Min-entropy

• General model of physical source with $k < n$ bits of hidden randomness

Definition: random variable X on $\{0,1\}^n$ has *min-entropy* $\min_x -\log(\Pr[X = x])$

- min-entropy k implies no string has weight more than 2^{-k}
Extractor

• Extractor: universal procedure for “purifying” imperfect source:

- E is efficiently computable
- truly random seed as “catalyst”
Extractor

“(k, \varepsilon)-extractor” ⇒ for all X with min-entropy k:

– output fools all circuits C:

\[|\Pr_z[C(z) = 1] - \Pr_{y, x \gets X}[C(E(x, y)) = 1]| \leq \varepsilon \]

– distributions E(X, U_t), U_m “\varepsilon-close” (L_1 dist \leq 2\varepsilon)

• Notice similarity to PRGs
 – output of PRG fools all efficient tests
 – output of extractor fools all tests
Extractors

- **Goals:**
 - **good:**
 - short seed: $O(\log n)$
 - long output: $m = k^{\Omega(1)}$
 - many k’s: $k = n^{\Omega(1)}$
 - **best:**
 - long output: $\log n + O(1)$
 - many k’s: $m = k + t - O(1)$
 - any $k = k(n)$

2^k strings → source string → E → near-uniform

$\{0,1\}^n$ → seed \uparrow t bits \downarrow m bits
Extractors

• random function for E achieves best!
 – but we need explicit constructions
 – many known; often complex + technical
 – optimal extractors still open

• Trevisan Extractor:
 – insight: use NW generator with source string in place of hard function
 – this works (!!)
 – proof slightly different than NW, easier
Trevisan Extractor

• Ingredients: \(\delta > 0, m \) are parameters
 – error-correcting code
 \[C : \{0,1\}^n \rightarrow \{0,1\}^{n'} \]
 distance \(\left(\frac{1}{2} - \frac{1}{4}m^{-4} \right)n' \) blocklength \(n' = \text{poly}(n) \)
 – \((\log n', a = \delta \log n/3) \) design:
 \(S_1, S_2, \ldots, S_m \subset \{1 \ldots t = O(\log n')\} \)

\[E(x, y) = C(x)[y_{|S_1}] \circ C(x)[y_{|S_2}] \circ \ldots \circ C(x)[y_{|S_m}] \]
Theorem (T): E is an extractor for min-entropy $k = n^{\delta}$, with
- output length $m = k^{1/3}$
- seed length $t = O(\log n)$
- error $\varepsilon \leq 1/m$
Trevisan Extractor

• Proof:
 – given $X \subseteq \{0,1\}^n$ of size 2^k

 – assume E fails to ε-pass statistical test C

 $$|\Pr_z[C(z) = 1] - \Pr_{x \in X, y}[C(E(x, y)) = 1]| > \varepsilon$$

 – **distinguisher** $C \Rightarrow$ **predictor** P:

 $$\Pr_{x \in X, y}[P(E(x, y)_{1\ldots i-1})=E(x, y)_i] > \frac{1}{2} + \frac{\varepsilon}{m}$$
Trevisan Extractor

• Proof (continued):
 – for at least $\varepsilon/2$ of $x \in X$ we have:
 \[
 \Pr_y[P(E(x, y)_1 \ldots i-1) = E(x, y)_i] > \frac{1}{2} + \frac{\varepsilon}{(2m)}
 \]
 – fix bits α, β outside of S_i to preserve advantage
 \[
 \Pr_y[P(E(x; \alpha y' \beta)_1 \ldots i-1) = C(x)[y']] > \frac{1}{2} + \frac{\varepsilon}{(2m)}
 \]
 – as vary y', for $j \neq i$, j-th bit of $E(x; \alpha y' \beta)$ varies over only 2^a values
 – $(m-1)$ tables of 2^a values supply $E(x;\alpha y' \beta)_1 \ldots i-1$
Trevisan Extractor

\[y' \in \{0,1\}^{\log n} \]

Output \(C(x)[y'] \) w.p. \(\frac{1}{2} + \frac{\varepsilon}{2m} \)

\(y' \rightarrow \)
Trevisan Extractor

• Proof (continued):
 – (m-1) tables of size 2^a constitute a description of a string that has $\frac{1}{2} + \varepsilon/(2m)$ agreement with C(x)
 – # of strings x with such a description?
 • $\exp((m-1)2^a) = \exp(n^{\delta_{2/3}}) = \exp(k^{2/3})$ strings
 • Johnson Bound: each string accounts for at most $O(m^4)$ x’s
 • total #: $O(m^4)\exp(k^{2/3}) << 2^k(\varepsilon/2)$
 • contradiction
Extractors

• (k, ε)- extractor:
 - E is efficiently computable
 - ∀ X with minentropy k, E fools all circuits C:
 \[|\Pr_z[C(z) = 1] - \Pr_{y, x}[C(E(x, y)) = 1]| \leq \varepsilon\]

Trevisan:
\[
\begin{align*}
 k &= n^\delta \\
 m &= k^{1/3} \\
 t &= O(\log n) \\
 \varepsilon &= 1/m
\end{align*}
\]
Strong error reduction

• \(L \in \text{BPP} \) if there is a p.p.t. TM \(M \):
 \[
 x \in L \implies \Pr_y[M(x,y) \text{ accepts}] \geq \frac{2}{3}
 \]
 \[
 x \notin L \implies \Pr_y[M(x,y) \text{ rejects}] \geq \frac{2}{3}
 \]

• Want:
 \[
 x \in L \implies \Pr_y[M(x,y) \text{ accepts}] \geq 1 - 2^{-k}
 \]
 \[
 x \notin L \implies \Pr_y[M(x,y) \text{ rejects}] \geq 1 - 2^{-k}
 \]

• We saw: repeat \(O(k) \) times
 \[
 - n = O(k) \cdot |y| \text{ random bits}; \ 2^{n-k} \text{ bad strings}
 \]

Want to spend \(n = \text{poly}(|y|) \) random bits; achieve \(\ll 2^{n/3} \) bad strings
Strong error reduction

• Better:
 – E extractor for minentropy $k=|\log y|^{\delta}=n^{\delta}$, $\epsilon < 1/6$
 – pick random $w \in \{0,1\}^n$, run $M(x, E(w, z))$ for all $z \in \{0,1\}^t$, take majority
 – call w “bad” if $\text{maj}_z M(x, E(w, z))$ incorrect

$|\Pr_z[M(x,E(w,z))=b] - \Pr_y[M(x,y)=b]| \geq 1/6$

– extractor property: at most 2^k bad w
– n random bits; $2^{n\delta}$ bad strings
RL

• Recall: probabilistic Turing Machine
 – deterministic TM with extra tape for “coin flips”

• \textbf{RL} (Random Logspace)
 – $L \in \textbf{RL}$ if there is a probabilistic logspace TM M:
 $$x \in L \Rightarrow \Pr_y[M(x,y) \text{ accepts}] \geq \frac{1}{2}$$
 $$x \notin L \Rightarrow \Pr_y[M(x,y) \text{ rejects}] = 1$$
 – important detail #1: only allow one-way access to coin-flip tape
 – important detail #2: explicitly require to run in polynomial time
RL

- \(L \subseteq RL \subseteq NL \subseteq \text{SPACE}(\log^2 n) \)
- Theorem (SZ): \(RL \subseteq \text{SPACE}(\log^{3/2} n) \)
- Belief: \(L = RL \) (open problem)
RL

\[L \subseteq RL \subseteq NL \]

- Natural problem:

 Undirected STCONN: given an undirected graph \(G = (V, E) \), nodes \(s, t \), is there a path from \(s \rightarrow t \)?

Theorem: USTCONN \(\in RL \).

(Recall: STCONN is NL-complete)
Undirected STCONN

• Proof sketch: (in Papadimitriou)
 – add self-loop to each vertex (technical reasons)
 – start at s, random walk 2|V||E| steps, accept if see t
 – Lemma: expected return time for any node i is 2|E|/d_i

 – suppose s=v_1, v_2, ..., v_n=t is a path
 – expected time from v_i to v_{i+1} is (d_i/2)(2|E|/d_i) = |E|
 – expected time to reach v_n ≤ |V||E|
 – Pr[fail reach t in 2|V||E| steps] ≤ ½

• Reingold 2005: USTCONN ∈ L
A motivating question

• Central problem in logic synthesis:
 - given Boolean circuit \(C \), integer \(k \)
 - is there a circuit \(C' \) of size at most \(k \) that computes the same function \(C \) does?

• Complexity of this problem?
 - \textbf{NP}-hard? in \textbf{NP}? in \textbf{coNP}? in \textbf{PSPACE}?
 - complete for any of these classes?
Oracle Turing Machines

• Oracle Turing Machine (OTM):
 – multitape TM M with special “query” tape
 – special states $q_?$, q_{yes}, q_{no}
 – on input x, with oracle language A
 – M^A runs as usual, except…
 – when M^A enters state $q_?$:
 • $y = \text{contents of query tape}$
 • $y \in A \Rightarrow \text{transition to } q_{\text{yes}}$
 • $y \not\in A \Rightarrow \text{transition to } q_{\text{no}}$
Oracle Turing Machines

• Nondeterministic OTM
 – defined in the same way
 – (transition relation, rather than function)

• oracle is like a subroutine, or function in your favorite programming language
 – but each call counts as single step

 e.g.: given $\varphi_1, \varphi_2, \ldots, \varphi_n$ are even # satisfiable?
 – poly-time OTM solves with SAT oracle
Oracle Turing Machines

Shorthand #1:

• applying oracles to entire complexity classes:
 – complexity class \mathcal{C}
 – language A
 $\mathcal{C}^A = \{L \text{ decided by OTM } M \text{ with oracle } A \text{ with } M \text{ “in” } \mathcal{C}\}$
 – example: P^{SAT}
Oracle Turing Machines

Shorthand #2:

• using complexity classes as oracles:
 – OTM M
 – complexity class C
 – M^C decides language L if for some language $A \in C$, M^A decides L

Both together: $C^D = \text{languages decided by OTM “in” C with oracle language from D}$

exercise: show $P^{SAT} = P^{NP}$
The Polynomial-Time Hierarchy

• can define lots of complexity classes using oracles
• the classes on the next slide stand out
 – they have natural complete problems
 – they have a natural interpretation in terms of alternating quantifiers
 – they help us state certain consequences and containments (more later)
The Polynomial-Time Hierarchy

\[\Sigma_0 = \Pi_0 = P \]

\[\Delta_1 = P^P \quad \Sigma_1 = \text{NP} \quad \Pi_1 = \text{coNP} \]

\[\Delta_2 = P^{\text{NP}} \quad \Sigma_2 = \text{NP}^{\text{NP}} \quad \Pi_2 = \text{coNP}^{\text{NP}} \]

\[\Delta_{i+1} = P^{\Sigma_i} \quad \Sigma_{i+1} = \text{NP}^{\Sigma_i} \quad \Pi_{i+1} = \text{coNP}^{\Sigma_i} \]

Polynomial Hierarchy \(PH = \bigcup_i \Sigma_i \)
The Polynomial-Time Hierarchy

\[\Sigma_0 = \Pi_0 = P \]
\[\Delta_{i+1} = P^{\Sigma_i} \quad \Sigma_{i+1} = NP^{\Sigma_i} \quad \Pi_{i+1} = coNP^{\Sigma_i} \]

• Example:
 – MIN CIRCUIT: given Boolean circuit C, integer k; is there a circuit C’ of size at most k that computes the same function C does?
 – MIN CIRCUIT \(\in \Sigma_2 \)
The Polynomial-Time Hierarchy

\[\Sigma_0 = \Pi_0 = P \]
\[\Delta_{i+1} = \Sigma_i \]
\[\Sigma_{i+1} = NP^{\Sigma_i} \]
\[\Pi_{i+1} = coNP^{\Sigma_i} \]

• Example:
 – **EXACT TSP**: given a weighted graph G, and an integer k; is the k-th bit of the length of the shortest TSP tour in G a 1?
 – **EXACT TSP** ∈ \(\Delta_2 \)
The PH

PSPACE: generalized geography, 2-person games...

3rd level: V-C dimension...

2nd level: MIN CIRCUIT, BPP...

1st level: SAT, UNSAT, factoring, etc...
Useful characterization

• Recall: \(L \in \text{NP} \) iff expressible as
 \[
 L = \{ x \mid \exists y, |y| \leq |x|^k, (x, y) \in R \}
 \]
 where \(R \in \text{P} \).

• Corollary: \(L \in \text{coNP} \) iff expressible as
 \[
 L = \{ x \mid \forall y, |y| \leq |x|^k, (x, y) \in R \}
 \]
 where \(R \in \text{P} \).
Useful characterization

Theorem: $L \in \Sigma_i$ iff expressible as

$$L = \{ x \mid \exists y, |y| \leq |x|^k, (x, y) \in R \}$$

where $R \in \Pi_{i-1}$.

• **Corollary:** $L \in \Pi_i$ iff expressible as

$$L = \{ x \mid \forall y, |y| \leq |x|^k, (x, y) \in R \}$$

where $R \in \Sigma_{i-1}$.
Useful characterization

Theorem: $L \in \Sigma_i$ iff expressible as

$$L = \{ x \mid \exists y, |y| \leq |x|^k, (x, y) \in R \}, \text{ where } R \in \Pi_{i-1}.$$

- Proof of Theorem:
 - induction on i
 - base case ($i = 1$) on previous slide

 (\iff)

 - we know $\Sigma_i = NP^{\Sigma_{i-1}} = NP^{\Pi_{i-1}}$
 - guess y, ask oracle if $(x, y) \in R$
Useful characterization

Theorem: \(L \in \Sigma_i \) iff expressible as

\[
L = \{ x \mid \exists \ y, |y| \leq |x|^k, (x, y) \in R \}, \text{ where } R \in \Pi_{i-1}.
\]

(\Rightarrow)

– given \(L \in \Sigma_i = \text{NP}^{\Sigma_{i-1}} \) decided by ONTM M running in time \(n^k \)

– try: \(R = \{ (x, y) : y \text{ describes valid path of M’s computation leading to } q_{\text{accept}} \} \)

– but how to recognize valid computation path when it depends on result of oracle queries?
Useful characterization

Theorem: \(L \in \Sigma_i \) iff expressible as
\[
L = \{ x \mid \exists y, |y| \leq |x|^k, (x, y) \in R \}, \text{ where } R \in \Pi_{i-1}.
\]

- try: \(R = \{ (x, y) : y \text{ describes valid path of } M\text{'s computation leading to } q_{\text{accept}} \} \)

- valid path = step-by-step description including correct yes/no answer for each A-oracle query \(z_j \) \((A \in \Sigma_{i-1})\)

- verify “no” queries in \(\Pi_{i-1} \):

e.g: \(z_1 \not\in A \land z_3 \not\in A \land \ldots \land z_8 \not\in A \)

- for each “yes” query \(z_j \): \(\exists w_j, |w_j| \leq |z_j|^k \) with \((z_j, w_j) \in R' \) for some \(R' \in \Pi_{i-2} \) by induction.

- for each “yes” query \(z_j \) put \(w_j \) in description of path \(y \)
Useful characterization

Theorem: $L \in \Sigma_i$ iff expressible as

$L = \{ x | \exists y, |y| \leq |x|^k, (x, y) \in R \}$, where $R \in \Pi_{i-1}$.

– single language R in Π_{i-1}:

$$(x, y) \in R$$

\iff

all “no” z_j are not in A and

all “yes” z_j have $(z_j, w_j) \in R'$ and

y is a path leading to q_{accept}.

– Note: AND of polynomially-many Π_{i-1} predicates is in Π_{i-1}.
Alternating quantifiers

Nicer, more usable version:

• \(L \in \Sigma_i \) iff expressible as
 \[
 L = \{ x \mid \exists y_1 \ \forall y_2 \ \exists y_3 \ldots Q y_i (x, y_1, y_2, \ldots, y_i) \in R \}
 \]
 where \(Q = \forall/\exists \) if \(i \) even/odd, and \(R \in \mathcal{P} \)

• \(L \in \Pi_i \) iff expressible as
 \[
 L = \{ x \mid \forall y_1 \ \exists y_2 \ \forall y_3 \ldots Q y_i (x, y_1, y_2, \ldots, y_i) \in R \}
 \]
 where \(Q = \exists/\forall \) if \(i \) even/odd, and \(R \in \mathcal{P} \)