Recall: probabilistic Turing Machine
- deterministic TM with extra tape for "coin flips"

RL
- **RL** (Random Logspace)
 - \(L \subseteq RL \) if there is a probabilistic logspace TM \(M \):
 - \(x \in L \Rightarrow \Pr[M(x,y) \text{ accepts}] \geq \frac{1}{2} \)
 - \(x \notin L \Rightarrow \Pr[M(x,y) \text{ rejects}] = 1 \)
 - important detail #1: only allow one-way access to coin-flip tape
 - important detail #2: explicitly require to run in polynomial time

\(L \subseteq RL \subseteq NL \subseteq SPACE(\log^2 n) \)

Theorem (SZ): \(RL \subseteq SPACE(\log^{3/2} n) \)

Belief: \(L = RL \) (open problem)

Undirected STCONN

- **Proof sketch:** (in Papadimitriou)
 - add self-loop to each vertex (technical reasons)
 - start at \(s \), random walk \(2|V||E| \) steps, accept if see \(t \)
 - Lemma: expected return time for any node \(i \) is \(2|E|/d_i \)
 - suppose \(s=v_1, v_2, ..., v_n=t \) is a path
 - expected time from \(v_i \) to \(v_{i+1} \) is \((d_i/2)(2|E|/d_i) = |E| \)
 - expected time to reach \(v_i \leq |V||E| \)
 - \(\Pr[\text{fail reach } t \text{ in } 2|V||E| \text{ steps}] \leq \frac{1}{2} \)

- **Reingold 2005:** \(USTCONN \in L \)
A motivating question

• Central problem in logic synthesis:
 - given Boolean circuit C, integer k
 - is there a circuit C' of size at most k that computes the same function C does?

• Complexity of this problem?
 - \textbf{NP}-hard? in \textbf{NP}? in \textbf{coNP}? in \textbf{PSPACE}?
 - complete for any of these classes?

Oracle Turing Machines

• Oracle Turing Machine (OTM):
 - multitape TM M with special "query" tape
 - special states \text{q}_?, \text{q}_{yes}, \text{q}_{no}
 - on input x, with oracle language A
 - \text{M}^A runs as usual, except…
 - when \text{M}^A enters state \text{q}_?:
 - y = contents of query tape
 - y \in A \Rightarrow transition to \text{q}_{yes}
 - y \notin A \Rightarrow transition to \text{q}_{no}

Oracle Turing Machines

• Nondeterministic OTM
 - defined in the same way
 - (transition relation, rather than function)
• oracle is like a subroutine, or function in your favorite programming language
 - but each call counts as single step
 - \text{e.g.}: given \varphi_1, \varphi_2, \ldots, \varphi_n are even # satisfiable?
 - poly-time OTM solves with SAT oracle

The Polynomial-Time Hierarchy

• can define lots of complexity classes using oracles
• the classes on the next slide stand out
 - they have natural complete problems
 - they have a natural interpretation in terms of alternating quantifiers
 - they help us state certain consequences and containments (more later)
The Polynomial-Time Hierarchy

$\Sigma_0 = \Pi_0 = P$

$\Delta_i = P^\Sigma_i$, $\Sigma_i = NP$, $\Pi_i = coNP$

$\Delta_{i+1} = P^{\Sigma_i}$, $\Sigma_{i+1} = NP^{\Sigma_i}$, $\Pi_{i+1} = coNP^{\Sigma_i}$

Polynomial Hierarchy $PH = \bigcup_i \Sigma_i$

Example:

- MIN CIRCUIT: given Boolean circuit C, integer k; is there a circuit C' of size at most k that computes the same function C does?
- MIN CIRCUIT $\in \Sigma_2$

The PH

$PSPACE$: generalized geography, 2-person games...

3rd level: V-C dimension...

2nd level: MIN CIRCUIT, BPP...

1st level: SAT, UNSAT, factoring, etc...

Useful characterization

• Recall: $L \in NP$ iff expressible as
 $L = \{ x \mid \exists y, |y| \leq |x|^k, (x, y) \in R \}$
 where $R \in P$.

• Corollary: $L \in coNP$ iff expressible as
 $L = \{ x \mid \forall y, |y| \leq |x|^k, (x, y) \in R \}$
 where $R \in P$.

Theorem: $L \in \Sigma_i$ iff expressible as

$$L = \{ x \mid \exists y, |y| \leq |x|^k, (x, y) \in R \}$$

where $R \in \Pi_{i-1}$.

• Corollary: $L \in \Pi_i$ iff expressible as
 $L = \{ x \mid \forall y, |y| \leq |x|^k, (x, y) \in R \}$
 where $R \in \Sigma_{i-1}$.
Useful characterization

Theorem: $L \in \Sigma_i$ iff expressible as

$$L = \{ x \mid \exists y, |y| \leq |x|^i, (x, y) \in R \}, \text{ where } R \in \Pi_{i+1}.$$

- **Proof of Theorem:**
 - induction on i
 - base case ($i = 1$) on previous slide
 - try: $L = \Sigma_1 = \text{NP}^{\Pi_{i-1}}$ = $\text{NP}^{\Pi_{i-1}}$
 - guess y, ask oracle if $(x, y) \in R$
 - valid path
 - induction on i
 - (\Leftarrow)
 - given $L \in \Sigma_i = \text{NP}^{\Pi_{i-1}}$ decided by ONTM M
 - running in time n^k
 - try: $R = \{ (x, y) : y \text{ describes valid path of } M \text{'s computation leading to } q_{\text{accept}} \}$
 - but how to recognize valid computation path when it depends on result of oracle queries?

Useful characterization

Theorem: $L \in \Sigma_i$ iff expressible as

$$L = \{ x \mid \exists y, |y| \leq |x|^i, (x, y) \in R \}, \text{ where } R \in \Pi_{i+1}.$$

- try: $R = \{ (x, y) : y \text{ describes valid path of } M \text{'s computation leading to } q_{\text{accept}} \}$
- valid path = step-by-step description including correct yes/no answer for each A-oracle query z_i ($A \in \Sigma_{i+1}$)
- verify "no" queries in Π_{i+1}:
 - e.g.: $z_i \notin A \land z_{i+1} \notin A \land \ldots \land z_k \notin A$
 - for each "yes" query z_j: $\exists y, |y| \leq |x|^j$ with $(z_j, w_j) \in R$ for some $R' \in \Pi_{i+2}$ by induction.
 - for each "yes" query z_j, put w_j in description of path y

Useful characterization

Theorem: $L \in \Sigma_i$ iff expressible as

$$L = \{ x \mid \exists y, |y| \leq |x|^i, (x, y) \in R \}, \text{ where } R \in \Pi_{i+1}.$$

- single language R in Π_{i+1}:
 - $(x, y) \in R$
 - \iff
 - all "no" z_i are not in A and all "yes" z_i have $(z_j, w_j) \in R'$ and y is a path leading to q_{accept}.
- Note: AND of polynomially-many Π_{i+1} predicates is in Π_{i+1}.

Useful characterization

Theorem: $L \in \Sigma_i$ iff expressible as

$$L = \{ x \mid \exists y, |y| \leq |x|^i, (x, y) \in R \}, \text{ where } R \in \Pi_{i+1}.$$

- \Leftarrow
 - $\forall R' \in \Pi_{i+2}$ by induction.
 - \forall predicates is in Π_{i+1}

Useful characterization

Theorem: $L \in \Sigma_i$ iff expressible as

$$L = \{ x \mid \exists y, |y| \leq |x|^i, (x, y) \in R \}, \text{ where } R \in \Pi_{i+1}.$$

- try: $R = \{ (x, y) : y \text{ describes valid path of } M \text{'s computation leading to } q_{\text{accept}} \}$
- valid path = step-by-step description including correct yes/no answer for each A-oracle query z_i ($A \in \Sigma_{i+1}$)
- verify "no" queries in Π_{i+1}:
 - e.g.: $z_i \notin A \land z_{i+1} \notin A \land \ldots \land z_k \notin A$
 - for each "yes" query z_i: $\exists y, |y| \leq |x|^j$ with $(z_i, w_i) \in R'$ for some $R' \in \Pi_{i+2}$ by induction.
 - for each "yes" query z_i, put w_i in description of path y

Useful characterization

Theorem: $L \in \Sigma_i$ iff expressible as

$$L = \{ x \mid \exists y, |y| \leq |x|^i, (x, y) \in R \}, \text{ where } R \in \Pi_{i+1}.$$

- single language R in Π_{i+1}:
 - $(x, y) \in R$
 - \iff
 - all "no" z_i are not in A and all "yes" z_i have $(z_j, w_j) \in R'$ and y is a path leading to q_{accept}.
 - Note: AND of polynomially-many Π_{i+1} predicates is in Π_{i+1}.

Useful characterization

Theorem: $L \in \Sigma_i$ iff expressible as

$$L = \{ x \mid \exists y, |y| \leq |x|^i, (x, y) \in R \}, \text{ where } R \in \Pi_{i+1}.$$

- try: $R = \{ (x, y) : y \text{ describes valid path of } M \text{'s computation leading to } q_{\text{accept}} \}$
- valid path = step-by-step description including correct yes/no answer for each A-oracle query z_i ($A \in \Sigma_{i+1}$)
- verify "no" queries in Π_{i+1}:
 - e.g.: $z_i \notin A \land z_{i+1} \notin A \land \ldots \land z_k \notin A$
 - for each "yes" query z_i: $\exists y, |y| \leq |x|^j$ with $(z_i, w_i) \in R'$ for some $R' \in \Pi_{i+2}$ by induction.
 - for each "yes" query z_i, put w_i in description of path y

Alternating quantifiers

Nicer, more usable version:

- $L \in \Sigma_i$ iff expressible as
 $$L = \{ x \mid \exists y_1 \exists y_2 \exists y_3 \ldots \exists y_i (x, y_1, y_2, \ldots, y_i) \in R \}$$
 where $Q = \forall \exists$ if i even/odd, and $R \in \text{P}$

- $L \in \Pi_i$ iff expressible as
 $$L = \{ x \mid \forall y_1 \exists y_2 \exists y_3 \ldots \exists y_i (x, y_1, y_2, \ldots, y_i) \in R \}$$
 where $Q = \exists \forall$ if i even/odd, and $R \in \text{P}$

Alternating quantifiers

Proof:

- (\Rightarrow) induction on i
 - base case: true for $\Sigma_1 = \text{NP}$ and $\Pi_1 = \text{coNP}$
 - consider $L \in \Sigma_i$:
 - $L = \{ x \mid \exists y_1 (x, y_1) \in R' \}$, for $R' \in \Pi_{i+1}$
 - $L = \{ x \mid \exists y_1 \forall y_2 \exists y_3 \ldots \exists y_i (x, y_1, y_2, \ldots, y_i) \in R \}$
 - $L = \{ x \mid \exists y_1 \forall y_2 \exists y_3 \ldots \exists y_i (x, y_1, y_2, \ldots, y_i) \in R \}$
 - same argument for $L \in \Pi_i$
 - (\Leftarrow) exercise.
Three variants of SAT:

- **QSAT**
 - Problem set: can construct
 - Proof: (clearly we get:

QSAT

- **Problem (continued)**
 - Assume i even; given L ∈ Σ, in form
 \[\{ x | \exists y_1 \forall y_2 \exists y_3 \ldots \exists y_i (x, y_1, y_2, \ldots, y_i) \in R \} \]
 - 1 iff \((x, y_1, y_2, \ldots, y_i) \in R \)

QSAT

<table>
<thead>
<tr>
<th>May 4, 2015</th>
<th>25</th>
</tr>
</thead>
</table>

Complete problems

- Three variants of SAT:
 - **QSAT** (i odd) =
 - (3-CNFs \(\phi(x_1, x_2, \ldots, x_i) \) for which
 \[\exists x_1 \forall x_2 \exists x_3 \ldots \exists x_i \phi(x_1, x_2, \ldots, x_i) = 1 \}
 - **QSAT** (i even) =
 - (3-DNFs \(\phi(x_1, x_2, \ldots, x_i) \) for which
 \[\exists x_1 \forall x_2 \exists x_3 \ldots \forall x_i \phi(x_1, x_2, \ldots, x_i) = 1 \}
 - **QSAT** = (3-CNFs \(\phi \) for which
 \[\exists x_1 \forall x_2 \exists x_3 \ldots Qx_n \phi(x_1, x_2, \ldots, x_n) = 1 \}

QSAT is \(\Sigma_i \)-complete

Theorem: QSAT is \(\Sigma_i \)-complete.

- Proof: (clearly in \(\Sigma_i \))
 - Assume i odd; given \(L \in \Sigma_i \) in form
 \[\{ x | \exists y_1 \forall y_2 \exists y_3 \ldots \exists y_i (x, y_1, y_2, \ldots, y_i) \in R \} \]
 - 1 iff \((x, y_1, y_2, \ldots, y_i) \in R \)

QSAT is \(\Sigma_i \)-complete

Proof (continued)

- Assume i even; given \(L \in \Sigma_i \) in form
 \[\{ x | \exists y_1 \forall y_2 \exists y_3 \ldots \exists y_i (x, y_1, y_2, \ldots, y_i) \in R \} \]
 - 1 iff \((x, y_1, y_2, \ldots, y_i) \in R \)

QSAT is \(\Sigma_i \)-complete

<table>
<thead>
<tr>
<th>May 4, 2015</th>
<th>27</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>May 4, 2015</th>
<th>28</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>May 4, 2015</th>
<th>29</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>May 4, 2015</th>
<th>30</th>
</tr>
</thead>
</table>
QSAT is **PSPACE**-complete

Theorem: QSAT is **PSPACE**-complete.

- **Proof:**
 - **in PSPACE:** \(\exists x_1 \forall x_2 \exists x_3 \cdots \exists x_n \varphi(x_1, x_2, \ldots, x_n) \)?
 - “\(\exists x_i \): for each \(x_i \), recursively solve \(\forall x_1 \exists x_2 \exists x_3 \cdots \exists x_n \varphi(x_1, x_2, \ldots, x_n) \)?
 - if encounter “yes”, return “yes”
 - “\(\forall x_i \): for each \(x_i \), recursively solve \(\exists x_1 \forall x_2 \exists x_3 \cdots \exists x_n \varphi(x_1, x_2, \ldots, x_n) \)?
 - if encounter “no”, return “no”
 - base case: evaluating a 3-CNF expression
 - \(\text{poly}(n) \) recursion depth
 - \(\text{poly}(n) \) bits of state at each level

QSAT is **PSPACE**-complete

- for \(i = 0, 1, \ldots, n^k \) produce quantified Boolean expressions \(\psi_i(A, B, W) \)
- convert \(\psi_i \) to 3-CNF \(\varphi \)
 - add variables \(V \)
 - hardwire \(A = \text{START}, B = \text{ACCEPT} \)
 - \(\exists w_1 \forall w_2 \cdots \forall w_c \varphi(W, V) \Leftrightarrow x \in L \)