots, w_r; \alpha_2, \alpha_3, \ldots, \alpha_r$ to determine curve L
 - points on L are $(r-1)$-wise independent
 - random variable: $\text{Agr} = |\{z : C'(L(z)) = p_m(L(z))\}|$
 - $E[\text{Agr}] = \delta' q$ and $\Pr[\text{Agr} < (\delta' q)/2] < O(1/(\delta' q))^{(r-1)/2}$

| p_m: | 5 2 7 1 2 9 0 3 6 8 3 |
| R': | 5 9 7 1 6 9 0 3 6 8 1 |
Decoding

- small circuit C' computing R', agreement $\delta' = \Omega(\delta^3)$

- Decoding step 2 (continued):
 - $\text{agr} = |\{z : C'(L(z)) = p_m(L(z))\}|$ is $\geq (\delta'q)/2$ with very high probability
 - compute using Reed-Solomon list-decoding:
 \[\{q(z) : \deg(q) \leq r \cdot h \cdot t, \Pr_z[C'(L(z)) = q(z)] \geq (\delta'q)/2\}\]
 - if $\text{agr} \geq (\delta'q)/2$ then $p_m(L(\cdot))$ is in this set!
Decoding

• **Decoding step 2 (continued):**
 – assuming \((\delta'q)/2 > (2r \cdot h \cdot t \cdot q)^{1/2}\)
 – Reed-Solomon list-decoding step:
 • running time = \(\text{poly}(q)\)
 • list size \(S \leq 4/\delta'\)

 – probability list fails to contain \(p_m(L(\cdot))\) is \(O(1/(\delta q))^{(r-1)/2}\)
Decoding

- Decoding step 2 (continued):
 - Tricky:
 - functions in list are determined by the set $L(\cdot)$, independent of parameterization of the curve
 - Regard w_2, w_3, \ldots, w_r as random points on curve L
 - for $q \neq p_m(L(\cdot))$
 \[\Pr[q(w_i) = p_m(L(w_i))] \leq \frac{rht}{q} \]
 \[\Pr[\forall \ i, q(w_i) = p_m(L(w_i))] \leq \left[\frac{rht}{q}\right]^{r-1} \]

\[\Pr[\exists \ q \ in \ list \ s.t. \ \forall \ i \ q(w_i) = p_m(L(w_i))] \leq (4/\delta')[\left(\frac{rht}{q}\right]^{r-1} \]
Decoding

• Decoding step 2 (continued):
 – with probability $\geq 1 - O(1/(\delta q))^{(r-1)/2} - (4/\delta')[(rht)/q]^{r-1}$
 • list contains $q^* = p_m(L(\cdot))$
 • q^* is the unique q in the list for which
 $$q(w_i) = p_m(L(w_i)) (= p_m(\alpha_i)) \text{ for } i = 2, 3, \ldots, r$$
 – circuit $C’’$:
 • hardwire $w_1, w_2, \ldots, w_r; \alpha_2, \alpha_3, \ldots, \alpha_r$ so that
 $\forall x \in \text{emb}(1, 2, \ldots, k)$ both events occur
 • hardwire $p_m(\alpha_i)$ for $i = 2, \ldots, r$
 • on input x, find q^*, output $q^*(w_1) \ (= p_m(x))$
Decoding

• Putting it all together:
 – \(C \) approximating \(f' \) used to construct \(C' \)
 • \(C' \) makes \(q \) queries to \(C \)
 • \(C' \) runs in time \(\text{poly}(q) \)
 – \(C' \) used to construct \(C'' \) computing \(f \) exactly
 • \(C'' \) makes \(q \) queries to \(C' \)
 • \(C'' \) has \(r-1 \) elts of \(\mathbb{F}_q^t \) and \(2r-1 \) elts of \(\mathbb{F}_q \) hardwired
 • \(C'' \) runs in time \(\text{poly}(q) \)
 – \(C'' \) has size \(\text{poly}(q, r, t, \text{size of } C) \)
Picking parameters

- k truth table size of f, hard for circuits of size s
- q field size, h R-M degree, t R-M dimension
- r degree of curve used in decoding
 - $h^t \geq k$ (to accommodate message of length k)
 - $\delta^6q^2 > \Omega(rhtq)$ (for R-S list-decoding)
 - $k[\mathcal{O}(1/(\delta q))^{(r-1)/2} + (4/\delta')(rht)/q]^{r-1}] < 1$
 (so there is a “good” fixing of random bits)
 - Pick: $h = s$, $t = (\log k)/(\log s)$
 - Pick: $r = \Theta(\log k)$, $q = \Theta(rht\delta^{-6})$
Picking parameters

- k truth table size of f, hard for circuits of size s
- q field size, h R-M degree, t R-M dimension
- r degree of curve used in decoding
- $h = s$, $t = (\log k)/(\log s)$
- $r = \Theta(\log k)$, $q = \Theta(rht\delta^{-6})$

Claim: truth table of f' computable in time $\text{poly}(k)$

(so $f' \in E$ if $f \in E$).

- $\text{poly}(q^t)$ for R-M encoding
- $\text{poly}(q) \cdot q^t$ for Hadamard encoding

- $q \leq \text{poly}(s)$, so $q^t \leq \text{poly}(s)^t = \text{poly}(h)^t = \text{poly}(k)$
Picking parameters

- k truth table size of f, hard for circuits of size s
- q field size, h R-M degree, t R-M dimension
- r degree of curve used in decoding
- $h = s$, $t = (\log k)/(\log s)$
- $r = \Theta(\log k)$, $q = \Theta(rht\delta^{-6})$

Claim: f' is s'-approximable by C implies f computable exactly in size s by C'', for $s' = s^{\Omega(1)}$

- C has size s' and agreement $\delta = 1/s'$ with f'
- C'' has size $\text{poly}(q, r, t, \text{size of } C) = s$

log k, $\delta^{-1} < s$
Putting it all together

Theorem 1 (IW, STV): If E contains functions that require size $2^{\Omega(n)}$ circuits, then E contains $2^{\Omega(n)}$-unapproximable functions.

(proof on next slide)

Theorem (NW): if E contains $2^{\Omega(n)}$-unapproximable functions then $BPP = P$.

Theorem (IW): E requires exponential size circuits $\Rightarrow BPP = P$.
Putting it all together

• Proof of Theorem 1:
 – let \(f = \{f_n\} \) be hard for size \(s(n) = 2^{\delta n} \) circuits
 – define \(f' = \{f'_n\} \) to be just-described encoding of (the truth tables of) \(f = \{f_n\} \)
 – two claims we just showed:
 • \(f' \) is in \(\mathbf{E} \) since \(f \) is.
 • if \(f' \) is \(s'(n) = 2^{\delta' n} \)-approximable, then \(f \) is computable exactly by size \(s(n) = 2^{\delta n} \) circuits.
 – contradiction.