Lecture11
May 9, 2023

Codes and Hardness
/ £{0,1}°0% > {0,1}
m:|0[1/1/0/0|0 IV {0,1}°s" > {0,1}

encmy[0] 1]1]0]0J0] 1]0]0]0]0]1]0]

small circuit C

R: (0@ 1[oJl[o[1]o[o[o@J0] |approximating f

i ;T 7777~ -~ 5| small circuit
\\ 1 |that computes
procedure | c : f exactly

Encoding

use a (variant of) Reed-Muller code
concatenated with the Hadamard code

—q (field size), t (dimension), h (degree)
encoding procedure:

~ message m € {0,1) /

—subset S € Fqof size h

— efficient 1-1 function Emb: [k] —» St
—find coeffs of degree h polynomial pn:Fqt = Fq

Encoding

» encoding procedure (continued):
— Hadamard code Had:{0,1}*99 — {0,1}d
« = Reed-Muller with field size 2, dim. log q, deg. 1
« distance 2 by Schwartz-Zippel

—final codeword: (Had(pm(x)))x e Fol

« evaluate p,, at all points, and encode each
evaluation with the Hadamard code

May 9, 2023 CS151 Lecture 11

| for which pm(Emb(i)) = m; for all i (linear algebra)
le oo - ----
May 9, 2023 CS151 Lecture 11 2 May 9, 2023 CS151 Lecture 11 3
Encoding Decoding
m:[0[1]1]0]0]0[1]0] 4 Enc(m):[0[11]0]0]0]1]0]0[0[0[1]
pm degree h
Emb: [K] - St polynomial with R:[o]o] 1[ofd]o[1]o]o]0]

Pm(Emb(i)) = m;

evaluate at
all x € Fy!

encode each symbol

with

Had:{0,1}°s 4-5{0, 1}

e

[5[2]7]1]2[s]0]3[6]83]

May 9, 2023 CS151 Lecture 11

» small circuit C computing R, agreement /2 + §
» Decoding step 1
— produce circuit C’ from C
« given x € F.t outputs “guess” for pn(x)
» C’' computes {z : Had(z) has agreement % + §/2
with x-th block}, outputs random z in this set

May 9, 2023 CS151 Lecture 11 6

Decoding

» Decoding step 1 (continued):

—for at least 6/2 of blocks, agreement in block
is at least %2 + §/2

— Johnson Bound: when this happens, list size
is S = O(1/62), so probability C’ correct is 1/S

— altogether:
* Pr{C'(x) = pm(X)] 2 Q(6°)
» C’ makes q queries to C
« C’ runs in time poly(q)

May 9, 2023

CS151 Lecture 11

Restricting to a curve

+ Example:
— Pm(X1, X2) = X42X22 + Xo
-wi=1,w,=0 a = (21) —]
a; = (1,0)

=
~ Fyr
-Li(z)=2z+1(1-z)=z+1

—Ly(z) =12+ 0(1-2) =z

—pm(L(2)) = (z+1)2z22+z=2z4+ 223+ 22 + Z

May 9, 2023 CS151 Lecture 11

Decoding

e [5]2]7]1]2]9]0]3[6]8]3]
R: [5] [9]0[3]6]8]

+ small circuit C’ computing R’, agreement §* = Q(63)
* Decoding step 2
— produce circuit C” from C’
« given x € emb(1,2,...,k) outputs pn(x)

« idea: restrict p,, to a random curve; apply efficient
R-S list-decoding; fix “good” random choices

May 9, 2023 CS151 Lecture 11

Restricting to a curve

— points x=a1, @z, as, ..., a € F¢t specify a
degreercurve L: Fq — Fgt
Wy, Wy, ..., W, are distinct
elements of F,

« foreachi, L, :F, = F, N /z\
is the degree r poly for which
Li(w;) = (a); for all j

* Write p,,(L(z)) to mean
Pu(L4(2), Lo(2), ..., Li(2))

* Pan(L(W1)) = prm(X)

May 9, 2023

X=ai

‘ degree r-h-t univariate poly

CS151 Lecture 11

10

8 9
Decoding Decoding
p: [52]7]1]2[9]0[3[6][8[3] p: [5]2]7]1]2[9]0[3]6]8]3]
R: [5] [9]0]3[e]8] R: [5[8]7[1[8]9[0]3[6]8]
+ small circuit C’ computing R’, agreement §” = ()(53) + small circuit C' computing R’, agreement §” = ((53)
» Decoding step 2 (continued): » Decoding step 2 (continued):
— pick random wy, Wy, ..., W;; s, a3, ..., a, to determine —agr={z: C(L(2)) = pn(L@))}| is = (6°q)/2 with very
curve L high probability
— points on L are (r-1)-wise independent — compute using Reed-Solomon list-decoding:
— random variable: Agr = [{z : C'(L(z)) = pm(L(2))}| {q(z) : deg(q) < rh+, Pr{C'(L(2)) = q(2)] = (§'q)/2}
— E[Agr] = §'q and Pr[Agr < (§°q)/2] < O(1/(§°q))-""2 — if agr = (6°q)/2 then p,,(L(+)) is in this set!
May 9, 2023 CS151 Lecture 11 " May 9, 2023 CS151 Lecture 11 12
11

12

Decoding

» Decoding step 2 (continued):
—assuming (6'q)/2 > (2r-h-t-q)!”2
— Reed-Solomon list-decoding step:
* running time = poly(q)
« list size S < 4/8

— probability list fails to contain py,(L(-)) is
O(1/(8q))r-12

May 9, 2023 CS151 Lecture 11 13

13

May 9, 2023

Decoding

Putting it all together:

— C approximating f* used to construct C’
« C’ makes q queries to C
« C' runs in time poly(q)

— C’ used to construct C” computing f exactly
« C” makes q queries to C’
+ C" has r-1 elts of F;t and 2r-1 elts of F, hardwired
* C” runs in time poly(q)

— C” has size poly(q, , t, size of C)

CS151 Lecture 11 16

Decoding

» Decoding step 2 (continued):
— Tricky:

« functions in list are determined by the set L(-),

independent of parameterization of the curve
* Regard w,,w;, ..., W, as random points on curve L
+ for q # pm(L())

Prig(w) = pm(L(W))] < (rht)/q
Priv i, a(w) = pm(L(W))] < [(rht)/q]"*

Pr{3 qinlist s.t. Vi q(w;) = pm(L(W))] <(4/8")[(rht)/q]!

May 9, 2023 CS151 Lecture 11 14

Decoding

» Decoding step 2 (continued):
— with probability > 1 - O(1/(6q))12 - (4/8")[(rht)/q]~"
« list contains " = pn(L(-))
* g is the unique q in the list for which
A(W) = P (L(W)) (=pm(a)) fori=2,3,...r
—circuit C™:
« hardwire wy, Wy, ..., W;; az, @3, ..., a; SO that
Vx € emb(1,2,...,k) both events occur
* hardwire p,(a;) fori=2,...r
« on input x, find q", output q*(w;) (= pn(X))

16

May 9, 2023 CS151 Lecture 11 15
14 15
Picking parameters Picking parameters

« k truth table size of f, hard for circuits of size s « k truth table size of f, hard for circuits of size s

« qfield size, h R-M degree, t R-M dimension « g field size, h R-M degree, t R-M dimension

« r degree of curve used in decoding « r degree of curve used in decoding
—ht >k (to accomodate message of length k) * h=s,t=(logk)/(log s) 5

. . - r=0(og k), q = O(ht6*

— §8g2 > Q(rhtq) (for R-S list-decoding) r=06(log k), q = &(rhtd)
—K[O(1/(8q))r-172 + (4/8")[(rht)/q]-1] < 1 Claim: truth table of f computable in time poly(k)

(so there is a “good” fixing of random bits) (Sopf;s(ﬁt;ff];f:)'\'ﬂ encoding
- P!Ck: h=s, t=(log k)(log s) — poly(q)-q! for Hadamard encoding
—Pick: r = ©(log k), q = ©(rht5-¢) — g < poly(s), so q' < poly(s) = poly(h): = poly(k)

May 9, 2023 CS151 Lecture 11 17 May 9, 2023 CS151 Lecture 11 18
17

18

Picking parameters

« k truth table size of f, hard for circuits of size s

« g field size, h R-M degree, t R-M dimension

« r degree of curve used in decoding

* h=s,t=(logk)/(log s)

* r = 0(log k), g = ©(rht5-¢)

Claim: ' s’-approximable by C implies f

computable exactly in size s by C”, for s’ = sa(1)
— C has size s’ and agreement §=1/s’ with
— C” has size poly(q, r, t, size of C) = s

May 9, 2023 CS151 Lecture 11 19

19

Extractors

* PRGs: can remove randomness from
algorithms
— based on unproven assumption
— polynomial slow-down
—not applicable in other settings

» Question: can we use “real” randomness?
— physical source
— imperfect — biased, correlated

May 9, 2023 CS151 Lecture 11 22

Putting it all together

Theorem 1 (IW, STV): If E contains functions
that require size 22" circuits, then E
contains 22 -unapproximable functions.

(proof on next slide)

Theorem (NW): if E contains 2%M-unapp-
roximable functions then BPP = P.

Theorem (IW): E requires exponential size
circuits = BPP = P.

May 9, 2023 CS151 Lecture 11 20

Putting it all together

Proof of Theorem 1:
—let f = {f,} be hard for size s(n) = 25" circuits
—define f' = {f,’} to be just-described encoding
of (the truth tables of) f = {f,;}
— two claims we just showed:
« fisin E since fis.
« if f is s'(n) = 28"-approximable, then f is
computable exactly by size s(n) = 2°" circuits.
— contradiction.

May 9, 2023 CS151 Lecture 11 21

20

21

Extractors

» “Hardware” side
— what physical source?
— ask the physicists...

« “Software” side
—what is the minimum we need from the
physical source?

May 9, 2023 CS151 Lecture 11 23

22

Extractors

* imperfect sources:
— “stuck bits™:
— “correlation™

— “more insidious correlation”:| perfect squares

Moo 0

« there are specific ways to get
independent unbiased random bits from
specific imperfect physical sources

May 9, 2023 CS151 Lecture 11 24

23

24

Extractors

» want to assume we don’t know details of
physical source

+ general model capturing all of these?
—yes: “min-entropy”

* universal procedure for all imperfect
sources?
—yes: “extractors”

May 9, 2023 CS151 Lecture 11 25

25

Extractor

“(k, €)-extractor” = for all X with min-entropy k:
— output fools all circuits C:
|Prz[C(z) = 1] - Pry, xx[C(E(x, ¥)) = 1] < €
— distributions E(X, U;), U, “e-close” (L, dist < 2¢)

Notice similarity to PRGs
— output of PRG fools all efficient tests
— output of extractor fools all tests

May 9, 2023 CS151 Lecture 11 28

Min-entropy

» General model of physical source w/ k < n
bits of hidden randomness

string sampled uniformly A
from this set o1

Definition: random variable X on {0,1}" has
min-entropy miny —log(Pr[X = x])

— min-entropy k implies no string has weight
more than 2+

Extractor

Extractor: universal procedure for
“purifying” imperfect source:

source strin -
[source st} ¢
o m bits

t bits

— E is efficiently computable
—truly random seed as “catalyst”

May 9, 2023 CS151 Lecture 11 26 May 9, 2023 CS151 Lecture 11 27
26 27
Extractors Extractors
» Using extractors —[source sfring}—|

— use output in place of randomness in any application

28

E near-unifor!

— alters probability of any outcome by at most € on" -_’ﬁ mbits
+ Main motivating application: * Goals: good: best:
— use output in place of randomness in algorithm short seed O(log n) log n+O(1)
— how to get truly random seed? long output m = ko m = k+t—0(1)
— enumerate all seeds, take majority many K's K = na) any k = k(n)
May 9, 2023 CS151 Lecture 11 29 May 9, 2023 CS151 Lecture 11 30

29

30

Extractors

random function for E achieves best !
—but we need explicit constructions
— many known; often complex + technical
—optimal extractors still open
Trevisan Extractor:

in place of hard function
— this works (!!)

— proof slightly different than NW, easier

May 9, 2023

—insight: use NW generator with source string

CS151 Lecture 11 31
31
Trevisan Extractor
* Proof:
—given X c {0,1}" of size 2«
—assume E fails to e-pass statistical test C
[Prz[C(z) = 1] — Preex, y[C(E(x, y)) = 1]| > €
—distinguisher C = predictor P:
Preex y[P(E(X, Y)1...i.1)=E(X, y)] > V2 + ¢/m
May 9, 2023 CS151 Lecture 11 34
34

Trevisan Extractor

* Ingredients:
— error-correcting code
C:{0,13 > {0,1}
distance (V2 - am-)n" blocklength n’ = poly(n)
—(log n’, a = dlog n/3) design:
S1,S2,...,Sm€ {1...t = O(log n")}

(6 > 0, m are parameters)

E(x, y)=C(X)[yis4] © C(X)[Yiso] © - © CX)[Yis]

May 9, 2023

Trevisan Extractor

E(x, y)=C(¥is4] © CX)lyiso] © - © CX)[Yisn]
C(x): ‘ 010100101111101010111001010 ‘

seedy []

Theorem (T): E is an extractor for min-entropy
k = n®, with
— output length m =k'?
— seed length t = O(log n)
— error € < 1/m

Cs151 Lecture 11 32 May 9, 2023 Cs151 Lecture 11 33
32 33
Trevisan Extractor Trevisan Extractor
* Proof (continued):
— for at least €/2 of x € X we have: gu‘rpu'f
PIPEG, Vr-+)=E(x, y)] > % + ef2m) Ve Foim
— fix bits a, outside of S; to preserve advantage P
Pry[P(E(X; ay'B)...i1)=C(X)[y]] >V2 + €/(2m)
—asvaryy’, forj #i, j-th bit of E(x; ay’p) varies y‘ﬂﬁ Q E E ﬁ m ﬁ E D
over only 22 values
— (m-1) tables of 22 values supply E(x;ay’S);...i.1
May 9, 2023 CS151 Lecture 11 35 May 9, 2023 CS151 Lecture 11 36
35

36

Trevisan Extractor

* Proof (continued):

— (m-1) tables of size 22 constitute a
description of a string that has 2 + €/(2m)
agreement with C(x)

—# of strings x with such a description?
 exp((m-1)22) = exp(n®23) = exp(k23) strings
« Johnson Bound: each string accounts for at
most O(m*) x’s
« total #: O(m*)exp(k??) << 2(e/2)
« contradiction

May 9, 2023 CS151 Lecture 11 37

37

Extractors
Trevisan:
* (k, €)- extractor: k=no t=0(log n)
m=k'? e=1/m
—[source sfring|— E
o1 *rsffd F m bits
its

— E is efficiently computable
— v X with minentropy k, E fools all circuits C:
|Pr,[C(z) = 1] - Pry, x—x[C(E(x, y)) = 1]| < €

May 9, 2023 CS151 Lecture 11 38

May 9, 2023

x & L = Pr,[M(x,y) rejects] = 1 - 2
* We saw: repeat O(k) timeg
—n = O(k)-ly| random bits; 2« bad strings

Strong error reduction

* Le BPPifthereisap.p.t. TM M:
x € L = Pry[M(x,y) accepts] = 2/3
xV L = Pr,[M(x,y) rejects] = 2/3

* Want:
x € L = Pry[M(x,y) accepts] 2 1/ 2+ |bits;

Want to
spend n =

poly(ly|)
random

achieve <<

23 bad
strings

CS151 Lecture 11 39

Strong error reduction

* Better:

— E extractor for minentropy k=|y|>=n®, €< 1/6

— pick random w € {0,1}", run M(x, E(w, z)) for
all z € {0,1}t, take majority

—call w “bad” if maj,M(x, E(w, z)) incorrect
|PrzIM(x,E(w,z))=b] - Pr,[M(x,y)=b]| = 1/6

— extractor property: at most 2kbad w

—n random bits; 27° bad strings

May 9, 2023 CS151 Lecture 11 40

40

38

39

